Screening of diseases in wild exotic birds on Tahiti Island – implications for French Polynesian conservation
Caroline Blanvillain A H , Susana Saavedra B , Tehani Withers A , Jan Votýpka C D , Karine Laroucau E , Steeve Lowenski F and David Modrý D GA Société Ornithologique de Polynésie Française, Manu, BP 7023, Taravao, Tahiti.
B INBIMA Invasive Bird Management, PO Box 6009, 38008 S/C de Tenerife, Spain.
C Department of Parasitology, Faculty of Science, Charles University, Vinicna 7, 128 44 Prague 2, Czech Republic.
D Biology Centre, Institute of Parasitology, Czech Academy of Sciences, Branisovska 31, 370 05 Ceske Budejovice, Czech Republic.
E ANSES Agence nationale de sécurité sanitaire de l’environnement et du travail, Laboratoire de santé animale, Unité Zoonoses Bactériennes, 14, rue Pierre et Marie Curie, F94706 Maisons-Alfort, France.
F UMR1161 Virologie, ANSES Agence nationale de sécurité sanitaire de l’environnement et du travail, 14, rue Pierre et Marie Curie, 94706 Maisons-Alfort, France.
G Department of Pathology and Parasitology, Faculty of Veterinary Medicine, University of Veterinary and Pharmaceutical Sciences, Brno Palackeho, 1-3 612 42 Brno, Czech Republic.
H Corresponding author. Email: cblanvillain@manu.pf
Pacific Conservation Biology - https://doi.org/10.1071/PC20049
Submitted: 4 June 2020 Accepted: 3 January 2021 Published online: 23 February 2021
Abstract
In order to identify potential infectious disease threats to the native avifauna of French Polynesia, an evaluation was performed on the health status of four wild non-native species of birds on the island of Tahiti: common myna, red-vented bulbul, rock dove, and zebra dove. From six locations, a large sample set (151–349 individuals) was tested for several viruses and bacteria, and a small sample set (22–40 birds), because of its proximity to the last remaining population of the critically endangered Tahiti monarch, was checked for more pathogens. Disease-specific screening methods were used. None of the following viruses were found: Newcastle disease virus, avian influenza virus, West Nile virus in 159, 189 and 204 sera; 349 birds examined for poxvirus lesion; avian metapneumovirus and avian adenovirus in 38 and 38 sera; avian polyomavirus in 28 cloacal swabs. The prevalence of bacteria and avian malaria was: Salmonella Heidelberg (5% from 21 × 10 pooled samples of intestinal contents), Chlamydia spp. (8% on 196 cloacal swabs) including Chlamydia psittaci (3%), Plasmodium relictum – haplotype GRW04 (2% on 205 DNA), Haemoproteus spp. (25% on 205 DNA). In the limited sample set, Klebsiella pneumoniae, Bordetella avium and Riemerella columbina were isolated with a prevalence of 3% each in 40 tracheal swabs. The potential role of introduced birds as vectors of zoonosis in French Polynesia and the crucial finding of Plasmodium relictum with several ubiquitous and dangerous pathogens on Tahiti Island should be given the appropriate attention by local authorities and conservationists.
Keywords: avian diseases, biological invasion, eastern Polynesia, endemic bird, invasive species, Oceania.
References
Alley, M. R. (2002). Avian wildlife diseases in New Zealand: current issues and achievements. New Zealand Veterinary Journal 50, 118–120.| Avian wildlife diseases in New Zealand: current issues and achievements.Crossref | GoogleScholarGoogle Scholar | 16032257PubMed |
Altizer, S., Foufopoulos, J., and Gager, A. (2001). Conservation and diseases. Encyclopedia of Biodiversity 2, 109–126.
Andersen, A. A., and Vanrompay, D. (2000). Avian chlamydiosis. Revue scientifique et technique (International Office of Epizootics) 19, 396–404.
Andersen, M. J., Shult, H. T., Cibois, A., Thibault, J. C., Filardi, C. E., and Moyle, R. G. (2015). Rapid diversification and secondary sympatry in Australo-Pacific kingfishers (Aves: Alcedinidae: Todiramphus). Royal Society Open Science 2, 140375.
| Rapid diversification and secondary sympatry in Australo-Pacific kingfishers (Aves: Alcedinidae: Todiramphus).Crossref | GoogleScholarGoogle Scholar | 26064600PubMed |
Anon. (2020). Aspergillosis threatens endangered kakapo, “the world’s fattest parrot”. Available at https://www.aspergillus.org.uk/blog/aspergillosis-threatens-endangered-kakapo-“-world’s-fattest-parrot”. [accessed 20 May 2020].
Antras, V. (2000). Enquête Zoo-sanitaire en Polynésie française. Tahiti, Polynésie française. Service du Développement Rural, Papeete.
Antras, V. (2007). Surveillance sanitaire de la population aviaire Gallus gallus de Polynésie française en 2007. Bulletin épidémiologique, santé animale et alimentation 43, 14–16.
Arya, R., Antonisamy, B., and Kumar, S. (2012). Sample size estimation in prevalence studies. The Indian Journal of Pediatrics 79, 1482–1488.
| Sample size estimation in prevalence studies.Crossref | GoogleScholarGoogle Scholar | 22562262PubMed |
Atkinson, C. T., Woods, K. L., Dusek, R. J., Sileo, L. S., and Iko, W. M. (1995). Wildlife disease and conservation in Hawaii: pathogenicity of avian malaria (Plasmodium relictum) in experimentally infected iiwi (Vestiaria coccinea). Parasitology 111, S59–S69.
| Wildlife disease and conservation in Hawaii: pathogenicity of avian malaria (Plasmodium relictum) in experimentally infected iiwi (Vestiaria coccinea).Crossref | GoogleScholarGoogle Scholar | 8632925PubMed |
Atkinson, C. T., Wiegand, K. C., Triglia, D., and Jarvi, S. I. (2012). Reversion to virulence and efficacy of an attenuated canarypox vaccine in Hawai‘i ‘Amakihi (Hemignathus virens). Journal of Zoo and Wildlife Medicine 43, 808–819.
| Reversion to virulence and efficacy of an attenuated canarypox vaccine in Hawai‘i ‘Amakihi (Hemignathus virens).Crossref | GoogleScholarGoogle Scholar | 23272348PubMed |
Atkinson, C., Utzurrum, R., Seamon, J., Schmaedick, M., LaPointe, D., Apelgren, C., Egan, A. and Watcher-Weatherwax, W. (2016). Effects of climate and land use on diversity, prevalence, and seasonal transmission of avian hematozoa in American Samoa. Technical Report HCSU-072. Hawai‘i Cooperative Studies Unit, University of Hawai‘i at Hilo, HI, USA.
Ayadi, T., Hammouda, A., Poux, A., Boulinier, T., Lecollinet, S., and Selmi, S. (2017). Evidence of exposure of laughing doves (Spilopelia senegalensis) to West Nile and Usutu viruses in southern Tunisian oases. Epidemiology and Infection 145, 2808–2816.
| Evidence of exposure of laughing doves (Spilopelia senegalensis) to West Nile and Usutu viruses in southern Tunisian oases.Crossref | GoogleScholarGoogle Scholar | 28803560PubMed |
Beadell, J. S., Ishtiaq, F., Covas, R., Martim, M., Warren, B. H., Carter, T. A., Bensch, S., Graves, G. R., Jhala, Y. V., Peirce, M., Rahmani, A., Fonseca, D., and Fleischer, R. (2006). Global phylogeographic limits of Hawaii’s avian malaria. Proceedings of the Royal Society B: Biological Sciences 273, 2935–2944.
| Global phylogeographic limits of Hawaii’s avian malaria.Crossref | GoogleScholarGoogle Scholar | 17015360PubMed |
Beard, C. W. (1970). Demonstration of type-specific influenza antibody in mammalian and avian sera by immunodiffusion. Bulletin of the World Health Organization 42, 779.
| 4988696PubMed |
Belkin, J. N. (1962). The mosquitoes of the South Pacific (Diptera, Culicidae). Berkely, University of California Press.
Bennett, G. F., Warren, M., and Cheong, W. H. (1966). Biology of the Malaysian strain of Plasmodium juxtanucleare Versiani and Gomes, 1941. II. The sporogonic stages in Culex (Culex) sitiens Wiedmann. The Journal of Parasitology 52, 647–652.
| Biology of the Malaysian strain of Plasmodium juxtanucleare Versiani and Gomes, 1941. II. The sporogonic stages in Culex (Culex) sitiens Wiedmann.Crossref | GoogleScholarGoogle Scholar | 5969102PubMed |
Bensch, S., Hellgren, O., and Pérez-Tris, J. (2009). MalAvi: a public database of malaria parasites and related haemosporidians in avian hosts based on mitochondrial cytochrome b lineages. Molecular Ecology Resources 9, 1353–1358.
| MalAvi: a public database of malaria parasites and related haemosporidians in avian hosts based on mitochondrial cytochrome b lineages.Crossref | GoogleScholarGoogle Scholar | 21564906PubMed |
BirdLife International (2019). IUCN Red List for birds. Available at http://www.birdlife.org [accessed 6 March 2019].
Blanvillain, C., Thorsen, M., and Sulpice, R. (2001). Reintroduction of the Marquesan imperial-pigeon to Ua Huka Island. Re-introduction News 20, 18.
Blanvillain, C., Salducci, J. M., Tutururai, G., and Maeura, M. (2003). Impact of introduced birds on the recovery of the Tahiti flycatcher (Pomarea nigra), a critically endangered forest bird of Tahiti. Biological Conservation 109, 197–205.
| Impact of introduced birds on the recovery of the Tahiti flycatcher (Pomarea nigra), a critically endangered forest bird of Tahiti.Crossref | GoogleScholarGoogle Scholar |
Blanvillain, C., Ghestemme, T., Withers, T., and O’Brien, M. (2018). Breeding biology of the Critically Endangered Tahiti monarch Pomarea nigra, a bird with a low productivity. Bird Conservation International 28, 606–619.
| Breeding biology of the Critically Endangered Tahiti monarch Pomarea nigra, a bird with a low productivity.Crossref | GoogleScholarGoogle Scholar |
Blanvillain, C., Ghestemme, T., Saavedra, S., Yan, L., Michoud-Schmidt, J., Beaune, D., and O’Brien, M. (2020). Rat and invasive bird control to save the Tahiti monarch (Pomarea nigra), a critically endangered island bird. Journal for Nature Conservation 55, 125820.
| Rat and invasive bird control to save the Tahiti monarch (Pomarea nigra), a critically endangered island bird.Crossref | GoogleScholarGoogle Scholar |
Bossin, H. (2017). ‘Principaux Moustiques Nuisibles Observés en Polynésie Française.’ (Fiches de l’Institut Malardé: Papeete.)
Brown, J., Resurreccion, R. S., and Dickson, T. G. (1990). The relationship between the hemagglutination–inhibition test and the enzyme-linked immunosorbent assay for the detection of antibody to Newcastle disease. Avian Diseases 34, 585–587.
| The relationship between the hemagglutination–inhibition test and the enzyme-linked immunosorbent assay for the detection of antibody to Newcastle disease.Crossref | GoogleScholarGoogle Scholar | 2241684PubMed |
Bunbury, N., Barton, E., Jones, C. G., Greenwood, A. G., Tyler, K. M., and Bell, D. J. (2007). Avian blood parasites in an endangered columbid: Leucocytozoon marchouxi in the Mauritian pink pigeon Columba mayeri. Parasitology 134, 797–804.
| Avian blood parasites in an endangered columbid: Leucocytozoon marchouxi in the Mauritian pink pigeon Columba mayeri.Crossref | GoogleScholarGoogle Scholar | 17201998PubMed |
Chen, T. H., Aure, W. E., Cruz, E. I., Malbas, F. F., Teng, H. J., Lu, L. C., et al. (2015). Avian Plasmodium infection in field‐collected mosquitoes during 2012–2013 in Tarlac, Philippines. Journal of Vector Ecology 40, 386–392.
| Avian Plasmodium infection in field‐collected mosquitoes during 2012–2013 in Tarlac, Philippines.Crossref | GoogleScholarGoogle Scholar | 26611975PubMed |
Cibois, A., Thibault, J. C., and Pasquet, E. (2004). Biogeography of eastern Polynesian monarchs (Pomarea): an endemic genus close to extinction. Condor 106, 837–851.
| Biogeography of eastern Polynesian monarchs (Pomarea): an endemic genus close to extinction.Crossref | GoogleScholarGoogle Scholar |
Cibois, A., Beadel, J. S., Graves, G. R., Pasquet, E., Slikas, B., Sonsthagen, S. A., Thibault, J. C., and Fleischer, R. C. (2011). Charting the course of reed-warblers across the Pacific islands. Journal of Biogeography 38, 1963–1975.
| Charting the course of reed-warblers across the Pacific islands.Crossref | GoogleScholarGoogle Scholar |
Cibois, A., Dekker, R., Pasquet, E., and Thibault, J. C. (2012). New insights into the systematics of the enigmatic Polynesian sandpipers Aechmorhynchus parvirostris and Prosobonia leucoptera. Ibis 154, 756–767.
| New insights into the systematics of the enigmatic Polynesian sandpipers Aechmorhynchus parvirostris and Prosobonia leucoptera.Crossref | GoogleScholarGoogle Scholar |
Cibois, A., Thibault, J. C., Bonillo, C., Filardi, C. E., Watling, D., and Pasquet, E. (2014). Phylogeny and biogeography of the fruit doves (Aves: Columbidae). Molecular Phylogenetics and Evolution 70, 442–453.
| Phylogeny and biogeography of the fruit doves (Aves: Columbidae).Crossref | GoogleScholarGoogle Scholar | 24012584PubMed |
Cibois, A., Thibault, J. C., Bonillo, C., Filardi, C. E., and Pasquet, E. (2017). Phylogeny and biogeography of the imperial pigeons (Aves: Columbidae) in the Pacific Ocean. Molecular Phylogenetics and Evolution 110, 19–26.
| Phylogeny and biogeography of the imperial pigeons (Aves: Columbidae) in the Pacific Ocean.Crossref | GoogleScholarGoogle Scholar | 28249741PubMed |
Clark, N. J., Clegg, S. M., and Lima, M. R. (2014). A review of global diversity in avian haemosporidians (Plasmodium and Haemoproteus: Haemosporida): new insights from molecular data. International Journal for Parasitology 44, 329–338.
| A review of global diversity in avian haemosporidians (Plasmodium and Haemoproteus: Haemosporida): new insights from molecular data.Crossref | GoogleScholarGoogle Scholar | 24556563PubMed |
Clark, N. J., Olsson-Pons, S., Ishtiaq, F., and Clegg, S. M. (2015). Specialist enemies, generalist weapons and the potential spread of exotic pathogens: malaria parasites in a highly invasive bird. International Journal for Parasitology 45, 891–899.
| Specialist enemies, generalist weapons and the potential spread of exotic pathogens: malaria parasites in a highly invasive bird.Crossref | GoogleScholarGoogle Scholar | 26433143PubMed |
Cook, J. K. A. (2000). Avian rhinotracheitis. Revue Scientifique et Technique, Office International des Epizooties 19, 602–613.
| Avian rhinotracheitis.Crossref | GoogleScholarGoogle Scholar |
Cunningham, A. A. (1996). Disease risks of wildlife translocations. Conservation Biology 10, 349–353.
| Disease risks of wildlife translocations.Crossref | GoogleScholarGoogle Scholar |
Davies, Y. M., Cunha, M. P. V., Oliveira, M. G. X., Oliveira, M. C. V., Philadelpho, N., Romero, D. C., et al. (2016). Virulence and antimicrobial resistance of Klebsiella pneumoniae isolated from passerine and psittacine birds. Avian Pathology 45, 194–201.
| Virulence and antimicrobial resistance of Klebsiella pneumoniae isolated from passerine and psittacine birds.Crossref | GoogleScholarGoogle Scholar | 26813537PubMed |
Dho-Moulin, M., and Fairbrother, J. M. (1999). Avian pathogenic Escherichia coli (APEC). Veterinary Research, BioMed Central 30, 299–316.
Diamond, J., and Veitch, C. R. (1981). Extinctions and introductions in the New Zealand avifauna: cause and effect? Science 211, 499–501.
| Extinctions and introductions in the New Zealand avifauna: cause and effect?Crossref | GoogleScholarGoogle Scholar | 17816611PubMed |
Earle, R. A., and Little, R. M. (1993). Haematozoa of feral rock doves and rock pigeons in mixed flocks. South African Journal of Wildlife Research 23, 98–98.
Ehricht, R., Slickers, P., Goellner, S., Hotzel, H., and Sachse, K. (2006). Optimized DNA microarray assay allows detection and genotyping of single PCR amplifiable target copies. Molecular and Cellular Probes 20, 60–63.
| Optimized DNA microarray assay allows detection and genotyping of single PCR amplifiable target copies.Crossref | GoogleScholarGoogle Scholar | 16330186PubMed |
Fan, H. H., Kleven, S. H., Jackwood, M. W., Johansson, K. E., Pettersson, B., and Levisohn, S. (1995). Species identification of avian mycoplasmas by polymerase chain reaction and restriction fragment length polymorphism analysis. Avian Diseases 39, 398–407.
| Species identification of avian mycoplasmas by polymerase chain reaction and restriction fragment length polymorphism analysis.Crossref | GoogleScholarGoogle Scholar | 7677664PubMed |
Fischer, A. H., Jacobson, K. A., Rose, J., and Zeller, R. (2008). Hematoxylin and eosin staining of tissue and cell sections. Cold Spring Harbor Protocols 5, 4986.
| Hematoxylin and eosin staining of tissue and cell sections.Crossref | GoogleScholarGoogle Scholar |
Fite, G. L. (1940). The fuchsin–formaldehyde method of staining acid-fast bacilli in paraffin sections. The Journal of Laboratory and Clinical Medicine 25, 743–744.
Fix, A. S., Waterhouse, C., Greiner, E. C., and Stoskopf, M. K. (1988). Plasmodium relictum as a cause of avian malaria in wild-caught Magellanic penguins (Spheniscus magellanicus). Journal of Wildlife Diseases 24, 610–619.
| Plasmodium relictum as a cause of avian malaria in wild-caught Magellanic penguins (Spheniscus magellanicus).Crossref | GoogleScholarGoogle Scholar | 3193555PubMed |
Fleischer, R. C., and McIntosh, C. E. (2001). Molecular systematics and biogeography of the Hawaiian avifauna. Studies in Avian Biology 22, 51–60.
Friend, M., McLean, R. G., and Joshua Dein, F. (2001). Disease emergence in birds: challenges for the twenty-first century. The Auk 118, 290–303.
| Disease emergence in birds: challenges for the twenty-first century.Crossref | GoogleScholarGoogle Scholar |
Garcia-Longoria, L., Marzal, A., De Lope, F., and Garamszegi, L. (2019). Host–parasite interaction explains variation in the prevalence of avian haemosporidians at the community level. PloS One 14, e0205624.
| Host–parasite interaction explains variation in the prevalence of avian haemosporidians at the community level.Crossref | GoogleScholarGoogle Scholar | 30840636PubMed |
Gaunt, A. S., Oring, L. W., Able, K. P., Anderson, D. W., Baptista, L. F., Barlow, J. C., and Wingfield, J. C. (1997). ‘Guidelines to the Use of Wild Birds in Research.’ (Ornithological Council: Washington, DC.)
Ghestemme, T., Matohi, A., Blanvillain, C., Portier, E., Le Barh, M., and O’Brien, M. (2019). Catastrophic decline and subsequent conservation of the critically endangered Fatu Hiva monarch Pomarea whitneyi in Marquesas Islands. Bird Conservation International 29, 598–615.
| Catastrophic decline and subsequent conservation of the critically endangered Fatu Hiva monarch Pomarea whitneyi in Marquesas Islands.Crossref | GoogleScholarGoogle Scholar |
Gieraltowski, L., Higa, J., Peralta, V., Green, A., Schwensohn, C., Rosen, H., Libby, T., Kissler, B., Marsden-Haug, N., Booth, H., Kimura, A., Grass, J., Bicknese, A., Tolar, B., Defibaugh-Chávez, S., Williams, I., Wise, M., and Salmonella Heidelberg Investigation Team, (2016). National Outbreak of Multidrug Resistant Salmonella Heidelberg Infections Linked to a Single Poultry Company. PLoS One 11, 0162369.
| National Outbreak of Multidrug Resistant Salmonella Heidelberg Infections Linked to a Single Poultry Company.Crossref | GoogleScholarGoogle Scholar |
Gram, H. C. (1884). “Über die isolierte Färbung der Schizomyceten in Schnitt- und Trockenpräparaten”. Fortschritte der Medizin 2, 185–189.
Gupta, P., Vishnudas, C. K., Ramakrishnan, U., Robin, V. V., and Dharmarajan, G. (2019). Geographical and host species barriers differentially affect generalist and specialist parasite community structure in a tropical skyisland archipelago. Proceeding of the Royal Society B 286, .
Harmon, W. M., Clark, W. A., Hawbecker, A. C., and Stafford, M. (1987). Trichomonas gallinae in columbiform birds from the Galápagos Islands. Journal of Wildlife Diseases 23, 492–494.
| Trichomonas gallinae in columbiform birds from the Galápagos Islands.Crossref | GoogleScholarGoogle Scholar | 3625913PubMed |
Hellgren, O., Waldenström, J., and Bensch, S. (2004). A new PCR assay for simultaneous studies of Leucocytozoon, Plasmodium, and Haemoproteus from avian blood. Journal of Parasitology 90, 797–802.
| A new PCR assay for simultaneous studies of Leucocytozoon, Plasmodium, and Haemoproteus from avian blood.Crossref | GoogleScholarGoogle Scholar |
Hellgren, O., Atkinson, C. T., Bensch, S., Albayrak, T., Dimitrov, D., Ewen, J. G., et al. (2015). Global phylogeography of the avian malaria pathogen Plasmodium relictum based on MSP1 allelic diversity. Ecography 38, 842–50.
| Global phylogeography of the avian malaria pathogen Plasmodium relictum based on MSP1 allelic diversity.Crossref | GoogleScholarGoogle Scholar |
Howe, L., Castro, I. C., Schoener, E. R., Hunter, S., Barraclough, R. K., and Alley, M. R. (2012). Malaria parasites (Plasmodium spp.) infecting introduced, native and endemic New Zealand birds. Parasitology Research 110, 913–923.
| Malaria parasites (Plasmodium spp.) infecting introduced, native and endemic New Zealand birds.Crossref | GoogleScholarGoogle Scholar | 21842389PubMed |
Jarvi, S. I., Atkinson, C. T., and Fleischer, R. C. (2001). Immunogenetics and resistance to avian malaria in Hawaiian honeycreepers (Drepanidinae). Studies in Avian Biology 22, 254–263.
Jarvi, S. I., Triglia, D., Giannoulis, A., Farias, M., Bianchi, K., and Atkinson, C. T. (2008). Diversity, origins and virulence of Avipoxviruses in Hawaiian forest birds. Conservation Genetics 9, 339–348.
| Diversity, origins and virulence of Avipoxviruses in Hawaiian forest birds.Crossref | GoogleScholarGoogle Scholar |
Jønsson, K. A., Irestedt, M., Bowie, R. C. K., Christidis, L., and Fjeldså, J. (2011). Systematics and biogegraphy of Indo-Pacific ground-doves. Molecular Phylogenetics and Evolution 59, 538–543.
| Systematics and biogegraphy of Indo-Pacific ground-doves.Crossref | GoogleScholarGoogle Scholar | 21256968PubMed |
Kligler, I. J., Muckenfuss, R. S., and Rivers, T. M. (1929). Transmission of fowl-pox by mosquitoes. The Journal of Experimental Medicine 49, 649–660.
| Transmission of fowl-pox by mosquitoes.Crossref | GoogleScholarGoogle Scholar | 19869570PubMed |
Laroucau, K., Vorimore, F., Aaziz, R., Berndt, A., Schubert, E., and Sachse, K. (2009). Isolation of a new chlamydial agent from infected domestic poultry coincided with cases of atypical pneumonia among slaughterhouse workers in France. Infection, Genetics and Evolution 9, 1240–1247.
| Isolation of a new chlamydial agent from infected domestic poultry coincided with cases of atypical pneumonia among slaughterhouse workers in France.Crossref | GoogleScholarGoogle Scholar | 19715775PubMed |
Laroucau, K., Aaziz, R., Meurice, L., Servas, V., Chossat, I., Royer, H., de Barbeyrac, B., Vaillant, V., Moyen, J. L., Meziani, F., Sachse, K., and Rolland, P. (2015). Outbreak of psittacosis in a group of women exposed to Chlamydia psittaci-infected chickens. Euro Surveillance 20, 21155.
| Outbreak of psittacosis in a group of women exposed to Chlamydia psittaci-infected chickens.Crossref | GoogleScholarGoogle Scholar | 26111240PubMed |
Lowe, S. J., Browne, M., Boudjelas, S., and De Poorter, M. (2000). 100 of the world’s worst invasive alien species. A selection from the Global Invasive Species Database. Aliens 12, 12.
MalAvi database (2020). MalAvi. A database for avian haemosporidian parasites. Version 2.4.7. Available at http://130.235.244.92/Malavi/fasta.html [accessed 9 November 2020].
McCormack, G. (2007). Lorikeet: Rimatara lorikeet (‘Ura) reintroduction programme. Available at: http://www.atiu.info/attractions/birds/lorikeet/ [accessed 28 April 2010].
Medeiros, M. C., Hamer, G. L., and Ricklefs, R. E. (2013). Host compatibility rather than vector–host–encounter rate determines the host range of avian Plasmodium parasites. Proceedings Royal Society B: Biological Sciences 280, 20122947.
| Host compatibility rather than vector–host–encounter rate determines the host range of avian Plasmodium parasites.Crossref | GoogleScholarGoogle Scholar |
Ménard, A., Clerc, M., Subtil, A., et al. (2006). Development of a real-time PCR for the detection of Chlamydia psittaci. Journal of Medical Microbiology 55, 471–473.
| Development of a real-time PCR for the detection of Chlamydia psittaci.Crossref | GoogleScholarGoogle Scholar | 16533998PubMed |
Olias, P., Wegelin, M., Zenker, W., Freter, S., Gruber, A. D., and Klopfleisch, R. (2011). Avian malaria deaths in parrots, Europe. Emerging Infectious Diseases 17, 950–952.
| Avian malaria deaths in parrots, Europe.Crossref | GoogleScholarGoogle Scholar | 21529428PubMed |
Padilla, L. R., and Parker, P. G. (2008). Monitoring avian health in the Galapagos Islands: current knowledge. In ‘Zoo and Wild Animal Medicine’. 6th edn. (Ed. M. E. Fowler, and R. E. Miller.) pp. 191–199. (Elsevier.)
Parker, K. A., Brunton, D. H., and Jakob-Hoff, R. (2006). Avian translocations and disease; implications for New Zealand conservation. Pacific Conservation Biology 12, 155–162.
| Avian translocations and disease; implications for New Zealand conservation.Crossref | GoogleScholarGoogle Scholar |
Phalen, D. N. (1998). Avian polyomavirus: my thoughts. Am Fed Aviculture Watchbird 25, 28–39.
Phalen, D. N., Wilson, V. G., and Graham, D. L. (1991). Polymerase chain reaction assay for avian polyomavirus. Journal of Clinical Microbiology 29, 1030–1037.
| Polymerase chain reaction assay for avian polyomavirus.Crossref | GoogleScholarGoogle Scholar | 1647403PubMed |
Pisanu, B., Laroucau, K., Aaziz, R., Vorimore, F., Le Gros, A., Chapuis, J. L., and Clergeau, P. (2018). Chlamydia avium detection from a ring-necked parakeet (Psittacula krameri) in France. Journal of Exotic Pet Medicine 27, 68–74.
| Chlamydia avium detection from a ring-necked parakeet (Psittacula krameri) in France.Crossref | GoogleScholarGoogle Scholar |
Raffel, T. R., Register, K. B., Marks, S. A., and Temple, L. (2002). Prevalence of Bordetella avium infection in selected wild and domesticated birds in the eastern USA. Journal of Wildlife Diseases 38, 40–46.
| Prevalence of Bordetella avium infection in selected wild and domesticated birds in the eastern USA.Crossref | GoogleScholarGoogle Scholar | 11838227PubMed |
Raper, K. B., and Fennell, D. I. (1965). ‘The Genus Aspergillus.’ (Williams and Wilkins: Baltimore)
Richard, V., and Cao-Lormeau, V.-M. (2019). Mosquito vectors of arboviruses in French Polynesia. New Microbe and New Infect 31, 100569.
| Mosquito vectors of arboviruses in French Polynesia.Crossref | GoogleScholarGoogle Scholar |
Rivière, F. (1988). Ecologie de Aedes (Stegomyia) polynesiensis, Marks, 1951 et transmission de la filariose de Bancroft en Polynesie. Doctoral dissertation, Paris 11.
Robertson H. A., and Saul, E. K. (2007). Conservation of Kakerori (Pomarea dimidiata) in the Cook Islands in 2006/07. Department of Conservation, Wellington. DOC Research and Development Series No. 296.
Rosner, B. (Ed.) (2010). ‘Fundamentals of Biostatistics.’ 7th edn. (Brooks/Cole: Boston.)
Saavedra, S., Ghestemme, T., and Blanvillain, C. (2012). French Polynesia: first control campaign for Acridotheres tristis and Pycnonotus cafer on Tahiti Island. Pacific Invasives Initiative Newsletter 6, 4–5.
Sachse, K., Kuehlewind, S., Ruettger, A., Schubert, E., and Rohde, G. (2012). More than classical Chlamydia psittaci in urban pigeons. Veterinary Microbiology 157, 476–80.
| More than classical Chlamydia psittaci in urban pigeons.Crossref | GoogleScholarGoogle Scholar | 22296995PubMed |
Sachse, K., Laroucau, K., Riege, K., Wehner, S., Dilcher, M., Creasy, H. H., et al. (2014). Evidence for the existence of two new members of the family Chlamydiaceae and proposal of Chlamydia avium sp. nov. and Chlamydia gallinacea sp. nov. Systematic and Applied Microbiology 37, 79–88.
| Evidence for the existence of two new members of the family Chlamydiaceae and proposal of Chlamydia avium sp. nov. and Chlamydia gallinacea sp. nov.Crossref | GoogleScholarGoogle Scholar | 24461712PubMed |
Sachse, K., Laroucau, K., and Vanrompay, D. (2015). Avian chlamydiosis. Current Clinical Microbiology 2, 10.
| Avian chlamydiosis.Crossref | GoogleScholarGoogle Scholar |
Santiago-Alarcon, D., Palinauskas, V., and Schaefer, H. M. (2012). Diptera vectors of avian Haemosporidian parasites: untangling parasite life cycles and their taxonomy. Biological Review 87, 928–964.
| Diptera vectors of avian Haemosporidian parasites: untangling parasite life cycles and their taxonomy.Crossref | GoogleScholarGoogle Scholar |
Schweizer, M., Wright, T. F., Peñalba, J. V., Schirtzinger, E. E., and Joseph, L. (2015). Molecular phylogenetics suggests a New Guinean origin and frequent episodes of founder-event speciation in the nectarivorous lories and lorikeets (Aves: Psittaciformes). Molecular phylogenetics and evolution 90, 34–48.
| Molecular phylogenetics suggests a New Guinean origin and frequent episodes of founder-event speciation in the nectarivorous lories and lorikeets (Aves: Psittaciformes).Crossref | GoogleScholarGoogle Scholar | 25929786PubMed |
Sergeant, E. S. G. (2019). Epitools epidemiological calculators. Ausvet Pty Ltd. Available at http://epitools.ausvet.com.au [accessed 12 December 2019].
Soares, L., Marra, P., Gray, L., and Ricklefs, R. E. (2017). The malaria parasite Plasmodium relictum in the endemic avifauna of eastern Cuba. Conservation Biology 31, 1477–1482.
| The malaria parasite Plasmodium relictum in the endemic avifauna of eastern Cuba.Crossref | GoogleScholarGoogle Scholar | 28766818PubMed |
Steadman, D. W. (2006). ‘Extinction and Biogeography of Tropical Pacific Birds.’ (University of Chicago Press: Chicago.)
Swinnerton, K. J., Greenwood, A. G., Chapman, R. E., and Jones, C. G. (2005). The incidence of the parasitic disease Trichomoniasis and its treatment in reintroduced and wild pink pigeons Columba mayeri. Ibis 147, 772–782.
| The incidence of the parasitic disease Trichomoniasis and its treatment in reintroduced and wild pink pigeons Columba mayeri.Crossref | GoogleScholarGoogle Scholar |
Thibault, J. C., and Cibois, A. (2017). ‘Birds of Eastern Polynesia. A Biogeographic Atlas.’ (Lynx Edicions: Barcelona.)
Valkiūnas, G., Ilgūnas, M., Bukauskaitė, D., Fragner, K., Weissenböck, H., Atkinson, C. T., and Iezhova, T. A. (2018). Characterization of Plasmodium relictum, a cosmopolitan agent of avian malaria. Malaria Journal 17, 184.
| Characterization of Plasmodium relictum, a cosmopolitan agent of avian malaria.Crossref | GoogleScholarGoogle Scholar | 29720195PubMed |
Vancanneyt, M., Vandamme, P., Segers, P., Torck, U., Coopman, R., Kersters, K., and Hinz, K. H. (1999). Riemerella columbina sp. nov., a bacterium associated with respiratory disease in pigeons. International Journal of Systematic and Evolutionary Microbiology 49, 289–295.
| Riemerella columbina sp. nov., a bacterium associated with respiratory disease in pigeons.Crossref | GoogleScholarGoogle Scholar |
Vanderwerf, E. A. (2007). Biogeography of Elepaio: evidence from inter-island song playbacks. The Wilson Journal of Ornithology 119, 325–333.
| Biogeography of Elepaio: evidence from inter-island song playbacks.Crossref | GoogleScholarGoogle Scholar |
Vanderwerf, E. A., Burt, M. D., Rohrer, J. L., and Mosher, S. M. (2006). Distribution and prevalence of mosquito-borne diseases in O’ahu ’Elepaio. The Condor 108, 770–777.
| Distribution and prevalence of mosquito-borne diseases in O’ahu ’Elepaio.Crossref | GoogleScholarGoogle Scholar |
van Riper, C., van Riper, S. G., Goff, M. L., and Laird, M. (1986). The epizootiology and ecological significance of malaria in Hawaiian land birds. Ecological Monographs 56, 327–344.
| The epizootiology and ecological significance of malaria in Hawaiian land birds.Crossref | GoogleScholarGoogle Scholar |
van Riper, C., van Riper, S. G., and Hansen, W. R. (2002). Epizootiology and effect of avian pox on Hawaiian forest birds. Auk 119, 929–942.
| Epizootiology and effect of avian pox on Hawaiian forest birds.Crossref | GoogleScholarGoogle Scholar |
van Riper, C., and Forrester, D. (2007). ‘Avian Pox. Infectious Diseases of Wild Birds.’ (Wiley Blackwell: Oxford, UK.)
Vaz, F. F., Raso, T. F., Agius, J. E., Hunt, T., Leishman, A., Eden, J. S., and Phalen, D. N. (2020). Opportunistic sampling of wild native and invasive birds reveals a rich diversity of adenoviruses in Australia. Virus evolution 6, veaa024.
| Opportunistic sampling of wild native and invasive birds reveals a rich diversity of adenoviruses in Australia.Crossref | GoogleScholarGoogle Scholar | 32411389PubMed |
Warner, R. E. (1968). The role of introduced diseases in the extinction of the endemic Hawaiian avifauna. Condor 70, 101–120.
| The role of introduced diseases in the extinction of the endemic Hawaiian avifauna.Crossref | GoogleScholarGoogle Scholar |
Wikelski, M., Foufopoulos, J., Vargas, H., and Snell, H. (2004). Galápagos birds and diseases: invasive pathogens as threats for island species. Ecology and Society 9, 1–5.
| Galápagos birds and diseases: invasive pathogens as threats for island species.Crossref | GoogleScholarGoogle Scholar |
Woernle, H. (1966). The use of the agar-gel diffusion technique in the identification of certain avian virus diseases. The Veterinarian 4, 17–28.
| 4957766PubMed |
Zocevic, A., Vorimore, F., Vicari, N., et al. (2013). A real-time PCR Assay for the detection of atypical strains of Chlamydiaceae from pigeons. PLoS One 8, 58741.
| A real-time PCR Assay for the detection of atypical strains of Chlamydiaceae from pigeons.Crossref | GoogleScholarGoogle Scholar |