Free Standard AU & NZ Shipping For All Book Orders Over $80!
Register      Login
Pacific Conservation Biology Pacific Conservation Biology Society
A journal dedicated to conservation and wildlife management in the Pacific region.
RESEARCH ARTICLE

Cytogenetics: an important inclusion in the conservation genetics toolbox

Sally Potter A B and Janine E. Deakin orcid.org/0000-0002-1259-3531 C D
+ Author Affiliations
- Author Affiliations

A Research School of Biology, Australian National University, Acton, ACT 2601, Australia.

B Australian Museum Research Institute, Australian Museum, Sydney, NSW 2000, Australia.

C Institute for Applied Ecology, University of Canberra, Bruce, ACT 2617, Australia.

D Corresponding author. Email: janine.deakin@canberra.edu.au

Pacific Conservation Biology 24(3) 280-288 https://doi.org/10.1071/PC18016
Submitted: 1 February 2018  Accepted: 1 July 2018   Published: 20 July 2018

Abstract

Conservation uses information from genetics to assist in management decisions. However, conservation genetics typically assesses genetic diversity at the DNA level but this alone does not address all the risks associated with managing wild and captive populations. DNA is packaged into chromosomes. Differences in the number and morphology of chromosomes between species or even between populations of the same species can have important implications for management programs for threatened species. Cytogenetics, analysis of the higher molecular chromosome structure, can provide invaluable insight for the management of threatened species, where DNA alone could not address all genetic risks and threats to populations. Here we outline the important and valuable role of cytogenetics in conservation, highlighting two case studies based on threatened Australian marsupials: rock-wallabies and the Tasmanian devil. In conclusion, we summarise how cytogenetics should be better linked to conservation genetics and integrated into our management of threatened species, to ensure they have the best platform from which to persist and adapt into the future.

Additional keywords: genome, marsupials, wildlife management


References

Allendorf, F. W., Hohenlohe, P. A., and Luikart, G. (2010). Genomics and the future of conservation genetics. Nature Reviews. Genetics 11, 697–709.
Genomics and the future of conservation genetics.Crossref | GoogleScholarGoogle Scholar |

Baker, R. J., and Bickham, J. W. (1980). Karyotypic evolution in bats: evidence of extensive and conservative chromosomal evolution in closely related taxa. Systematic Zoology 29, 239–253.
Karyotypic evolution in bats: evidence of extensive and conservative chromosomal evolution in closely related taxa.Crossref | GoogleScholarGoogle Scholar |

Baker, R. J., Koop, B. F., and Haiduk, M. W. (1983). Resolving systematic relationships with G-bands: a study of five genera of South American cricetine rodents. Systematic Biology 32, 403–416.
Resolving systematic relationships with G-bands: a study of five genera of South American cricetine rodents.Crossref | GoogleScholarGoogle Scholar |

Bee, C. A., and Close, R. L. (1993). Mitochondrial DNA analysis of introgression between adjacent taxa of rock-wallabies, Petrogale species (Marsupialia: Macropodidae). Genetics Research 61, 21–37.
Mitochondrial DNA analysis of introgression between adjacent taxa of rock-wallabies, Petrogale species (Marsupialia: Macropodidae).Crossref | GoogleScholarGoogle Scholar |

Benirschke, K., and Kumamoto, A. T. (1991). Mammalian cytogenetics and conservation of species. The Journal of Heredity 82, 187–191.
Mammalian cytogenetics and conservation of species.Crossref | GoogleScholarGoogle Scholar |

Briscoe, D. A., Calaby, J. H., Close, R. L., Maynes, G. R., Murtagh, C. E., and Sharman, G. B. (1982) Isolation, introgression and genetic variation in rock-wallabies. In ‘Species at risk: research in Australia.’ (Eds R. H. Groves, and W. D. L. Ride.). pp 73–87. Canberra: Australian Academy of Science.

Browning, T. L., Taggart, D. A., Rummery, C., Close, R. L., and Eldridge, M. D. B. (2001). Multifaceted genetic analysis of the ‘Critically Endangered’ brush-tailed rock-wallaby Petrogale penicillata in Victoria, Australia: implications for management. Conservation Genetics 2, 145–156.
Multifaceted genetic analysis of the ‘Critically Endangered’ brush-tailed rock-wallaby Petrogale penicillata in Victoria, Australia: implications for management.Crossref | GoogleScholarGoogle Scholar |

Close, R. L., Eldridge, M. D. B., Bell, J. N., and Reside, J. (1994). A genetic study of the brush-tailed rock wallaby Petrogale penicillata in East Gippsland and relevance for management of the species in Victoria. Pacific Conservation Biology 1, 367–371.
A genetic study of the brush-tailed rock wallaby Petrogale penicillata in East Gippsland and relevance for management of the species in Victoria.Crossref | GoogleScholarGoogle Scholar |

Darlington, C. D. (1958). ‘The Evolution of Genetic Systems.’ 2nd edn. (Basic Books Inc.: New York.)

Deakin, J. E., and Kruger-Andrezjewska, M. (2016). Marsupials as models for understanding the role of chromosome rearrangements in evolution and disease. Chromosoma 125, 633–644.
Marsupials as models for understanding the role of chromosome rearrangements in evolution and disease.Crossref | GoogleScholarGoogle Scholar |

Deakin, J. E., Bender, H. S., Pearse, A. M., Rens, W., O’Brien, P. C. M., Ferguson-Smith, M. A., Cheng, Y., Morris, K., Taylor, R., Stuart, A., Belov, K., Amemiya, C. T., Murchison, E. P., Papenfuss, A. T., and Graves, J. A. M. (2012). Genomic restructuring in the Tasmanian devil facial tumour: chromosome painting and gene mapping provide clues to evolution of a transmissible tumour. PLOS Genetics 8, e1002483.
Genomic restructuring in the Tasmanian devil facial tumour: chromosome painting and gene mapping provide clues to evolution of a transmissible tumour.Crossref | GoogleScholarGoogle Scholar |

Dolezel, J., Vrána, J., Jan, Š., Barto, J., Kubaláková, M., and Hana, Š. (2012). Chromosomes in the flow to simplify genome analysis. Functional & Integrative Genomics 12, 397–416.
Chromosomes in the flow to simplify genome analysis.Crossref | GoogleScholarGoogle Scholar |

Dovey, L., Wong, V., and Bayne, P. (1997). An overview of the status and management of rock-wallabies (Petrogale) in New South Wales. Australian Mammalogy 19, 163–168.

Eldridge, M. D. B. (2008). Rock-wallabies: Petrogale. In ‘The mammals of Australia.’ 3rd edn. (Eds S. Van Dyck and R. Strahan.) pp. 361–362. (New Holland: Sydney.)

Eldridge, M. D. B., and Close, R. L. (1992). Taxonomy of rock wallabies, Petrogale (Marsupialia: Macropodidae). I. A revision of the eastern Petrogale with the description of three new species. Australian Journal of Zoology 40, 605–625.
Taxonomy of rock wallabies, Petrogale (Marsupialia: Macropodidae). I. A revision of the eastern Petrogale with the description of three new species.Crossref | GoogleScholarGoogle Scholar |

Eldridge, M. D. B., and Close, R. L. (1993). Radiation of chromosome shuffles. Current Opinion in Genetics & Development 3, 915–922.
Radiation of chromosome shuffles.Crossref | GoogleScholarGoogle Scholar |

Eldridge, M. D. B., and Close, R. L. (1997). Chromosomes and evolution in rock-wallabies, Petrogale (Marsupialia: Macropodidae). Australian Mammalogy 19, 123–136.

Eldridge, M. D. B., Dollin, A. E., Johnston, P. G., Close, R. L., and Murray, J. D. (1988). Chromosomal rearrangements in rock wallabies, Petrogale (Marsupialia, Macropodidae). I. The Petrogale assimilis species complex: G-banding and synaptonemal complex analysis. Cytogenetics and Cell Genetics 48, 228–232.

Eldridge, M. D. B., Johnston, P. G., Close, R. L., and Lowry, P. S. (1989). Chromosomal rearrangements in rock wallabies, Petrogale (Marsupialia, Macropodidae). II. G-banding analysis of Petrogale godmani. Genome 32, 935–940.
Chromosomal rearrangements in rock wallabies, Petrogale (Marsupialia, Macropodidae). II. G-banding analysis of Petrogale godmani.Crossref | GoogleScholarGoogle Scholar |

Eldridge, M. D. B., Close, R. L., and Johnston, P. G. (1990). Chromosomal rearrangements in rock wallabies, Petrogale (Marsupialia, Macropodidae). III. G-banding analysis of Petrogale inornata and P. penicillata. Genome 33, 798–802.
Chromosomal rearrangements in rock wallabies, Petrogale (Marsupialia, Macropodidae). III. G-banding analysis of Petrogale inornata and P. penicillata.Crossref | GoogleScholarGoogle Scholar |

Eldridge, M. D. B., Johnston, P. G., and Close, R. L. (1991). Chromosomal rearrangements in rock wallabies, Petrogale (Marupialia, Macropodidae). 5. Chromosomal phylogeny of the lateralis-penicillata group. Australian Journal of Zoology 39, 629–641.
Chromosomal rearrangements in rock wallabies, Petrogale (Marupialia, Macropodidae). 5. Chromosomal phylogeny of the lateralis-penicillata group.Crossref | GoogleScholarGoogle Scholar |

Ferguson-Smith, M. A., and Trifonov, V. (2007). Mammalian karyotype evolution. Nature Reviews. Genetics 8, 950–962.
Mammalian karyotype evolution.Crossref | GoogleScholarGoogle Scholar |

Frankel, O. H. (1970). Variation, the essence of life. Proceedings of the Linnean Society of New South Wales 95, 158–169.

Frankel, O. H. (1974). Genetic conservation: our evolutionary responsibility. Genetics 78, 53–65.

Frankham, R. (1995). Conservation genetics. Annual Review of Genetics 29, 305–327.
Conservation genetics.Crossref | GoogleScholarGoogle Scholar |

Frankham, R., Ballou, J. D., and Briscoe, D. A. (2010). ‘Introduction to Conservation Genetics.’ (Cambridge University Press: Cambridge.)

Harewood, L., and Fraser, P. (2014). The impact of chromosomal rearrangements on regulation of gene expression. Human Molecular Genetics 23, R76–R82.
The impact of chromosomal rearrangements on regulation of gene expression.Crossref | GoogleScholarGoogle Scholar |

Hazlitt, S. L., Goldizen, A. W., and Eldridge, M. D. B. (2006). Significant patterns of population genetic structure and limited gene flow in a threatened macropodid marsupial despite continuous habitat in southeast Queensland, Australia. Conservation Genetics 7, 675–689.
Significant patterns of population genetic structure and limited gene flow in a threatened macropodid marsupial despite continuous habitat in southeast Queensland, Australia.Crossref | GoogleScholarGoogle Scholar |

Hendricks, S., Epstein, B., Schönfeld, B., Wiench, C., Hamede, R., Jones, M., Storfer, A., and Hohenlohe, P. (2017). Conservation implications of limited genetic diversity and population structure in Tasmanian devils (Sarcophilus harrisii). Conservation Genetics 18, 977–982.
Conservation implications of limited genetic diversity and population structure in Tasmanian devils (Sarcophilus harrisii).Crossref | GoogleScholarGoogle Scholar |

Heng, H. H., Squire, J., and Tsui, L. C. (1992). High-resolution mapping of mammalian genes by in situ hybridization to free chromatin. Proceedings of the National Academy of Sciences of the United States of America 89, 9509–9513.
High-resolution mapping of mammalian genes by in situ hybridization to free chromatin.Crossref | GoogleScholarGoogle Scholar |

Hogg, C. J., Ivy, J. A., Srb, C., Hockley, J., Lees, C., Hibbard, C., and Jones, M. (2015). Influence of genetic provenance and birth origin on productivity of the Tasmanian devil insurance population. Conservation Genetics 16, 1465–1473.
Influence of genetic provenance and birth origin on productivity of the Tasmanian devil insurance population.Crossref | GoogleScholarGoogle Scholar |

Ingles, E. D., and Deakin, J. E. (2015). Global DNA methylation patterns on marsupial and devil facial tumour chromosomes. Molecular Cytogenetics 8, 74.
Global DNA methylation patterns on marsupial and devil facial tumour chromosomes.Crossref | GoogleScholarGoogle Scholar |

King, M. (1993). ‘Species Evolution: the Role of Chromosome Change.’ (Cambridge University Press: New York.)

Kingswood, S. C., Kumamoto, A. T., Sudman, P. D., Fletcher, K. C., and Greenbaum, I. F. (1994). Meiosis in chromosomally heteromorphic goitered gazelle, Gazella subgutturosa (Artiodactyla, Bovidae). Chromosome Research 2, 37–46.
Meiosis in chromosomally heteromorphic goitered gazelle, Gazella subgutturosa (Artiodactyla, Bovidae).Crossref | GoogleScholarGoogle Scholar |

Mace, G. M., Collar, N. J., Gaston, K. J., Hilton-Taylor, C., Akçakaya, H. R., Leader-Williams, N., Milner-Gulland, E. J., and Stuart, S. N. (2008). Quantification of extinction risk: IUCN’s system for classifying threatened species. Conservation Biology 22, 1424–1442.
Quantification of extinction risk: IUCN’s system for classifying threatened species.Crossref | GoogleScholarGoogle Scholar |

Matsuda, Y., and Chapman, V. M. (1995). Application of fluorescence in situ hybridization in genome analysis of the mouse. Electrophoresis 16, 261–272.
Application of fluorescence in situ hybridization in genome analysis of the mouse.Crossref | GoogleScholarGoogle Scholar |

McCallum, H., Tompkins, D. M., Jones, M., Lachish, S., Marvanek, S., Lazenby, B., Hocking, G., Wiersma, J., and Hawkins, C. E. (2007). Distribution and impacts of Tasmanian devil facial tumor disease. EcoHealth 4, 318–325.
Distribution and impacts of Tasmanian devil facial tumor disease.Crossref | GoogleScholarGoogle Scholar |

McCallum, H., Jones, M., Hawkins, C., Hamede, R., Lachish, S., Sinn, D. L., Beeton, N., and Lazenby, B. (2009). Transmission dynamics of Tasmanian devil facial tumor disease may lead to disease-induced extinction. Ecology 90, 3379–3392.
Transmission dynamics of Tasmanian devil facial tumor disease may lead to disease-induced extinction.Crossref | GoogleScholarGoogle Scholar |

Miller, W., Hayes, V. M., Ratan, A., Petersen, D. C., Wittekindt, N. E., Miller, J., Walenz, B., Knight, J., Qi, J., Zhao, F., Wang, Q., Bedoya-Reina, O. C., Katiyar, N., Tomsho, L. P., Kasson, L. M., Hardie, R.-A., Woodbridge, P., Tindall, E. A., Bertelsen, M. F., Dixon, D., Pyecroft, S., Helgen, K. M., Lesk, A. M., Pringle, T. H., Patterson, N., Zhang, Y., Kreiss, A., Woods, G. M., Jones, M. E., and Schuster, S. C. (2011). Genetic diversity and population structure of the endangered marsupial Sarcophilus harrisii (Tasmanian devil). Proceedings of the National Academy of Sciences of the United States of America 108, 12348–12353.
Genetic diversity and population structure of the endangered marsupial Sarcophilus harrisii (Tasmanian devil).Crossref | GoogleScholarGoogle Scholar |

Moritz, C., Worthington, W. J., Pope, L., Sherwin, W. B., Taylor, A. C., and Limpus, C. J. (1996). Applications of genetics to the conservation and management of Australian fauna: four case studies from Queensland. In ‘Molecular Genetic Approaches in Conservation’. (Eds T. B. Smith, and R. K. Wayne.) pp. 442-446. (Oxford University Press: New York.)

Murchison, E. P., Tovar, C., Hsu, A., Bender, H. S., Kheradpour, P., Rebbeck, C. A., Obendorf, D., Conlan, C., Bahlo, M., Blizzard, C. A., Pyecroft, S., Kreiss, A., Kellis, M., Stark, A., Harkins, T. T., Marshall Graves, J. A., Woods, G. M., Hannon, G. J., and Papenfuss, A. T. (2010). The Tasmanian devil transcriptome reveals Schwann cell origins of a clonally transmissible cancer. Science 327, 84–87.
The Tasmanian devil transcriptome reveals Schwann cell origins of a clonally transmissible cancer.Crossref | GoogleScholarGoogle Scholar |

Murchison, E. P., Schulz-Trieglaff, O. B., Ning, Z., Alexandrov, L. B., Bauer, M. J., Fu, B., Hims, M., Ding, Z., Ivakhno, S., Stewart, C., Ng, B. L., Wong, W., Aken, B., White, S., Alsop, A., Becq, J., Bignell, G. R., Cheetham, R. K., Cheng, W., Connor, T. R., Cox, A. J., Feng, Z.-P., Gu, Y., Grocock, R. J., Harris, S. R., Khrebtukova, I., Kingsbury, Z., Kowarsky, M., Kreiss, A., Luo, S., Marshall, J., McBride, D. J., Murray, L., Pearse, A.-M., Raine, K., Rasolonjatovo, I., Shaw, R., Tedder, P., Tregidgo, C., Vilella, A. J., Wedge, D. C., Woods, G. M., Gormley, N., Humphray, S., Schroth, G., Smith, G., Hall, K., Searle, S. M. J., Carter, N. P., Papenfuss, A. T., Futreal, P. A., Campbell, P. J., Yang, F., Bentley, D. R., Evers, D. J., and Stratton, M. R. (2012). Genome sequencing and analysis of the Tasmanian devil and its transmissible cancer. Cell 148, 780–791.
Genome sequencing and analysis of the Tasmanian devil and its transmissible cancer.Crossref | GoogleScholarGoogle Scholar |

Nash, W. G., and O’Brien, S. J. (1987). A comparative chromosome banding analysis of the Ursidae and their relationship to other carnivores. Cytogenetics and Cell Genetics 45, 206–212.
A comparative chromosome banding analysis of the Ursidae and their relationship to other carnivores.Crossref | GoogleScholarGoogle Scholar |

Navarro, A., and Barton, N. H. (2003). Accumulating postzygotic isolation genes in parapatry: a new twist on chromosomal speciation. Evolution 57, 447–459.
Accumulating postzygotic isolation genes in parapatry: a new twist on chromosomal speciation.Crossref | GoogleScholarGoogle Scholar |

Ortiz-Barrientos, D., Engelstädter, J., and Rieseberg, L. H. (2016). Recombination rate evolution and the origin of species. Trends in Ecology & Evolution 31, 226–236.
Recombination rate evolution and the origin of species.Crossref | GoogleScholarGoogle Scholar |

Ouborg, N. J., Pertoldi, C., Loeschcke, V., Bijlsma, R. K., and Hedrick, P. W. (2010). Conservation genetics in transition to conservation genomics. Trends in Genetics 26, 177–187.
Conservation genetics in transition to conservation genomics.Crossref | GoogleScholarGoogle Scholar |

Patton, J. L., and Sherwood, S. W. (1983). Chromosome evolution and speciation in rodents. Annual Review of Ecology and Systematics 14, 139–158.
Chromosome evolution and speciation in rodents.Crossref | GoogleScholarGoogle Scholar |

Pearse, A.-M., and Swift, K. (2006). Allograft theory: transmission of devil facial-tumour disease. Nature 439, 549.
Allograft theory: transmission of devil facial-tumour disease.Crossref | GoogleScholarGoogle Scholar |

Pearse, A.-M., Swift, K., Hodson, P., Hua, B., McCallum, H., Pyecroft, S., Taylor, R., Eldridge, M. D. B., and Belov, K. (2012). Evolution in a transmissible cancer: a study of the chromosomal changes in devil facial tumor (DFT) as it spreads through the wild Tasmanian devil population. Cancer Genetics 205, 101–112.
Evolution in a transmissible cancer: a study of the chromosomal changes in devil facial tumor (DFT) as it spreads through the wild Tasmanian devil population.Crossref | GoogleScholarGoogle Scholar |

Pearson, D. J. (2013). Recovery plan for five species of rock wallabies: black-footed rock wallaby (Petrogale lateralis), Rothschild rock wallaby (Petrogale rothschildi), short-eared rock wallaby (Petrogale brachyotis), monjon (Petrogale burbidgei) and nabarlek (Petrogale concinna). Department of Parks and Wildlife, Perth, WA. Available at: http://www.environment.gov.au/resource/recovery-plan-five-species-rock-wallabies [accessed 31 January 2018].

Piggott, M. P., Banks, S. C., and Taylor, A. C. (2006). Population structure of brush-tailed rock-wallaby (Petrogale penicillata) colonies inferred from analysis of faecal DNA. Molecular Ecology 15, 93–105.
Population structure of brush-tailed rock-wallaby (Petrogale penicillata) colonies inferred from analysis of faecal DNA.Crossref | GoogleScholarGoogle Scholar |

Potter, S., Moritz, C., and Eldridge, M. D. B. (2015). Gene flow despite complex Robertsonian fusions among rock-wallaby (Petrogale) species. Biology Letters 11, 20150731.
Gene flow despite complex Robertsonian fusions among rock-wallaby (Petrogale) species.Crossref | GoogleScholarGoogle Scholar |

Potter, S., Bragg, J. G., Blom, M. P. K., Deakin, J. E., Kirkpatrick, M., Eldridge, M. D. B., and Moritz, C. (2017). Chromosomal speciation in the genomics era: disentangling phylogenetic evolution of rock-wallabies. Frontiers in Genetics 8, 1–18.
Chromosomal speciation in the genomics era: disentangling phylogenetic evolution of rock-wallabies.Crossref | GoogleScholarGoogle Scholar |

Purvis, A., Gittleman, J. L., Cowlishaw, G., and Mace, G. M. (2000). Predicting extinction risk in declining species. Proceedings. Biological Sciences 267, 1947–1952.
Predicting extinction risk in declining species.Crossref | GoogleScholarGoogle Scholar |

Pye, R. J., Pemberton, D., Tovar, C., Tubio, J. M. C., Dun, K. a., Fox, S., Darby, J., Hayes, D., Knowles, G. W., Kreiss, A., Siddle, H. V. T., Swift, K., Lyons, B., Murchison, E. P., and Woods, G. M. (2016). A second transmissible cancer in Tasmanian devils. Proceedings of the National Academy of Sciences of the United States of America 113, 374–379.
A second transmissible cancer in Tasmanian devils.Crossref | GoogleScholarGoogle Scholar |

Pyecroft, S. B., Pearse, A. M., Loh, R., Swift, K., Belov, K., Fox, N., Noonan, E., Hayes, D., Hyatt, A., Wang, L., Boyle, D., Church, J., Middleton, D., and Moore, R. (2007). Towards a case definition for devil facial tumour disease: what is it? EcoHealth 4, 346–351.
Towards a case definition for devil facial tumour disease: what is it?Crossref | GoogleScholarGoogle Scholar |

Romanenko, S. A., Volobouev, V. T., Perelman, P. L., Lebedev, V. S., Serdukova, N. A., Trifonov, V. A., Biltueva, L. S., Nie, W., O’Brien, P. C. M., Bulatova, N. S., Ferguson-Smith, M. A., Yang, F., and Graphodatsky, A. S. (2007). Karyotype evolution and phylogenetic relationships of hamsters (Cricetidae, Muroidea, Rodentia) inferred from chromosomal painting and banding comparison. Chromosome Research 15, 283–297.
Karyotype evolution and phylogenetic relationships of hamsters (Cricetidae, Muroidea, Rodentia) inferred from chromosomal painting and banding comparison.Crossref | GoogleScholarGoogle Scholar |

Rubes, J., Musilova, P., and Mastromonaco, G. F. (2008). Cytogenetics of wild and captive bred non-domestic animals. Cytogenetic and Genome Research 120, 61–68.
Cytogenetics of wild and captive bred non-domestic animals.Crossref | GoogleScholarGoogle Scholar |

Ryder, O. A., Epel, N. C., and Benirschke, K. (1978). Chromosome banding studies of the Equidae. Cytogenetics and Cell Genetics 20, 323–350.
Chromosome banding studies of the Equidae.Crossref | GoogleScholarGoogle Scholar |

Seifertova, E., Zimmerman, L. B., Gilchrist, M. J., Macha, J., Kubickova, S., Cernohorska, H., Zarsky, V., Owens, N. D. L., Sesay, A. K., Tlapakova, T., and Krylov, V. (2013). Efficient high-throughput sequencing of a laser microdissected chromosome arm. BMC Genomics 14, 357.
Efficient high-throughput sequencing of a laser microdissected chromosome arm.Crossref | GoogleScholarGoogle Scholar |

Siddle, H. V., Kreiss, A., Eldridge, M. D. B., Noonan, E., Clarke, C. J., Pyecroft, S., Woods, G. M., and Belov, K. (2007). Transmission of a fatal clonal tumor by biting occurs due to depleted MHC diversity in a threatened carnivorous marsupial. Proceedings of the National Academy of Sciences of the United States of America 104, 16221–16226.
Transmission of a fatal clonal tumor by biting occurs due to depleted MHC diversity in a threatened carnivorous marsupial.Crossref | GoogleScholarGoogle Scholar |

Taylor, R. L., Zhang, Y., Schöning, J. P., and Deakin, J. E. (2017). Identification of candidate genes for devil facial tumour disease tumourigenesis. Scientific Reports 7, .
Identification of candidate genes for devil facial tumour disease tumourigenesis.Crossref | GoogleScholarGoogle Scholar |

Torgasheva, A. A., and Borodin, P. M. (2010). Synapsis and recombination in inversion heterozygotes. Biochemical Society Transactions 38, 1676–1680.
Synapsis and recombination in inversion heterozygotes.Crossref | GoogleScholarGoogle Scholar |

Ujvari, B., Pearse, A. M., Swift, K., Hodson, P., Hua, B., Pyecroft, S., Taylor, R., Hamede, R., Jones, M., Belov, K., and Madsen, T. (2014). Anthropogenic selection enhances cancer evolution in Tasmanian devil tumours. Evolutionary Applications 7, 260–265.
Anthropogenic selection enhances cancer evolution in Tasmanian devil tumours.Crossref | GoogleScholarGoogle Scholar |

Vozdova, M., Sebestova, H., Kubickova, S., Cernohorska, H., Awadova, T., Vahala, J., and Rubes, J. (2014). Impact of Robertsonian translocation on meiosis and reproduction: an impala (Aepyceros melampus) model. Journal of Applied Genetics 55, 249–258.
Impact of Robertsonian translocation on meiosis and reproduction: an impala (Aepyceros melampus) model.Crossref | GoogleScholarGoogle Scholar |

West, R., Potter, S., Taggart, D., and Eldridge, M. D. B. (2018). Looking back to go forward: genetics informs future management of captive and reintroduced populations of the black-footed rock-wallaby Petrogale lateralis. Conservation Genetics 19, 235–347.
Looking back to go forward: genetics informs future management of captive and reintroduced populations of the black-footed rock-wallaby Petrogale lateralis.Crossref | GoogleScholarGoogle Scholar |

White, M. J. D. (1973). ‘Animal Cytology and Evolution.’ (Cambridge University Press: Cambridge.)

Wienberg, J., and Stanyon, R. (1997). Comparative painting of mammalian chromosomes. Current Opinion in Genetics & Development 7, 784–791.
Comparative painting of mammalian chromosomes.Crossref | GoogleScholarGoogle Scholar |

Woinarski, J. C. Z., Burbidge, A. A., and Harrison, P. L. (2015). Ongoing unraveling of a continental fauna: decline and extinction of Australian mammals since European settlement. Proceedings of the National Academy of Sciences of the United States of America 112, 4531–4540.
Ongoing unraveling of a continental fauna: decline and extinction of Australian mammals since European settlement.Crossref | GoogleScholarGoogle Scholar |

Yonenaga, Y. (1974). Karyotypes and chromosome polymorphism in Brazilian rodents Caryologia 28, 269–286.
Karyotypes and chromosome polymorphism in Brazilian rodentsCrossref | GoogleScholarGoogle Scholar |