A codeveloped management tool to determine harvest limits of introduced mud crabs, Scylla serrata (Forskål, 1775), within a Native Hawaiian fishpond
Kaleonani K. C. Hurley A E , Maia Sosa Kapur B , Margaret Siple C , Keli‘iahonui Kotubetey D , A. Hi‘ilei Kawelo D and Robert J. Toonen AA Hawai‘i Institute of Marine Biology, University of Hawai‘i at Mānoa, 46-007 Lilipuna Road, Kāne‘ohe, HI 96744, USA.
B School of Aquatic and Fisheries Sciences, University of Washington, 1122 NE Boat Street, Seattle, WA 98105, USA.
C Department of Ecology, Evolution and Marine Biology, University of California, Santa Barbara, CA 93106, USA.
D Paepae o He‘eia, Kāne‘ohe, HI 96744, USA.
E Corresponding author. Email: hurleyk@hawaii.edu
Pacific Conservation Biology 27(4) 418-431 https://doi.org/10.1071/PC20023
Submitted: 25 February 2020 Accepted: 29 September 2020 Published: 30 October 2020
Journal Compilation © CSIRO 2021 Open Access CC BY-NC-ND
Abstract
Hawaiian fishponds, or loko i‘a, are ancient aquaculture systems and models of sustainable aquatic resource management from traditional Native Hawaiian harvest practices. Of the 488 fishponds documented in ancient Hawai‘i, only 38 are currently actively managed. Building on Indigenous and local knowledge, fishponds are being adapted to current community needs. Functional fishponds perpetuate culture, improve food security, enhance ecosystem services and transform conservation biology through Indigenous perspectives. Here we examine how Indigenous practices effectively maintain sustainable harvest of an introduced, but economically important, crab species, the mud crab, Scylla serrata (Forskål 1775). The State of Hawai‘i has only a size limit, and no bag limits, for this species. With Indigenous management in a Hawaiian fishpond, limits are set and enforced in response to fluctuations in catch. We used a mark–recapture experiment to parameterise a size-structured population model, which we used to investigate the impact of changing harvest rates. Throughout the study period of 2017–20, the mean number of crabs per harvest was 28 individuals (s.d. = 7) and average catch per unit effort was 0.20 crabs per trap-hour (s.d. = 0.054). During winter, catch per unit effort was lower but mean crab size was larger than during summer. Model simulations indicated that current Indigenous practices are less likely to cause a decline in population growth rate than a strict size limit. Using information from Indigenous harvest practices and the mark–recapture study, we codeveloped a versatile crab population model that can be tailored to changing management objectives.
Keywords: aquaculture, conservation biology, crab fishery, food security, Hawaiian fishponds, mark–recapture, mud crab, non-native species, Scylla serrata, size-based model.
References
Aires-da-Silva, A. M., and Gallucci, V. F. (2007). Demographic and risk analyses applied to management and conservation of the blue shark (Prionace glauca) in the North Atlantic Ocean. Marine and Freshwater Research 58, 570–580.| Demographic and risk analyses applied to management and conservation of the blue shark (Prionace glauca) in the North Atlantic Ocean.Crossref | GoogleScholarGoogle Scholar |
Alberts-Hubatsch, H., Lee, S. Y., Meynecke, J-O., Diele, K., Nordhaus, I., and Wolff, M. (2016). Life-history, movement, and habitat use of Scylla serrata (Decapoda, Portunidae): current knowledge and future challenges. Hydrobiologia 76, 5–21.
| Life-history, movement, and habitat use of Scylla serrata (Decapoda, Portunidae): current knowledge and future challenges.Crossref | GoogleScholarGoogle Scholar |
Anderson, A. (2009). Epilogue: changing archaeological perspectives upon historical ecology in the Pacific Islands. Pacific Science 63, 747–757.
| Epilogue: changing archaeological perspectives upon historical ecology in the Pacific Islands.Crossref | GoogleScholarGoogle Scholar |
Anon. (1936). Samoan crab held menace; protection to be removed. Honolulu Star-Bulletin, 30 June 1936, p. 1.
Apple, R., and Kikuchi, W. K. (1975). Ancient Hawaii shore zone fishponds: an evaluation of survivors for historical preservation. Office of the State Director, National Park Service, United States Department of the Interior, Honolulu
Bonine, K. M., Bjorkstedt, E. P., Ewel, K. C., and Palik, M. (2008). Population characteristics of the mangrove crab Scylla serrata (Decapoda: Portunidae) in Kosrae, Federated States of Micronesia: effects of harvest and implications for management. Pacific Science 62, 1–19.
| Population characteristics of the mangrove crab Scylla serrata (Decapoda: Portunidae) in Kosrae, Federated States of Micronesia: effects of harvest and implications for management.Crossref | GoogleScholarGoogle Scholar |
Brock, V. (1960). The introduction of aquatic animals into Hawaiian water. International Revue Hydrobiologia 45, 463–480.
Butcher, P. A., Leland, J. C., Broadhurst, M. K., Paterson, B. D., and Mayer, D. G. (2012). Giant mud crab (Scylla serrata): relative efficiencies of common baited traps and impacts on discards. ICES Journal of Marine Science 69, 1511–1522.
| Giant mud crab (Scylla serrata): relative efficiencies of common baited traps and impacts on discards.Crossref | GoogleScholarGoogle Scholar |
Carpenter, B., Gelman, A., Hoffman, M. D., Lee, D., Goodrich, B., Betancourt, M., Brubaker, M., Guo, J., Li, P., and Riddell, A. (2017). Stan: a probabilistic programming language. Journal of Statistical Software 76, 1–32.
| Stan: a probabilistic programming language.Crossref | GoogleScholarGoogle Scholar |
Caswell, H. (1990). Matrix population models. Biometrics 46, 1238.
| Matrix population models.Crossref | GoogleScholarGoogle Scholar |
Christy, J. H. (2011). Timing of hatching and release of larvae by brachyuran crabs: patterns, adaptive significance and control. Integrative and Comparative Biology 51, 62–72.
| Timing of hatching and release of larvae by brachyuran crabs: patterns, adaptive significance and control.Crossref | GoogleScholarGoogle Scholar | 21593141PubMed |
Cobb, J. N. (1901). Commercial fisheries of the Hawaiian Islands. U.S. Bureau of Fisheries, Commissioner’s Report. pp. 433–512.
Cobb, J. N. (1905). The aquatic resources of the Hawaiian Islands. Part II. Section III. The commercial fisheries. Bulletin of the United States Fish Commission 23, 715–765.
Cormack, R. (1964). Estimates of survival from sighting of marked animals. Biometrika 51, 429–438.
| Estimates of survival from sighting of marked animals.Crossref | GoogleScholarGoogle Scholar |
Costa-Pierce, B. A. (1987). Aquaculture in ancient Hawaii. BioScience 37, 320–331.
| Aquaculture in ancient Hawaii.Crossref | GoogleScholarGoogle Scholar |
DeMartini, E. E., Kleiber, P., and DiNardo, G. T. (2002). Comprehensive (1986–2001) characterization of size at sexual maturity for Hawaiian spiny lobster (Panulirus marginatus) and slipper lobster (Scyllarides squammosus) in the northwestern Hawaiian Islands. NOAA-TM-NMFS-SWSFC-344. NOAA National Marine Fisheries Service, Honolulu, HI
DHM, Inc. (1989). Hawaiian fishpond study: islands of O’ahu, Moloka’i, and Hawai‘i. Prepared by DHM Planners, Inc. and Public Archaeology Section, Applied Research Group, Bernice Pauahi Bishop Museum, Honolulu, HI
Division of Aquatic Resources, DAR (2015). Fishing regulations: marine invertebrates. Department of Aquatic Resources, State of Hawai‘i. Available at http://dlnr.hawaii.gov/dar/fishing/fishing-regulations/marine-invertebrates/
Dye, T. (1994). Population trends in Hawai‘i before 1778. The Hawaiian Journal of History 28, 1–20.
Edmondson, C. H., and Wilson, I. H. (1940). The shellfish resources of Hawaii. Proceedings 6th Pacific Science Congress 3, 241–243.
Eldredge, L. G., and Carlton, J. T. (2002). Hawaiian marine bioinvasions: a preliminary assessment. Pacific Science 56, 211–212.
| Hawaiian marine bioinvasions: a preliminary assessment.Crossref | GoogleScholarGoogle Scholar |
FAO (2001). FAO yearbook fishery statistics: capture production. Vol. 88/1. (Food and Agriculture Organization of the United Nations, Rome, Italy.)
Farber, J. M. (1997). ‘Ancient Hawaiian Fishponds: Can Restoration Succeed on Moloka’i?’ (Neptune House Publications: Encinitas, CA.)
Forskål, P. (1775). Descriptiones Animalium, Avium, Amphibiorium, Piscium, Insectorum, Vermium; quae in Itinere Orientali Observavit Petrus Forskål. Post Mortem Autoris editit Carsten Niebuhr. Adjuncta est materia Medica Kahirina. Mölleri, Hafniae, 19 + xxxiv + 164 pp.
Gopurenko, D., Hughes, J. M., and Keenan, C. P. (1999). Mitochondrial DNA evidence for rapid colonisation of the Indo-West Pacific by the mudcrab Scylla serrata. Marine Biology 134, 227–233.
| Mitochondrial DNA evidence for rapid colonisation of the Indo-West Pacific by the mudcrab Scylla serrata.Crossref | GoogleScholarGoogle Scholar |
Herbst, J. F. W. (1783). Versuch einer Naturgeschichte der Krabben und Krebse nebst einer systematischen. Beschreibung ihrer verschiedenen Arten 3, 1–46 pls 51–54.
Hoenig, J. M. (1983). Empirical use of longevity data to estimate mortality-rates. Fishery Bulletin 82, 898–903.
Howitt, R. (2002). ‘Rethinking Resource Management: Justice, Sustainability and Indigenous Peoples.’ (Taylor and Francis Group: London.)
Johnson, J. T., Howitt, R., Cajete, G., Berkes, F., Louis, R. P., and Kliskey, A. (2016). Weaving Indigenous and sustainability sciences to diversify our methods. Sustainability Science 11, 25–32.
| Weaving Indigenous and sustainability sciences to diversify our methods.Crossref | GoogleScholarGoogle Scholar |
Jolly, G. (1965). Explicit estimates from capture–recapture data with both death and immigration stochastic model. Biometrika 52, 225–247.
| Explicit estimates from capture–recapture data with both death and immigration stochastic model.Crossref | GoogleScholarGoogle Scholar | 14341276PubMed |
Kamakau, S. M. (1976). ‘The Works of the People of Old = Nā Hana a ka Po‘e Kahiko.’ Translated from Hawaiian by Mary Kawena Puku‘i. (Bishop Museum Press: Honolulu, HI.)
Keala, G., Hollyer, J., and Castro, L. (2007). ‘Loko I‘a: a manual on Hawaiian fishpond restoration and management.’ (University of Hawai‘i Press: Honolulu, HI.)
Kikuchi, W. K. (1976). Prehistoric Hawaiian fishponds. Science 193, 295–299.
| Prehistoric Hawaiian fishponds.Crossref | GoogleScholarGoogle Scholar | 17745716PubMed |
Kirch, P. V. and Hunt, T. L. (Eds) (1997). ‘Historical Ecology in the Pacific Islands: Prehistoric Environmental and Landscape Change.’ (Yale University Press: New Haven, CT.)
Krebs, C. J. (1989). ‘Ecological Methodology.’ (Harper and Row: New York, NY.)
Kurashima, N., Jeremiah, J., Whitehead, A. N., Tulchin, J., Browning, M., and Duarte, T. (2018). ‘Āina Kaumaha: the maintenance of ancestral principles for 21st century indigenous resource management. Sustainability 10, 1–21.
| ‘Āina Kaumaha: the maintenance of ancestral principles for 21st century indigenous resource management.Crossref | GoogleScholarGoogle Scholar |
Kurashima, N., Fortini, L., and Ticktin, T. (2019). The potential of indigenous agricultural food production under climate change in Hawai‘i. Nature Sustainability 2, 191–199.
| The potential of indigenous agricultural food production under climate change in Hawai‘i.Crossref | GoogleScholarGoogle Scholar |
Lefkovitch, L. P. (1965). The study of population growth in organisms grouped by stages. Biometrics 21, 1–18.
| The study of population growth in organisms grouped by stages.Crossref | GoogleScholarGoogle Scholar |
Lemaitre, R., Campos, N. H., Viloria Maestre, E., and Windsor, A. M. (2013). Discovery of an alien crab, Scylla serrata (Forsskål, 1775) (Crustacea: Decapoda: Portunidae), from the Caribbean coast of Colombia. BioInvasions Records: International Journal of Field Research on Biological Invasions 2, 311–315.
| Discovery of an alien crab, Scylla serrata (Forsskål, 1775) (Crustacea: Decapoda: Portunidae), from the Caribbean coast of Colombia.Crossref | GoogleScholarGoogle Scholar |
MacCaughey, V. (1917). The mangrove in the Hawaiian islands. Hawaiian Forester and Agriculturalist 14, 361–365.
McLay, C. L. (2015). Invasive Brachyura. In ‘Treatise on Zoology – Anatomy, Taxonomy, Biology. The Crustacea’. (Eds P. Castro, P. J. F. Davie, D. Guinot, F. R. Schram, and J. C. Von Vaupel Klein.) Volume 9, Part C, pp. 821–846. (Brill.)
McPherson, R. (2002). Assessment of T bar anchor tags for marking the blue swimmer crab Portunus pelagicus (L.). Fisheries Research 54, 209–216.
| Assessment of T bar anchor tags for marking the blue swimmer crab Portunus pelagicus (L.).Crossref | GoogleScholarGoogle Scholar |
Meynecke, J. O., Mayze, J., and Alberts-Hubatsch, H. (2015). Performance and physiological responses of combined T-bar and PIT tagged giant mud crabs (Scylla serrata). Fisheries Research 170, 212–216.
| Performance and physiological responses of combined T-bar and PIT tagged giant mud crabs (Scylla serrata).Crossref | GoogleScholarGoogle Scholar |
Mirera, D. O., Ochiewo, J., Munyi, F., and Muriuki, T. (2013). Heredity or traditional knowledge: fishing tactics and dynamics of artisanal mangrove crab (Scylla serrata) fishery. Ocean and Coastal Management 84, 119–129.
| Heredity or traditional knowledge: fishing tactics and dynamics of artisanal mangrove crab (Scylla serrata) fishery.Crossref | GoogleScholarGoogle Scholar |
Moffitt, R. B., Johnson, J., and DiNardo, G. (2006). Spatiotemporal analysis of lobster trap catches: impacts of trap fishing on community structure. Atoll Research Bulletin 543, 217–236.
Moksnes, P.-O., Mirera, D. O., Björkvik, E., Hamad, M. I., Mahudi, H. M., Nyqvist, D., Jiddawi, N., and Troell, M. (2015). Stepwise function of natural growth for Scylla serrata in East Africa: a valuable tool for assessing growth of mud crabs in aquaculture. Aquaculture Research 46, 2938–2953.
| Stepwise function of natural growth for Scylla serrata in East Africa: a valuable tool for assessing growth of mud crabs in aquaculture.Crossref | GoogleScholarGoogle Scholar |
Moulton, M. P., and Pimm, S. L. (1986). Species introductions to Hawaii. In ‘Ecology of Biological Invasions of North America and Hawaii’. (Eds H. A. Mooney, and J. A. Drake.) pp. 231–249. (Springer: New York, NY.)
Mwaluma, J. (2002). Pen culture of the mud crab Scylla serrata in Mtwapa mangrove system, Kenya. Western Indian Ocean Journal of Marine Science 1, 127–133.
Nadon, M. O. (2017). Stock assessment of the coral reef fishes of Hawaii, 2016. NMFS-PIFSC-60. NOAA National Marine Fisheries Service, Honolulu, HI
O’Neill, M. F., Campbell, A. B., Brown, I. W., and Johnstone, R. (2010). Using catch rate data for simple cost-effective quota setting in the Australian spanner crab (Ranina ranina) fishery. ICES Journal of Marine Science 67, 1538–1552.
| Using catch rate data for simple cost-effective quota setting in the Australian spanner crab (Ranina ranina) fishery.Crossref | GoogleScholarGoogle Scholar |
Pascua, P., McMillen, H., Ticktin, T., Vaughan, M., and Winter, K. B. (2017). Beyond services: a process and framework to incorporate cultural, genealogical, place-based, and indigenous relationships in ecosystem service assessments. Ecosystem Services 26, 465–475
Pillans, S., Pillans, R. D., Johnstone, R. W., Kraft, P. G., Haywood, M. D. E., and Possingham, H. P. (2005). Marine Ecology Progress Series 295, 201–213.
| Crossref | GoogleScholarGoogle Scholar |
Prasad, P. N., and Neelakantan, B. (1989). Maturity and breeding of the mud crab, Scylla serrata (Forskal) (Decapoda: Brachyura: Portunidae). Proceedings of the Indian Academy of Sciences (Animal Sciences) 98, 341–349.
| Maturity and breeding of the mud crab, Scylla serrata (Forskal) (Decapoda: Brachyura: Portunidae).Crossref | GoogleScholarGoogle Scholar |
Price, M. R., and Toonen, R. J. (2017). Scaling up restoration efforts in the Pacific Islands: a call for clear management objectives, targeted research to minimize uncertainty, and innovative solutions to a wicked problem. Pacific Science 71, 391–399.
| Scaling up restoration efforts in the Pacific Islands: a call for clear management objectives, targeted research to minimize uncertainty, and innovative solutions to a wicked problem.Crossref | GoogleScholarGoogle Scholar |
Pukui, M. K. (1983). ‘Ōlelo No‘eau : Hawaiian Proverbs & Poetical Sayings.’ (Bishop Museum Press: Honolulu, HI.)
Quinitio, E. T., Parado-Estepa, F. D., Millamena, O. M., Rodriguez, E., and Borlongan, E. (2001). Seed production of mud crab Scylla serrata juveniles. Asian Fisheries Science 14, 161–174.
R Core Team. (2019). R: a language and environment for statistical computing. R Foundation for Statistical Computing, Vienna, Austria. Available at https://www.R-project.org/
Reaser, J. K., Meyerson, L. A., Cronk, Q., De Poorter, M. A. J., Eldrege, L. G., Green, E., Kairo, M., Latasi, P., Mack, R. N., Mauremootoo, J., and O’Dowd, D. (2007). Ecological and socioeconomic impacts of invasive alien species in island ecosystems. Environmental Conservation 34, 98–111.
| Ecological and socioeconomic impacts of invasive alien species in island ecosystems.Crossref | GoogleScholarGoogle Scholar |
Robertson, W. D. (1996). Abundance, population structure and size at maturity of Scylla serrata (Forskal) (Decapoda: Portunidae) in Eastern Cape estuaries, South Africa. South African Journal of Zoology 31, 177–185.
Roy, M. K. D., and Nandi, N. C. (2017). Marine invasive alien crustaceans of India. Journal of Aquaculture and Marine Biology 5, 00115.
Sarower, M. G., Aktar, N., Mostafa, M., Sabbir, W., and Islam, M. S. (2012). Some aspects of captive breeding biology of mud crab, Scylla serrata in Bangladesh. Journal of Innovation and Development Strategy 6, 1–6.
Seber, G. (1965). A note on multiple-recapture census. Biometrika 52, 249–259.
| A note on multiple-recapture census.Crossref | GoogleScholarGoogle Scholar | 14341277PubMed |
Shelley, C. and Lovatelli, A. (2011). Part 1. Biology. In ‘Mud Crab Aquaculture: A Practical Manual’. FAO Fisheries and Aquaculture Technical Paper. (Food and Agriculture Organization of the United Nations: Rome, Italy.)
Siddeek, M. S. M., Zheng, J., Punt, A. E., and Vanek, V. (2016). Estimation of size–transition matrices with and without molt probability for Alaska golden king crab using tag–recapture data. Fisheries Research 180, 161–168.
| Estimation of size–transition matrices with and without molt probability for Alaska golden king crab using tag–recapture data.Crossref | GoogleScholarGoogle Scholar |
Siple, M. C., and Donahue, M. J. (2013). Invasive mangrove removal and recovery: food web effects across a chronosequence. Journal of Experimental Marine Biology and Ecology 448, 128–135.
| Invasive mangrove removal and recovery: food web effects across a chronosequence.Crossref | GoogleScholarGoogle Scholar |
Stan Development Team (2018). RStan: the R interface to Stan. R package version. Available at http://mc-stan.org
Stannard, D. E. (1989). ‘Before the Horror: The Population of Hawai‘i on the Eve of Western contact.’ (University of Hawaii Press: Honolulu, HI.)
Tavares, M., and Mendonca, J. B. (2011). The occurrence of the Indo-Pacific swimming crab Scylla serrata (Forskål, 1775) in the southwestern Atlantic (Crustacea: Brachyura: Portunidae). Aquatic Invasions 6, S49–S51.
| The occurrence of the Indo-Pacific swimming crab Scylla serrata (Forskål, 1775) in the southwestern Atlantic (Crustacea: Brachyura: Portunidae).Crossref | GoogleScholarGoogle Scholar |
Titcomb, M., Fellows, D. B., Pukui, M. K., and Devaney, D. M. (1979). ‘Native Use of Marine Invertebrates in old Hawaii.’ (University of Hawai‘i Press: Honolulu, HI.)
Triño, A. T., and Rodriguez, E. M. (2002). Pen culture of mud crab Scylla serrata in tidal flats reforested with mangrove trees. Aquaculture 211, 125–134.
| Pen culture of mud crab Scylla serrata in tidal flats reforested with mangrove trees.Crossref | GoogleScholarGoogle Scholar |
USA DOC (2012). Increased food security and food self-sufficiency strategy. Prepared by Office of Planning, Department of Business Economic Development and Tourism, Department of Commerce, and The Department of Agriculture, State of Hawai‘i, Honoulu, HI
Webley, J. A. C., and Connolly, R. M. (2007). Vertical movement of mud crab megalopae (Scylla serrata) in response to light: doing it differently down under. Journal of Experimental Marine Biology and Ecology 341, 196–203.
| Vertical movement of mud crab megalopae (Scylla serrata) in response to light: doing it differently down under.Crossref | GoogleScholarGoogle Scholar |
Williams, M. J., and Primavera, J. H. (2001). Choosing tropical portunid species for culture, domestication and stock enhancement in the Indo-Pacific. Asian Fisheries Science 14, 121–142.
Winter, K. B., Beamer, K., Vaughan, M. B., Friedlander, A. M., Kido, M. H., Whitehead, A. N., Akutagawa, M. K. H., Kurashima, N., Lucas, M. P., and Nyberg, B. (2018). The moku system: managing biocultural resources for abundance within social–ecological regions in Hawai‘i. Sustainability 10, 3294.
| The moku system: managing biocultural resources for abundance within social–ecological regions in Hawai‘i.Crossref | GoogleScholarGoogle Scholar |
Winter, K. B., Alegado, R. A., Bowen, B. W., Bremer, L. L., Coffman, M., Cypher, M., Deenik, J., Donahue, M. J., Falinski, K., Frank, K., Franklin, E. C., Hewitt, A., Hintzen, K., Kaluhiwa, R., Kawelo, H., Kekuewa, K., Kotubetey, K., Kukea-Shultz, K., Kurashima, N., Lee, T., Leong, J-A., Lincoln, N. K., Madden, E., McManus, M. A., Neilson, B., Nelson, C. E., Okano, R., Olegario, A., Oleson, K., Pascua, P., Price, M., Reppun, F., Rii, Y., Rivera, M., Rodgers, K., Sabine, C., Smith, C., Thomas, B., Ticktin, T., and Toonen, R. J. (2020). Ecomimicry in indigenous resource management: optimizing ecosystem services to achieve resource abundance with examples from Hawaii. Ecology and Society 25, 26.
| Ecomimicry in indigenous resource management: optimizing ecosystem services to achieve resource abundance with examples from Hawaii.Crossref | GoogleScholarGoogle Scholar |
Yeo, D. C., Carlton, J. T., Teo, S. L. and Ng, P. K. (2011). An incoming flood on a cryptic stage: understanding alien crustacean invasions in Southeast Asia. In ‘In the Wrong Place – Alien Marine Crustaceans: Distribution, Biology and Impacts’. (Eds B. Galil, P. F. Clark, and J. T. Carlton.) pp. 403–417. (Springer: Dordrecht, Netherlands.)