Quantifying extinction risk and forecasting the number of impending Australian bird and mammal extinctions
Hayley M. Geyle A T , John C. Z. Woinarski A , G. Barry Baker B , Chris R. Dickman C , Guy Dutson D , Diana O. Fisher E , Hugh Ford F , Mark Holdsworth G , Menna E. Jones H , Alex Kutt I J K , Sarah Legge A L , Ian Leiper A , Richard Loyn M N O , Brett P. Murphy A , Peter Menkhorst P , April E. Reside L , Euan G. Ritchie Q , Finley E. Roberts R , Reid Tingley S and Stephen T. Garnett AA Threatened Species Recovery Hub, National Environmental Science Program, Research Institute for the Environment and Livelihoods, Charles Darwin University, NT 0909, Australia.
B Institute for Marine and Antarctic Studies, The University of Tasmania, Hobart, Tas. 7005, Australia.
C Threatened Species Recovery Hub, National Environmental Science Program, Desert Ecology Research Group, School of Life and Environmental Sciences A08, The University of Sydney, NSW 2006, Australia.
D Yellow Gum Drive, Ocean Grove, Vic. 3226, Australia.
E School of Biological Sciences, The University of Queensland, St Lucia, Qld 4072, Australia.
F School of Environmental and Rural Sciences, The University of New England, Armidale, NSW 2351, Australia.
G Forest Hill Wildlife Consultants, Sandford, Tas. 7020, Australia.
H School of Natural Resources (Biological Sciences), The University of Tasmania, Hobart, Tas. 7005, Australia.
I School of BioSciences, The University of Melbourne, Parkville, Vic. 3010, Australia.
J Green Fire Science, School of Earth and Environmental Science, The University of Queensland, St Lucia, Qld 4072, Australia.
K Bush Heritage Australia, Melbourne, Vic. 3000, Australia.
L Threatened Species Recovery Hub, National Environmental Science Program, Centre for Biodiversity and Conservation Science, The University of Queensland, St Lucia, Qld 4072, Australia.
M The Murray–Darling Freshwater Research Centre, School of Life Sciences, La Trobe University, Wodonga, Vic. 3690, Australia.
N Institute for Land, Water and Society, Charles Sturt University, Albury, NSW 2640, Australia.
O Eco Insights, Beechworth, Vic. 3747, Australia.
P Arthur Rylah Institute for Environmental Research, Department of Environment, Land, Water and Planning, Heidelberg, Vic. 3084, Australia.
Q Centre for Integrative Ecology, School of Life and Environmental Sciences, Deakin University, Burwood, Vic. 3125, Australia.
R Forest Fire and Regions, Department of Environment, Land, Water and Planning, East Melbourne, Vic. 3002, Australia.
S Quantitative and Applied Ecology Group, School of BioSciences, The University of Melbourne, Parkville, Vic. 3010, Australia.
T Corresponding author. Email: hayley.geyle@cdu.edu.au
Pacific Conservation Biology 24(2) 157-167 https://doi.org/10.1071/PC18006
Submitted: 17 January 2018 Accepted: 4 March 2018 Published: 20 April 2018
Journal compilation © CSIRO 2018 Open Access CC BY-NC-ND
Abstract
A critical step towards reducing the incidence of extinction is to identify and rank the species at highest risk, while implementing protective measures to reduce the risk of extinction to such species. Existing global processes provide a graded categorisation of extinction risk. Here we seek to extend and complement those processes to focus more narrowly on the likelihood of extinction of the most imperilled Australian birds and mammals. We considered an extension of existing IUCN and NatureServe criteria, and used expert elicitation to rank the extinction risk to the most imperilled species, assuming current management. On the basis of these assessments, and using two additional approaches, we estimated the number of extinctions likely to occur in the next 20 years. The estimates of extinction risk derived from our tighter IUCN categorisations, NatureServe assessments and expert elicitation were poorly correlated, with little agreement among methods for which species were most in danger – highlighting the importance of integrating multiple approaches when considering extinction risk. Mapped distributions of the 20 most imperilled birds reveal that most are endemic to islands or occur in southern Australia. The 20 most imperilled mammals occur mostly in northern and central Australia. While there were some differences in the forecasted number of extinctions in the next 20 years among methods, all three approaches predict further species loss. Overall, we estimate that another seven Australian mammals and 10 Australian birds will be extinct by 2038 unless management improves.
Additional keywords: Anthropocene mass extinction crisis, biodiversity conservation, threatened species
References
Brooke, M. D. L., Butchart, S. H. M., Garnett, S. T., Crowley, G. M., Mantilla-Beniers, N. B., and Stattersfield, A. J. (2008). Rates of movement between IUCN Red List categories toward extinction. Biological Conservation 22, 417–427.| Rates of movement between IUCN Red List categories toward extinction.Crossref | GoogleScholarGoogle Scholar |
Ceballos, G., Ehrlich, P. R., and Dirzo, R. (2017). Biological annihilation via the ongoing sixth mass extinction signalled by vertebrate population losses and declines. Proceedings of the National Academy of Sciences of the United States of America 114, E6089–E6096.
| 1:CAS:528:DC%2BC2sXhtFCgsr3F&md5=5b01c0625a16f271ecfeea4810169525CAS |
Coulson, T., Mace, G. M., Hudson, E., and Possingham, H. (2001). The use and abuse of population viability analysis. Trends in Ecology & Evolution 16, 219–221.
| The use and abuse of population viability analysis.Crossref | GoogleScholarGoogle Scholar | 1:STN:280:DC%2BC2sbksVSqtg%3D%3D&md5=0384a43702ab9f736bf470e9033bf970CAS |
Department of the Environment and Energy (2016). The national threatened species strategy. Canberra.
Fleming, P. A., and Bateman, P. W. (2016). The good, the bad, and the ugly: which Australian terrestrial mammal species attract the most research? Mammal Review 46, 241–254.
| The good, the bad, and the ugly: which Australian terrestrial mammal species attract the most research?Crossref | GoogleScholarGoogle Scholar |
Garnett, S. T., Szabo, J., and Dutson, G. (2011). ‘The Action Plan for Australian Birds 2010.’ (CSIRO Publishing: Melbourne.)
Harley, D., Menkhorst, P., Quin, B., Anderson, R. P., Tardif, S., Cartwright, K., Murray, N., and Kelly, M. (2018). Twenty-five years of helmeted honeyeater conservation: a government–community partnership poised for recovery success. In ‘Recovering Australian Threatened Species: a Book of Hope’. (Eds S. Garnett, P. Latch, D. Lindenmayer and J. Woinarski.) pp. 227–236. (CSIRO Publishing: Melbourne.)
IUCN (2012). ‘IUCN Red List Categories and Criteria: Version 3.1.’ 2nd edon. (IUCN: Gland, Switzerland and Cambridge, UK.)
Kanowski, J., Roshier, D., Smith, M. A., and Fleming, A. (2018). Effective conservation of critical weight range mammals: reintroduction projects of the Australian Wildlife Conservancy. In ‘Recovering Australian Threatened Species: a Book of Hope’. (Eds S. Garnett, P. Latch, D. Lindenmayer and J. Woinarski.) pp. 269–280. (CSIRO Publishing: Melbourne.)
Keith, D. A., McCarthy, M. A., Regan, H. M., Regan, T. J., Bowles, C., Drill, C., Craig, C., Pellew, B., Burgman, M. A., Master, L. L., Ruckelshaus, M., Mackenzie, B., Andelman, S. J., and Wade, P. R. (2004). Protocols for listing threatened species can forecast extinction. Ecology Letters 7, 1101–1108.
| Protocols for listing threatened species can forecast extinction.Crossref | GoogleScholarGoogle Scholar |
Mace, G. M., Collar, N. J., Gaston, K. J., Hilton‐Taylor, C., Akçakaya, H. R., Leader‐Williams, N., Milner‐Gulland, E. J., and Stuart, S. N. (2008). Quantification of extinction risk: IUCN’s system for classifying threatened species. Conservation Biology 22, 1424–1442.
| Quantification of extinction risk: IUCN’s system for classifying threatened species.Crossref | GoogleScholarGoogle Scholar |
Martin, T. G., Burgman, M. A., Fidler, F., Kuhnert, P. M., Low-Choy, S., McBride, M., and Mengersen, K. (2012). Eliciting expert knowledge in conservation science. Conservation Biology 26, 29–38.
| Eliciting expert knowledge in conservation science.Crossref | GoogleScholarGoogle Scholar |
Master, L. L., Faber-Langendoen, D., Bittman, R., Hammerson, G. A., Heidel, B., Nichols, J., Ramsay, L., and Tomaino, A. (2009). NatureServe conservation status assessments: factors for assessing extinction risk. NatureServe, Arlington, VA.
Master, L. L., Faber-Langendoen, D., Bittman, R., Hammerson, G. A., Heidel, B., Ramsay, L., Snow, K., Teucher, A., and Tomaino, A. (2012). NatureServe conservation status assessments: factors for evaluating species and ecosystem risk. NatureServe, Arlington, VA.
McBride, M. F., Garnett, S. T., Szabo, J. K., Burbidge, A. H., Butchart, S. H., Christidis, L., Dutson, G., Ford, H. A., Loyn, R. H., Watson, D. M., and Burgman, M. A. (2012). Structured elicitation of expert judgments for threatened species assessment: a case study on a continental scale using email. Methods in Ecology and Evolution 3, 906–920.
| Structured elicitation of expert judgments for threatened species assessment: a case study on a continental scale using email.Crossref | GoogleScholarGoogle Scholar |
McCarthy, M. A., Keith, D. A., Tietjem, J., Burgman, M. A., Maunder, M., Master, L. L., Brook, B. W., Mace, G. M., Possingham, H. P., Medellin, R., Andelman, S. J., Regan, H. M., Regan, T. J., and Ruckelshaus, M. (2004). Comparing predictions of extinction risk using models and subjective judgement. Acta Oecologica 26, 67–74.
| Comparing predictions of extinction risk using models and subjective judgement.Crossref | GoogleScholarGoogle Scholar |
Montibeller, G., and Winterfeldt, D. (2015). Cognitive and motivational biases in decision and risk analysis. Risk Analysis 35, 1230–1251.
| Cognitive and motivational biases in decision and risk analysis.Crossref | GoogleScholarGoogle Scholar |
Morgan, M. G. (2014). Use (and abuse) of expert elicitation in support of decision making for public policy. Proceedings of the National Academy of Sciences of the United States of America 111, 7176–7184.
| Use (and abuse) of expert elicitation in support of decision making for public policy.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC2cXnsl2ms7g%3D&md5=4ffda2f71b3a6b121c590b1c98b6020cCAS |
Moseby, K., Copley, P., Paton, D. C., and Read, J. L. (2018). Arid Recovery: a successful conservation partnership. In ‘Recovering Australian Threatened Species: a Book of Hope’. (Eds S. Garnett, P. Latch, D. Lindenmayer and J. Woinarski.) pp. 259–268. (CSIRO Publishing: Melbourne.)
O’Grady, J. J., Burgman, M. A., Keith, D. A., Master, L. L., Andelman, S. J., Brook, B. W., Hammerson, G. A., Regan, T. J., and Frankham, R. (2004a). Correlations among extinction risks assessed by different threatened species categorization systems. Conservation Biology 18, 1624–1635.
| Correlations among extinction risks assessed by different threatened species categorization systems.Crossref | GoogleScholarGoogle Scholar |
O’Grady, J. J., Reed, D. H., Brook, B. W., and Frankham, R. (2004b). What are the best correlates of predicted extinction risk? Biological Conservation 118, 513–520.
| What are the best correlates of predicted extinction risk?Crossref | GoogleScholarGoogle Scholar |
Pimm, S. L., Jenkins, C. N., Abell, R., Brooks, T. M., Gittleman, J. L., Joppa, L. N., Raven, P. H., Roberts, C. M., and Sexton, J. O. (2014). The biodiversity of species and their rates of extinction, distribution, and protection. Science 344, 1246752.
| The biodiversity of species and their rates of extinction, distribution, and protection.Crossref | GoogleScholarGoogle Scholar | 1:STN:280:DC%2BC2cjntl2gsw%3D%3D&md5=f9d1bfe877dede4eeafce3fee60f4e84CAS |
Regan, T. J., Master, L. L., and Hammerson, G. A. (2004). Capturing expert knowledge for threatened species assessments: a case study using NatureServe conservation status ranks. Acta Oecologica 26, 95–107.
| Capturing expert knowledge for threatened species assessments: a case study using NatureServe conservation status ranks.Crossref | GoogleScholarGoogle Scholar |
Regan, T. J., Burgman, M. A., McCarthy, M. A., Master, L. L., Keith, D. A., Mace, G. M., and Andelman, S. J. (2005). The consistency of extinction risk classification protocols. Conservation Biology 19, 1969–1977.
| The consistency of extinction risk classification protocols.Crossref | GoogleScholarGoogle Scholar |
R Core Team (2015) R: A language and environment for statistical computing. (R Foundation for Statistical Computing: Vienna, Austria)
Runge, C. A., Tulloch, A., Hammill, E., Possingham, H. P., and Fuller, R. A. (2015). Geographic range size and extinction risk assessment in nomadic species. Conservation Biology 29, 865–876.
| Geographic range size and extinction risk assessment in nomadic species.Crossref | GoogleScholarGoogle Scholar |
SA Department of Environment Water and Natural Resources (2015). IBRA Subregion Australia Version 7.0 – ARC. Bioregional Assessment Source Dataset. Available at: http://data.bioregionalassessments.gov.au/dataset/2ebdaa06-8dcc-4058-94d7-7399acbe6555 [accessed October 2017].
Schultz, C. B., and Hammond, P. C. (2003). Using population viability analysis to develop recovery criteria for endangered insects: case study of the Fender’s blue butterfly. Conservation Biology 17, 1372–1385.
| Using population viability analysis to develop recovery criteria for endangered insects: case study of the Fender’s blue butterfly.Crossref | GoogleScholarGoogle Scholar |
Symonds, M. R. E., and Moussalli, A. (2011). A brief guide to model selection, multimodel inference and model averaging in behavioural ecology using Akaike’s information criterion. Behavioral Ecology and Sociobiology 65, 13–21.
| A brief guide to model selection, multimodel inference and model averaging in behavioural ecology using Akaike’s information criterion.Crossref | GoogleScholarGoogle Scholar |
Szabo, J. K., Khwaja, N., Garnett, S. T., and Butchart, S. H. (2012). Global patterns and drivers of avian extinctions at the species and subspecies level. PLoS One 7, e47080.
| Global patterns and drivers of avian extinctions at the species and subspecies level.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC38XhsFKjt7nM&md5=a44801aed88b24b1e5ed583d3bdf8ac7CAS |
United Nations (2015). Transforming our world: the 2030 agenda for sustainable development. Resolution adopted by the General Assembly on 25 September 2015, A/RES/70/1. UN General Assembly, New York.
Visconti, P., Bakkenes, M., Baisero, D., Brooks, T., Butchart, S. H. M., Joppa, L., Alkemade, R., Di Marco, M., Santini, L., Hoffmann, M., Maiorano, L., Pressey, R. L., Arponen, A., Boitani, L., Reside, A. E., Van Vuuren, D. P., and Rondinini, C. (2016). Projecting global biodiversity indicators under future development scenarios. Conservation Letters 9, 5–13.
| Projecting global biodiversity indicators under future development scenarios.Crossref | GoogleScholarGoogle Scholar |
Williams, Y. M., Williams, S. E., Alford, R. A., Waycott, M., and Johnson, C. N. (2006). Niche breadth and geographical range: ecological compensation for geographical rarity in rainforest frogs. Biological Letters 2, 532–535.
| Niche breadth and geographical range: ecological compensation for geographical rarity in rainforest frogs.Crossref | GoogleScholarGoogle Scholar |
Woinarski, J. C. Z., Burbidge, A. A., and Harrison, P. L. (2014). ‘The Action Plan for Australian Mammals 2012.’ (CSIRO Publishing: Melbourne.)
Woinarski, J. C. Z., Burbidge, A. A., and Harrison, P. L. (2015). Ongoing unravelling of a continental fauna: decline and extinction of Australian mammals since European settlement. Proceedings of the National Academy of Sciences of the United States of America 112, 4531–4540.
| Ongoing unravelling of a continental fauna: decline and extinction of Australian mammals since European settlement.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC2MXitlagsbg%3D&md5=976f62d32f1b20b9e78fd5684c033820CAS |
Woinarski, J. C. Z., Garnett, S. T., Legge, S. M., and Lindenmayer, D. B. (2017). The contribution of policy, law, management, research, and advocacy failings to the recent extinctions of three Australian vertebrate species. Conservation Biology 31, 13–23.
| The contribution of policy, law, management, research, and advocacy failings to the recent extinctions of three Australian vertebrate species.Crossref | GoogleScholarGoogle Scholar |