Dry forests of the Galápagos: a comparative assessment of a World Heritage Site
Thomas W. Gillespie A E , Gunnar Keppel B , Chelsea M. Robinson A and Gonzalo Rivas-Torres C DA Department of Geography, University of California Los Angeles, Los Angeles, CA 90095, USA.
B School of Natural and Built Environments, University of South Australia, GPO Box 2471, Adelaide, SA 5001, Australia.
C Colegio de Ciencias Biológicas y Ambientales and Galápagos Academic Institute for the Arts and Sciences, Universidad San Francisco de Quito, Diego de Robles S/N e Interoceánica, Quito, Ecuador.
D Department of Wildlife Ecology and Conservation, 110 Newins-Ziegler Hall, University of Florida, Gainesville, FL 32611, USA.
E Corresponding author. Email: tg@geog.ucla.edu
Pacific Conservation Biology 26(2) 161-172 https://doi.org/10.1071/PC18071
Submitted: 18 September 2018 Accepted: 14 July 2019 Published: 12 September 2019
Abstract
Despite worldwide knowledge of the importance of the Galápagos archipelago, there is little comparative plot data from the forests in the dry regions. We examined patterns of woody plant (≥2.5 cm diameter at breast height (DBH)) species richness and structure using Gentry’s transect method (0.1 ha) on the three largest islands in the Galápagos. We identified the conservation status of woody plants within the dry forest region, assessed forest cover and change in the region, and compared field results to other tropical dry forests in the Pacific. Of the 22 species encountered (11 native, 11 endemic), there were no non-native species and only one threatened species. Isabela, Santa Cruz and San Cristóbal have similar overall levels of species, genera, family and liana richness per site, but significantly different tree species richness, density and tree height per transect. Geospatial databases identified 51 species (native 40%, endemic 60%) of woody plants (≥2.5 cm DBH) within the dry forest region of the Galápagos and 13 species (10 from the genus Scalesia) on the IUCN Red List. There is an estimated 551.97 km2 of dry forest in the Galápagos and there has been little change (<0.01%) in forest cover from 2000 to 2015. Dry forests of the Galápagos have similar levels of species richness to Hawaii and the Marquesas but contain lower densities, basal areas and tree heights than other dry forests in the Pacific. These dry forests appear to be the best preserved and protected tropical dry forest in the Pacific.
Additional keywords: floristic composition, Galápagos archipelago, Gentry's transect method, plant species richness, tropical dry forest.
References
Allen, K., Dupuy, J. M., Gei, M. G., Hulshof, C., Medvigy, D., Pizano, C., Salgado-Negret, B., Smith, C. M., Trierweiler, A., Van Bloem, S. J., and Waring, B. G. (2017). Will seasonally dry tropical forests be sensitive or resistant to future changes in rainfall regimes? Environmental Research Letters 12, 023001.| Will seasonally dry tropical forests be sensitive or resistant to future changes in rainfall regimes?Crossref | GoogleScholarGoogle Scholar |
Cabin, R. J., Weller, S. G., Lorence, D. H., Cordell, S., and Hadway, L. J. (2002). Effects of microsite, water, weeding, and direct seeding on the regeneration of native and alien species within a Hawaiian dry forest preserve. Biological Conservation 104, 181–190.
| Effects of microsite, water, weeding, and direct seeding on the regeneration of native and alien species within a Hawaiian dry forest preserve.Crossref | GoogleScholarGoogle Scholar |
Chapman, M. G., Underwood, A. J., and Clarke, K. R. (2009). New indices for ranking conservation sites using ‘relative endemism’. Biological Conservation 142, 3154–3162.
| New indices for ranking conservation sites using ‘relative endemism’.Crossref | GoogleScholarGoogle Scholar |
Charles Darwin Foundation (CDF) (2018). Natural history collections. Available at https://www.darwinfoundation.org/en/about/cdrs/collections. [Verified 17 May 2018].
Clarke, K. R. (1993). Non-parametric multivariate analyses of changes in community structure. Australian Journal of Ecology 18, 117–143.
| Non-parametric multivariate analyses of changes in community structure.Crossref | GoogleScholarGoogle Scholar |
Colwell, R. K. (2013). EstimateS: Statistical estimation of species richness and shared species from samples. Ver. 9 and earlier. User’s guide and application. Available at http://viceroy.eeb.uconn.edu/estimates/ [Verified 10 September 2019].
Dapporto, L., Ramazzotti, M., Fattorini, S., Talavera, G., Vila, R., and Dennis, R. L. H. (2013). Recluster: an unbiased clustering procedure for beta-diversity turnover. Ecography 36, 1070–1075.
| Recluster: an unbiased clustering procedure for beta-diversity turnover.Crossref | GoogleScholarGoogle Scholar |
de Groot, R. S. (1983). Tourism and conservation in the Galápagos Islands. Biological Conservation 26, 291–300.
| Tourism and conservation in the Galápagos Islands.Crossref | GoogleScholarGoogle Scholar |
Dexter, K. G., Smart, B., Baldauf, C., Baker, T. R., Balinga, M. P., Brienen, R. J. W., Fauset, S., Feldpausch, T. R., Silva, L., Muledi, J. I., and Lewis, S. L. (2015). Floristics and biogeography of vegetation in seasonally dry tropical regions. International Forestry Review 17, 10–32.
| Floristics and biogeography of vegetation in seasonally dry tropical regions.Crossref | GoogleScholarGoogle Scholar |
DRYFLOR et al. (2016). Plant diversity patterns in neotropical dry forests and conservation implications. Science 353, 1383–1387.
| Plant diversity patterns in neotropical dry forests and conservation implications.Crossref | GoogleScholarGoogle Scholar | 27708031PubMed |
Fick, S. E., and Hijmans, R. J. (2017). WorldClim 2: new 1‐km spatial resolution climate surfaces for global land areas. International Journal of Climatology 37, 4302–4315.
| WorldClim 2: new 1‐km spatial resolution climate surfaces for global land areas.Crossref | GoogleScholarGoogle Scholar |
Fischer, J., and Lindenmayer, D. B. (2007). Landscape modification and habitat fragmentation: a synthesis. Global Ecology and Biogeography 16, 265–280.
| Landscape modification and habitat fragmentation: a synthesis.Crossref | GoogleScholarGoogle Scholar |
Gentry, A. H. (1988). Changes in plant community diversity and floristic composition on environmental and geographical gradients. Annals of the Missouri Botanical Garden 75, 1–34.
| Changes in plant community diversity and floristic composition on environmental and geographical gradients.Crossref | GoogleScholarGoogle Scholar |
Gentry, A. H. (1995). Diversity and floristic composition of Neotropical dry forests. In ‘Seasonally dry tropical forests’. (Eds S.H. Bullock, H.A. Mooney, and E. Medina.) pp. 146–194. (Cambridge University Press: Cambridge, UK.)
Gillespie, T. W., Keppel, G., Pau, S., Price, J., Jaffre, T., Meyer, J.-Y., and O’Neill, K. (2011). Floristic composition and natural history characteristics of dry forests in the Pacific. Pacific Science 65, 127–141.
| Floristic composition and natural history characteristics of dry forests in the Pacific.Crossref | GoogleScholarGoogle Scholar |
Gillespie, T. W., O’Neill, K., Keppel, G., Pau, S., Meyer, J.-P., Price, J., and Jaffre, T. (2013a). Prioritizing conservation of dry forests in the Pacific. Oryx 47, 337–344.
Gillespie, T. W., Keppel, G., Pau, S., Price, J., Jaffré, T., and O’Neill, K. (2013b). Scaling species richness and endemism of tropical dry forests on oceanic islands. Diversity & Distributions 19, 896–906.
| Scaling species richness and endemism of tropical dry forests on oceanic islands.Crossref | GoogleScholarGoogle Scholar |
Gordon, J. E., Hawthorne, W. D., Reyes-García, A., Sandoval, G., and Barrance, A. J. (2004). Assessing landscapes: a case study of tree and shrub diversity in the seasonally dry tropical forests of Oaxaca, Mexico and southern Honduras. Biological Conservation 117, 429–442.
| Assessing landscapes: a case study of tree and shrub diversity in the seasonally dry tropical forests of Oaxaca, Mexico and southern Honduras.Crossref | GoogleScholarGoogle Scholar |
Guézou, A., Trueman, M., Buddenhagen, C. E., Chamorro, S., Guerrero, A. M., Pozo, P., and Atkinson, R. (2010). An extensive alien plant inventory from the inhabited areas of Galápagos. PLoS One 5, e10276.
| An extensive alien plant inventory from the inhabited areas of Galápagos.Crossref | GoogleScholarGoogle Scholar | 20421999PubMed |
Hamann, O. (1975). Vegetational changes in the Galápagos Islands during the period 1966–1973. Biological Conservation 7, 37–59.
| Vegetational changes in the Galápagos Islands during the period 1966–1973.Crossref | GoogleScholarGoogle Scholar |
Hansen, M. C., Potapov, P. V., Moore, R., Hancher, M., Turubanova, S. A. A., Tyukavina, A., Thau, D., Stehman, S. V., Goetz, S. J., Loveland, T. R., Kommareddy, A., Egorov, A., Chini, L., Justice, C. O., and Townshend, J. R. G. (2013). High-resolution global maps of 21st-century forest cover change. Science 342, 850–853.
| High-resolution global maps of 21st-century forest cover change.Crossref | GoogleScholarGoogle Scholar | 24233722PubMed |
Ibanez, T., Keppel, G., Baider, C., Culmsee, H., Florens, V., Franklin, J., Gillespie, T. W., Laidlaw, M., Martin, T., Ostertag, B., Parthasathy, N., Ratovoson, F., Shinichiro, A., Webb, E., Whistler, A., Whitfeld, T., Zang, R., and Birnbaum, P. (2018). Regional forcing drives plot-level species diversity and composition on islands in the Indo-Pacific. Global Ecology and Biogeography 27, 474–486.
| Regional forcing drives plot-level species diversity and composition on islands in the Indo-Pacific.Crossref | GoogleScholarGoogle Scholar |
Ibanez, T., Keppel, G., Menkes, C., Gillespie, T. W., Lengaigne, M., Mangeas, M., Rivas-Torres, G., and Birnbaum, P. (2019). Globally consistent impact of tropical cyclones on the structure of tropical and subtropical forests. Journal of Ecology 107, 279–292.
| Globally consistent impact of tropical cyclones on the structure of tropical and subtropical forests.Crossref | GoogleScholarGoogle Scholar |
Itow, S. (1992). Altitudinal change in plant endemism, species turnover, and diversity on Isla Santa Cruz, the Galápagos Islands. Pacific Science 46, 251–268.
Itow, S. (2003). Zonation pattern, succession process and invasion by aliens in species-poor insular vegetation of the Galápagos Islands. Global Environmental Research 7, 39–58.
IUCN (2018). The IUCN Red List of threatened species. Available at http://www.iucnredlist.org/ [Verified 24 May 2018].
Izurieta, A., Delgado, B., Moity, N., Calvopiña, M., Cedeño, I., Banda-Cruz, G., Cruz, E., Aguas, M., Arroba, F., Astudillo, I., Bazurto, D., Soria, M., Banks, S., Bayas, S., Belli, S., Bermúdez, R., Boelling, N., Bolaños, J., Borbor, M., Brito Ma, L., Bucheli, L., Campbell, K., Carranza, D., Carrión, J., Casafont, M., Castro, X., Chamorro, S., Chávez, J., Chicaiza, D., Chumbi, R., Couenberg, P., Cousseau, D., Cruz, M., d’Ozouville, N., de la Guía, C., de la Torre, G., Díaz, C. M., Duchicela, J., Endara, D., Garcia, V., Gellibert, C., Gibbs, J., Guzmán, J. C., Heylings, P., Iglesias, A., Izurieta, J. C., Jaramillo, P., Klingman, A., Laurie, A., Leon, P., Medina, J., Mendieta, E., Merlen, G., Montalvo, C., Naula, E., Páez-Rosas, D., Peralta, M., Peralvo, M., Piu, M., Poma, J., Pontón, J., Pozo, M., Proaño, D., Ramos, M., Rousseaud, A., Rueda, D., Salinas, P., Salmoral, G., Saraguro, S., Simón-Baile, D., Tapia, W., Teran, B., Valverde, M., Vargas, A., Vega, J., Velásquez, W., Vélez, A., Verdesoto, S., Villarraga, H. G., Vissioli, F., Viteri-Mejía, C., Norris-Crespo, L., Cooke, S. C., Toral-Granda, M. V., and Sutherland, W. J. (2018). A collaboratively derived environmental research agenda for Galápagos. Pacific Conservation Biology 24, 168–177.
| A collaboratively derived environmental research agenda for Galápagos.Crossref | GoogleScholarGoogle Scholar |
Jaffré, T., Bouchet, P., and Veillon, J. M. (1997). Threatened plants of New Caledonia: is the system of protected areas adequate? Biodiversity and Conservation 7, 109–135.
| Threatened plants of New Caledonia: is the system of protected areas adequate?Crossref | GoogleScholarGoogle Scholar |
Jäger, H., Kowarik, I., and Tye, A. (2009). Destruction without extinction: long‐term impacts of an invasive tree species on Galápagos highland vegetation. Journal of Ecology 97, 1252–1263.
| Destruction without extinction: long‐term impacts of an invasive tree species on Galápagos highland vegetation.Crossref | GoogleScholarGoogle Scholar |
Janzen, D. H. (1988). ‘Tropical dry forests: the most endangered major tropical ecosystem. Biodiversity.’ (Ed. E.O. Wilson.) pp. 130–137. (Natural Academy Press: Washington, DC.)
Keppel, G., Lowe, A. J., and Possingham, H. P. (2009). Changing perspectives on the biogeography of the tropical South Pacific: influences of dispersal, vicariance and extinction. Journal of Biogeography 36, 1035–1054.
| Changing perspectives on the biogeography of the tropical South Pacific: influences of dispersal, vicariance and extinction.Crossref | GoogleScholarGoogle Scholar |
Keppel, G., Buckley, Y. M., and Possingham, H. P. (2010). Drivers of lowland rain forest community assembly, species diversity and forest structure on islands in the tropical South Pacific. Journal of Ecology 98, 87–95.
| Drivers of lowland rain forest community assembly, species diversity and forest structure on islands in the tropical South Pacific.Crossref | GoogleScholarGoogle Scholar |
Kerr, J. T. (1997). Species richness, endemism, and the choice of areas for conservation. Conservation Biology 11, 1094–1100.
| Species richness, endemism, and the choice of areas for conservation.Crossref | GoogleScholarGoogle Scholar |
Kirch, P. V. (1994). ‘The wet and the dry: irrigation and agricultural intensifications in Polynesia.’ (University of Chicago Press: Chicago, IL, USA.)
McMullen, C. K. (1999). ‘Flowering plants of the Galápagos.’ (Cornell University Press: Ithaca, NY, USA.)
Miles, L., Newton, A. C., DeFries, R., Ravilious, C., May, I., Blyth, S., Kapos, V., and Gordon, J. E. (2006). A global overview of the conservation status of tropical dry forests. Journal of Biogeography 33, 491–505.
| A global overview of the conservation status of tropical dry forests.Crossref | GoogleScholarGoogle Scholar |
Mueller-Dombois, D., and Fosberg, F. R. (1998). ‘Vegetation of the tropical Pacific islands.’ (Springer-Verlag: New York.)
Murphy, P. G., and Lugo, A. E. (1986). Ecology of tropical dry forest. Annual Review of Ecology and Systematics 17, 67–88.
| Ecology of tropical dry forest.Crossref | GoogleScholarGoogle Scholar |
Myers, N., Mittermeier, R. A., Mittermeier, C. G., da Fonseca, G. A., and Kent, J. (2000). Biodiversity hotspots for conservation priorities. Nature 403, 853–858.
| Biodiversity hotspots for conservation priorities.Crossref | GoogleScholarGoogle Scholar | 10706275PubMed |
Olson, D. M., Dinerstein, E., Wikramanayake, E. D., Burgess, N. D., Powell, G. V. N., Underwood, E. C., D’amico, J. A., Itoua, I., Strand, H. E., Morrison, J. C., Loucks, C. J., Allnutt, T. F., Ricketts, T. H., Kura, Y., Lamoreux, J. F., Wettengel, W. W., Hedao, P., and Kassem, K. R. (2001). Terrestrial ecoregions of the world: a new map of life on Earth. Bioscience 51, 933–938.
| Terrestrial ecoregions of the world: a new map of life on Earth.Crossref | GoogleScholarGoogle Scholar |
Pau, S., Gillespie, T. W., and Price, J. P. (2009). Natural history, biogeography, and endangerment of Hawaiian dry forest trees. Biodiversity and Conservation 18, 3167–3182.
| Natural history, biogeography, and endangerment of Hawaiian dry forest trees.Crossref | GoogleScholarGoogle Scholar |
Pennington, R. T., Lavin, M., and Oliveira-Filho, A. (2009). Woody plant diversity, evolution, and ecology in the tropics: perspectives from seasonally dry tropical forests. Annual Review of Ecology Evolution and Systematics 40, 437–457.
| Woody plant diversity, evolution, and ecology in the tropics: perspectives from seasonally dry tropical forests.Crossref | GoogleScholarGoogle Scholar |
Phillips, O., and Miller, J. S. (2002). ‘Global patterns of plant diversity: Alwyn H. Gentry forest transect data set.’ (Missouri Botanical Garden Press: St. Louis, MO, USA.)
Portillo-Quintero, C. A., and Sánchez-Azofeifa, G. A. (2010). Extent and conservation of tropical dry forests in the Americas. Biological Conservation 143, 144–155.
| Extent and conservation of tropical dry forests in the Americas.Crossref | GoogleScholarGoogle Scholar |
R Core Team (2019). ‘R: A language and environment for statistical computing.’ (R Foundation for Statistical Computing: Vienna, Austria.) Available at http://www.R-project.org/ [Verified 21 August 2019].
Richardson, R. J., and Pyšek, P. (2006). Plant invasions: merging the concepts of species invasiveness and community invasibility. Progress in Physical Geography 30, 409–431.
| Plant invasions: merging the concepts of species invasiveness and community invasibility.Crossref | GoogleScholarGoogle Scholar |
Rivas-Torres, G., and Adams, D. C. (2017). A conceptual framework for the management of a highly valued invasive tree in the Galápagos islands. In ‘Understanding invasive species in the Galápagos Islands’. pp. 193–217. (Springer: Cham, Germany.)
Rivas-Torres, G. F., Benítez, F. L., Rueda, D., Sevilla, C., and Mena, C. F. (2018a). A methodology for mapping native and invasive vegetation coverage in archipelagos: an example from the Galápagos Islands. Progress in Physical Geography 42, 83–111.
| A methodology for mapping native and invasive vegetation coverage in archipelagos: an example from the Galápagos Islands.Crossref | GoogleScholarGoogle Scholar |
Rivas-Torres, G., Flory, S. L., and Loiselle, B. (2018b). Plant community composition and structural characteristics of an invaded forest in the Galápagos. Biodiversity and Conservation 27, 329–344.
| Plant community composition and structural characteristics of an invaded forest in the Galápagos.Crossref | GoogleScholarGoogle Scholar |
Rock, J. F. C. (1913). ‘The indigenous trees of the Hawaiian Islands.’ (JF Rock: Honolulu, HI).
Rolett, B., and Diamond, J. (2004). Environmental predictors of pre-European deforestation on Pacific islands. Nature 431, 443–446.
| Environmental predictors of pre-European deforestation on Pacific islands.Crossref | GoogleScholarGoogle Scholar | 15386010PubMed |
Schmitt, C. B., Burgess, N. D., Coad, L., Belokurov, A., Besançon, C., Boisrobert, L., et al. (2009). Global analysis of the protection status of the world’s forests. Biological Conservation 142, 2122–2130.
| Global analysis of the protection status of the world’s forests.Crossref | GoogleScholarGoogle Scholar |
Sunderland, T., Apgaua, D., Baldauf, C., Blackie, R., Colfer, C., Cunningham, A. B., Dexter, K., Djoudi, H., Gautier, D., Gumbo, D., and Ickowitz, A. (2015). Global dry forests: a prologue. International Forestry Review 17, 1–9.
| Global dry forests: a prologue.Crossref | GoogleScholarGoogle Scholar |
Trueman, M., Standish, R. J., and Hobbs, R. J. (2014). Identifying management options for modified vegetation: application of the novel ecosystems framework to a case study in the Galápagos Islands. Biological Conservation 172, 37–48.
| Identifying management options for modified vegetation: application of the novel ecosystems framework to a case study in the Galápagos Islands.Crossref | GoogleScholarGoogle Scholar |
van Balgooy, M. M. J. (1971). Plant biogeography of the Pacific as based on a census of phanerogam genera. Blumea 6, 3–7.
Walter, H. (1971). ‘Ecology of tropical and subtropical vegetation.’ (Oliver & Boyd: Edinburgh, UK.)
Whittaker, R. J., Triantis, K. A., and Ladle, R. J. (2008). A general dynamic theory of oceanic island biogeography. Journal of Biogeography 35, 977–994.
| A general dynamic theory of oceanic island biogeography.Crossref | GoogleScholarGoogle Scholar |
Wiggins, I. L., Porter, D. M., and Anderson, E. F. (1971). ‘Flora of the Galápagos Islands.’ (Stanford University Press: Stanford, CA, USA.)
Williamson, M. (1996). ‘Biological invasions.’ (Chapman & Hall: London, UK.)
WorldClim (2009). Global climate data. Available at http://www.worldclim.org/ [Verified 24 May 2012].
WWF (2009) Terrestrial ecoregions of the world. Available at http://worldwildlife.org/publications/terrestrial-ecoregions-of-the-world [GIS database.] [Verified 24 May 2012].