Free Standard AU & NZ Shipping For All Book Orders Over $80!
Register      Login
Pacific Conservation Biology Pacific Conservation Biology Society
A journal dedicated to conservation and wildlife management in the Pacific region.
RESEARCH ARTICLE

An evaluation and comparison of spatial modelling applications for the management of biodiversity: a case study on the fragmented landscapes of south-western Australia

Shaun W. Molloy A B , Robert A. Davis A and Eddie J. B. Van Etten A
+ Author Affiliations
- Author Affiliations

A School of Natural Sciences, Centre for Ecosystem Management, Edith Cowan University, Joondalup Drive, Joondalup, WA 6027, Australia.

B Corresponding author. Email: shaunecologist@gmail.com

Pacific Conservation Biology 22(4) 338-349 https://doi.org/10.1071/PC16006
Submitted: 4 February 2016  Accepted: 1 May 2016   Published: 27 June 2016

Abstract

Spatial modelling is increasingly being embraced by conservation practitioners and community groups to guide natural-asset management. Despite this boom in popularity, little guidance is often available on choosing the most applicable technique, and the relative merits and drawbacks of each approach. We present a case study in the biodiversity hotspot of south-western Australia where five forms of spatial modelling have previously been used by community conservation managers in this region: realistic GIS modelling, focal species, proximity analysis, Marxan and MaxEnt. We developed a set of criteria for effective spatial modelling and then evaluated each of these spatial-modelling techniques using these criteria. The criteria used in evaluating spatial-modelling tools were as follows: (1) capacity to quantify barriers to movement; (2) capacity to quantify habitat; (3) capacity to accurately predict target responses; (4) capacity to demonstrate how change will happen over differing time frames; (5) effectiveness of the tool within data limitations of a project; (6) ease to which outputs are understood; (7) utility of the tool within skill limitations of a project; and (8) efficacy within resource limitations of a project. None of the applications used met all criteria. When selecting spatial-modelling applications, a hybrid approach is advocated by using criteria that will reflect both the landscape-level conservation requirements and the capacity and objectives of conservation managers. To do this, we advocate using multiple modelling techniques to identify, quantify and ameliorate threats to meet the needs of regional biota.

Additional keywords: decision support, focal species, GIS, MaxEnt, species distribution modelling, spatial analysis.


References

An, L. (2012). Modeling human decisions in coupled human and natural systems: review of agent-based models. Ecological Modelling 229, 25–36.
Modeling human decisions in coupled human and natural systems: review of agent-based models.Crossref | GoogleScholarGoogle Scholar |

Araújo, M. B., and Peterson, A. T. (2012). Uses and misuses of bioclimatic envelope modeling. Ecology 93, 1527–1539.
Uses and misuses of bioclimatic envelope modeling.Crossref | GoogleScholarGoogle Scholar | 22919900PubMed |

Baldwin, R., Scherzinger, R., Lipscomb, D., Mockrin, M., and Stein, S. (2014). ‘Planning for Land Use and Conservation: Assessing GIS-based Conservation Software for Land Use Planning.’ (Department of Agriculture, Forest Service, Rocky Mountain Research Station: Fort Collins, CO.)

Ball, I. R., and Possingham, H. P. (2000). ‘MARXAN (V1.8.2): Marine Reserve Design Using Spatially Explicit Annealing. A Manual.’ (University of Queensland: St Lucia, Qld.)

Banerjee, S., Carlin, B. P., and Gelfand, A. E. (2014). ‘Hierarchical Modeling and Analysis for Spatial Data.’ (CRC Press: Boca Raton, FL.)

Caro, T. M. (2010). ‘Conservation by Proxy: Indicator, Umbrella, Keystone, Flagship, and Other Surrogate Species.’ (Island Press: Washington, DC.)

Carwardine, J., Rochester, W. A., Richardson, K. S., Williams, K. J., Pressey, R. L., and Possingham, H. P. (2007). Conservation planning with irreplaceability: does the method matter? Biodiversity and Conservation 16, 245–258.
Conservation planning with irreplaceability: does the method matter?Crossref | GoogleScholarGoogle Scholar |

Carwardine, J., Wilson, K. A., Watts, M., Etter, A., Klein, C. J., and Possingham, H. P. (2008). Avoiding costly conservation mistakes: the importance of defining actions and costs in spatial priority setting. PLoS One 3, e2586.
Avoiding costly conservation mistakes: the importance of defining actions and costs in spatial priority setting.Crossref | GoogleScholarGoogle Scholar | 18596914PubMed |

Collinge, S. K. (2009). ‘The Ecology of Fragmented Landscapes.’ (Johns Hopkins University Press: Baltimore, MD.)

Costanza, R., and Voinov, A. (2004). Introduction: spatially explicit landscape simulation models. In ‘Landscape Simulation Modeling’. (Eds. R. Costanza and A. Voinov) pp. 3–20. (Springer: New York)

Crossman, N. D., Bryan, B. A., and Summers, D. M. (2012). Identifying priority areas for reducing species vulnerability to climate change. Diversity and Distributions 18, 60–72.
Identifying priority areas for reducing species vulnerability to climate change.Crossref | GoogleScholarGoogle Scholar |

Dale, M. R., and Fortin, M.-J. (2014). ‘Spatial Analysis: a Guide for Ecologists.’ (Cambridge University Press: Cambridge, UK.)

Dean, C., Roxburgh, S. H., Harper, R. J., Eldridge, D. J., Watson, I. W., and Wardell-Johnson, G. W. (2012). Accounting for space and time in soil carbon dynamics in timbered rangelands. Ecological Engineering 38, 51–64.
Accounting for space and time in soil carbon dynamics in timbered rangelands.Crossref | GoogleScholarGoogle Scholar |

Del Marco, A., Taylor, R., Clarke, K., Savage, K., Cullity, J., and Miles, C. (2004). ‘Local Government Biodiversity Planning Guidelines for the Perth Metropolitan Region (No. 0959931937).’ (Western Australian Local Government Association: Perth.)

Dunlop, M., and Brown, P. R. (2008). ‘Implications of Climate Change for Australia’s National Reserve System (Nos 9781921297731, 1921297735).’ (Department of Climate Change: Canberra.)

Elith, J., Kearney, M., and Phillips, S. (2010). The art of modelling range‐shifting species. Methods in Ecology and Evolution 1, 330–342.
The art of modelling range‐shifting species.Crossref | GoogleScholarGoogle Scholar |

Elith, J., Phillips, S. J., Hastie, T., Dudík, M., Chee, Y. E., and Yates, C. J. (2011). A statistical explanation of MaxEnt for ecologists. Diversity & Distributions 17, 43–57.
A statistical explanation of MaxEnt for ecologists.Crossref | GoogleScholarGoogle Scholar |

Environmental Protection Authority (2009). ‘Environmental Protection Bulletin No. 8: South West Regional Ecological Linkages.’ (Environmental Protection Authority: Perth.)

Ferrier, S., and Guisan, A. (2006). Spatial modelling of biodiversity at the community level. Journal of Applied Ecology 43, 393.
Spatial modelling of biodiversity at the community level.Crossref | GoogleScholarGoogle Scholar |

Fischer, J., Lindenmayer, D. B., and Fazey, I. (2004). Appreciating Ecological Complexity: Habitat Contours as a Conceptual Landscape Model. Conservation Biology 18, 1245–1253.
Appreciating Ecological Complexity: Habitat Contours as a Conceptual Landscape Model.Crossref | GoogleScholarGoogle Scholar |

Fitzsimons, J., Heiner, M., McKenney, B., Sochi, K., and Kiesecker, J. (2014). Development by design in Western Australia: overcoming offset obstacles. Land 3, 167–187.
Development by design in Western Australia: overcoming offset obstacles.Crossref | GoogleScholarGoogle Scholar |

Foody, G. M. (2008). GIS: biodiversity applications. Progress in Physical Geography 32, 223–235.
GIS: biodiversity applications.Crossref | GoogleScholarGoogle Scholar |

Ford, B., Cook, B., and Rogers, D. (2013). ‘Climate Change Impacts and Adaptation in the Southern & Southwestern Flatlands Cluster: Review of the Existing Knowledge.’ (Centre for Excellence in Natural Resource Managment, University of Western Australia: Albany, WA.)

Forman, R. T., and Godron, M. (1981). Patches and structural components for a landscape ecology. Bioscience 31, 733–740.
Patches and structural components for a landscape ecology.Crossref | GoogleScholarGoogle Scholar |

Freckleton, R. (2009). The seven deadly sins of comparative analysis. Journal of Evolutionary Biology 22, 1367–1375.
The seven deadly sins of comparative analysis.Crossref | GoogleScholarGoogle Scholar | 1:STN:280:DC%2BD1MvkvVegsQ%3D%3D&md5=ced27aa325c969088a525a86f5a2c95aCAS | 19508410PubMed |

Freudenberger, D., and Brooker, L. (2004). Development of the focal species approach for biodiversity conservation in the temperate agricultural zones of Australia. Biodiversity and Conservation 13, 253–274.
Development of the focal species approach for biodiversity conservation in the temperate agricultural zones of Australia.Crossref | GoogleScholarGoogle Scholar |

Gibson, L., McNeill, A., de Tores, P., Wayne, A., and Yates, C. (2010). Will future climate change threaten a range restricted endemic species, the quokka (Setonix brachyurus), in south west Australia? Biological Conservation 143, 2453–2461.
Will future climate change threaten a range restricted endemic species, the quokka (Setonix brachyurus), in south west Australia?Crossref | GoogleScholarGoogle Scholar |

Gooch, M., and Warburton, J. (2009). Building and managing resilience in community-based NRM groups: an Australian case study. Society & Natural Resources 22, 158–171.
Building and managing resilience in community-based NRM groups: an Australian case study.Crossref | GoogleScholarGoogle Scholar |

Government of Western Australia (2013). 2013 Statewide vegetation statistics incorporating the CAR reserve analysis (full report). Current as of June 2013. Available at https://www2.landgate.wa.gov.au/web/guest/downloader [Accessed 12 May 2015]

Gurrutxaga, M., Lozano, P. J., and del Barrio, G. (2010). GIS-based approach for incorporating the connectivity of ecological networks into regional planning. Journal for Nature Conservation 18, 318–326.
GIS-based approach for incorporating the connectivity of ecological networks into regional planning.Crossref | GoogleScholarGoogle Scholar |

Haddad, N. M., Brudvig, L. A., Clobert, J., Davies, K. F., Gonzalez, A., Holt, R. D., Lovejoy, T. E., Sexton, J. O., Austin, M. P., and Collins, C. D. (2015). Habitat fragmentation and its lasting impact on Earth’s ecosystems. Science Advances 1, e1500052.
Habitat fragmentation and its lasting impact on Earth’s ecosystems.Crossref | GoogleScholarGoogle Scholar | 26601154PubMed |

Heller, N. E., and Zavaleta, E. S. (2009). Biodiversity management in the face of climate change: a review of 22 years of recommendations. Biological Conservation 142, 14–32.
Biodiversity management in the face of climate change: a review of 22 years of recommendations.Crossref | GoogleScholarGoogle Scholar |

Hijmans, R. J. (2012). Cross-validation of species distribution models: removing spatial sorting bias and calibration with a null model. Ecology 93, 679–688.
Cross-validation of species distribution models: removing spatial sorting bias and calibration with a null model.Crossref | GoogleScholarGoogle Scholar | 22624221PubMed |

Holland, G. J., and Bennett, A. F. (2009). Differing responses to landscape change: implications for small mammal assemblages in forest fragments. Biodiversity and Conservation 18, 2997–3016.
Differing responses to landscape change: implications for small mammal assemblages in forest fragments.Crossref | GoogleScholarGoogle Scholar |

Hopper, S. D. (2009). OCBIL theory: towards an integrated understanding of the evolution, ecology and conservation of biodiversity on old, climatically buffered, infertile landscapes. Plant and Soil 322, 49–86.
OCBIL theory: towards an integrated understanding of the evolution, ecology and conservation of biodiversity on old, climatically buffered, infertile landscapes.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1MXhtVWisrnN&md5=d871e7484e972eec0f941fd6cbe2a0e9CAS |

Hopper, S. D., and Gioia, P. (2004). The Southwest Australian Floristic Region: evolution and conservation of a global hot spot of biodiversity. Annual Review of Ecology Evolution and Systematics 35, 623–650.
The Southwest Australian Floristic Region: evolution and conservation of a global hot spot of biodiversity.Crossref | GoogleScholarGoogle Scholar |

Huber, P. R., Springer, N. P., Hollander, A. D., Haden, V. R., Brodt, S., Tomich, T. P., and Quinn, J. F. (2015). Indicators of global sustainable sourcing as a set covering problem: an integrated approach to sustainability. Ecosystem Health and Sustainability 1, art7.
Indicators of global sustainable sourcing as a set covering problem: an integrated approach to sustainability.Crossref | GoogleScholarGoogle Scholar |

Huggett, A. (2007). ‘A Review of the Focal Species Approach in Australia.’ (Land & Water Australia: Canberra.)

Jaynes, E. T. (1957). Information theory and statistical mechanics. Physical Review 106, 620.
Information theory and statistical mechanics.Crossref | GoogleScholarGoogle Scholar |

Jiménez‐Valverde, A. (2012). Insights into the area under the receiver operating characteristic curve (AUC) as a discrimination measure in species distribution modelling. Global Ecology and Biogeography 21, 498–507.
Insights into the area under the receiver operating characteristic curve (AUC) as a discrimination measure in species distribution modelling.Crossref | GoogleScholarGoogle Scholar |

Jonson, J. (2010). Ecological restoration of cleared agricultural land in Gondwana link: lifting the bar at ‘Peniup’. Ecological Management & Restoration 11, 16–26.
Ecological restoration of cleared agricultural land in Gondwana link: lifting the bar at ‘Peniup’.Crossref | GoogleScholarGoogle Scholar |

Keppel, G., Byrne, M., Schut, A. G. T., Hopper, S. D., Yates, C. J., Niel, V. K. P., Mucina, L., Franklin, S. E., and Wardell-Johnson, G. W. (2012). Refugia: identifying and understanding safe havens for biodiversity under climate change. Global Ecology and Biogeography 21, 393–404.
Refugia: identifying and understanding safe havens for biodiversity under climate change.Crossref | GoogleScholarGoogle Scholar |

Kitzes, J., and Harte, J. (2014). Beyond the species–area relationship: improving macroecological extinction estimates. Methods in Ecology and Evolution 5, 1–8.
Beyond the species–area relationship: improving macroecological extinction estimates.Crossref | GoogleScholarGoogle Scholar |

Klein, C. J., Wilson, K. A., Watts, M., Stein, J., Carwardine, J., Mackey, B., and Possingham, H. P. (2009). Spatial conservation prioritization inclusive of wilderness quality: a case study of Australia’s biodiversity. Biological Conservation 142, 1282–1290.
Spatial conservation prioritization inclusive of wilderness quality: a case study of Australia’s biodiversity.Crossref | GoogleScholarGoogle Scholar |

Lambeck, R. J. (1997). Focal species: a multi-species umbrella for nature conservation. Conservation Biology 11, 849–856.
Focal species: a multi-species umbrella for nature conservation.Crossref | GoogleScholarGoogle Scholar |

Lambeck, R. J. (1999). ‘Landscape Planning for Biodiversity Conservation in Agricultural Regions: a Case Study from the Wheatbelt of Western Australia.’ (CSIRO Press: Canberra.)

Langford, W. T., Gordon, A., and Bastin, L. (2009). When do conservation planning methods deliver? Quantifying the consequences of uncertainty. Ecological Informatics 4, 123–135.
When do conservation planning methods deliver? Quantifying the consequences of uncertainty.Crossref | GoogleScholarGoogle Scholar |

Lindenmayer, D., Hobbs, R. J., Montague-Drake, R., Alexandra, J., Bennett, A., Burgman, M., Cale, P., Calhoun, A., Cramer, V., Cullen, P., Driscoll, D., Fahrig, L., Fischer, J., Franklin, J., Haila, Y., Hunter, M., Gibbons, P., Lake, S., Luck, G., MacGregor, C., McIntyre, S., Mac Nally, R., Manning, A., Miller, J., Mooney, H., Noss, R., Possingham, H., Saunders, D., Schmiegelow, F., Scott, M., Simberloff, D., Sisk, T., Tabor, G., Walker, B., Wiens, J., Woinarski, J., and Zavaleta, E. (2008). A checklist for ecological management of landscapes for conservation. Ecology Letters 11, 78–91.
| 17927771PubMed |

Lindenmayer, D. B., Lane, P. W., Westgate, M. J., Crane, M., Michael, D., Okada, S., and Barton, P. S. (2014). An empirical assessment of the focal species hypothesis. Conservation Biology 28, 1594–1603.
An empirical assessment of the focal species hypothesis.Crossref | GoogleScholarGoogle Scholar | 1:STN:280:DC%2BC2cbks12kuw%3D%3D&md5=013f88d24ffef7d9bc8dbc906de1f984CAS | 25048948PubMed |

McRae, B. H., Hall, S. A., Beier, P., and Theobald, D. M. (2012). Where to restore ecological connectivity? Detecting barriers and quantifying restoration benefits. PLoS One 7, e52604.
Where to restore ecological connectivity? Detecting barriers and quantifying restoration benefits.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3sXnsVKisg%3D%3D&md5=3c60cd8fff3fbb24c80e436e8b6ffc08CAS | 23300719PubMed |

Meineri, E., Deville, A. S., Grémillet, D., Gauthier‐Clerc, M., and Béchet, A. (2015). Combining correlative and mechanistic habitat suitability models to improve ecological compensation. Biological Reviews of the Cambridge Philosophical Society 90, 314–329.
Combining correlative and mechanistic habitat suitability models to improve ecological compensation.Crossref | GoogleScholarGoogle Scholar | 24837691PubMed |

Meller, L., Cabeza, M., Pironon, S., Barbet‐Massin, M., Maiorano, L., Georges, D., and Thuiller, W. (2014). Ensemble distribution models in conservation prioritization: from consensus predictions to consensus reserve networks. Diversity & Distributions 20, 309–321.
Ensemble distribution models in conservation prioritization: from consensus predictions to consensus reserve networks.Crossref | GoogleScholarGoogle Scholar |

Metcalfe, K., Vaz, S., Engelhard, G. H., Villanueva, M. C., Smith, R. J., and Mackinson, S. (2015). Evaluating conservation and fisheries management strategies by linking spatial prioritization software and ecosystem and fisheries modelling tools. Journal of Applied Ecology 52, 665–674.
Evaluating conservation and fisheries management strategies by linking spatial prioritization software and ecosystem and fisheries modelling tools.Crossref | GoogleScholarGoogle Scholar |

Moilanen, A., Wilson, K. A., and Possingham, H. P. (2009). ‘Spatial Conservation Prioritization: Quantitative Methods and Computational Tools.’ (Oxford University Press: Oxford, UK.)

Molloy, S., Wood, J., Hall, S., Wallrodt, S. and Whisson, G. (2009). South West regional ecological linkages technical report. Western Australian Local Government Association and Western Australian Department of Environment and Conservation, Perth.

Molloy, S. W., Davis, R. A., and Van Etten, E. J. B. (2014). Species distribution modelling using bioclimatic variables to determine the impacts of a changing climate on the western ringtail possum (Pseudocheirus occidentals; Pseudocheiridae). Environmental Conservation 41, 176–186.
Species distribution modelling using bioclimatic variables to determine the impacts of a changing climate on the western ringtail possum (Pseudocheirus occidentals; Pseudocheiridae).Crossref | GoogleScholarGoogle Scholar |

Morelli, F., Pruscini, F., Santolini, R., Perna, P., Benedetti, Y., and Sisti, D. (2013). Landscape heterogeneity metrics as indicators of bird diversity: determining the optimal spatial scales in different landscapes. Ecological Indicators 34, 372–379.
Landscape heterogeneity metrics as indicators of bird diversity: determining the optimal spatial scales in different landscapes.Crossref | GoogleScholarGoogle Scholar |

Myers, N., Mittermeier, R. A., Mittermeier, C. G., da Fonseca, G. A. B., and Kent, J. (2000). Biodiversity hotspots for conservation priorities. Nature 403, 853–858.
Biodiversity hotspots for conservation priorities.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3cXhs1Olsr4%3D&md5=66d49f8bb8e36a2a3e1f6bde7d5cd44bCAS | 10706275PubMed |

O’Donnell, J., Gallagher, R. V., Wilson, P. D., Downey, P. O., Hughes, L., and Leishman, M. R. (2012). Invasion hotspots for non‐native plants in Australia under current and future climates. Global Change Biology 18, 617–629.
Invasion hotspots for non‐native plants in Australia under current and future climates.Crossref | GoogleScholarGoogle Scholar |

Overmars, K. P., Schulp, C. J., Alkemade, R., Verburg, P. H., Temme, A. J., Omtzigt, N., and Schaminée, J. H. (2014). Developing a methodology for a species-based and spatially explicit indicator for biodiversity on agricultural land in the EU. Ecological Indicators 37, 186–198.
Developing a methodology for a species-based and spatially explicit indicator for biodiversity on agricultural land in the EU.Crossref | GoogleScholarGoogle Scholar |

Phillips, S. J., Anderson, R. P., and Schapire, R. E. (2006). Maximum entropy modeling of species geographic distributions. Ecological Modelling 190, 231–259.
Maximum entropy modeling of species geographic distributions.Crossref | GoogleScholarGoogle Scholar |

Pliscoff, P., and Fuentes-Castillo, T. (2011). Modeling of the species distribution and ecosystems in time and space: an review of new available tools and approaches. Revista De Geografia Norte Grande , 61–79.
Modeling of the species distribution and ecosystems in time and space: an review of new available tools and approaches.Crossref | GoogleScholarGoogle Scholar |

Possingham, H., Australian Conservation Foundation and Earthwatch Institute (2001). ‘The Business of Biodiversity: Applying Decision Theory Principles to Nature Conservation.’ (Australian Conservation Foundation: Melbourne)

Prober, S. M., Lemson, K., Lyons, T., Macfarlane, C., O’Connor, M. H., Scott, J. K., Standish, R. J., Stock, W. D., van Etten, E. J. B., Wardell-Johnson, G. W., Watson, A., Thiele, K. R., Rundel, P. W., Yates, C. J., Berry, S. L., Byrne, M., Christidis, L., Gosper, C. R., and Grierson, P. F. (2012). Facilitating adaptation of biodiversity to climate change: a conceptual framework applied to the world’s largest Mediterranean-climate woodland. Climatic Change 110, 227–248.
Facilitating adaptation of biodiversity to climate change: a conceptual framework applied to the world’s largest Mediterranean-climate woodland.Crossref | GoogleScholarGoogle Scholar |

Renner, I. W., and Warton, D. I. (2013). Equivalence of MAXENT and Poisson point process models for species distribution modeling in ecology. Biometrics 69, 274–281.
Equivalence of MAXENT and Poisson point process models for species distribution modeling in ecology.Crossref | GoogleScholarGoogle Scholar | 23379623PubMed |

Reside, A. E., Welbergen, J. A., Phillips, B. L., Wardell-Johnson, G. W., Keppel, G., Ferrier, S., Williams, S. E., and VanDerWal, J. (2014). Characteristics of climate change refugia for Australian biodiversity. Austral Ecology 39, 887–897.
Characteristics of climate change refugia for Australian biodiversity.Crossref | GoogleScholarGoogle Scholar |

Richard, Y., and Armstrong, D. P. (2010). Cost distance modelling of landscape connectivity and gap‐crossing ability using radio‐tracking data. Journal of Applied Ecology 47, 603–610.
Cost distance modelling of landscape connectivity and gap‐crossing ability using radio‐tracking data.Crossref | GoogleScholarGoogle Scholar |

Rodríguez, J. P., Brotons, L., Bustamante, J., and Seoane, J. (2007). The application of predictive modelling of species distribution to biodiversity conservation. Diversity & Distributions 13, 243–251.
The application of predictive modelling of species distribution to biodiversity conservation.Crossref | GoogleScholarGoogle Scholar |

Saura, S., and Rubio, L. (2010). A common currency for the different ways in which patches and links can contribute to habitat availability and connectivity in the landscape. Ecography 33, 523–537.

Schröter, M., Remme, R. P., Sumarga, E., Barton, D. N., and Hein, L. (2014). Lessons learned for spatial modelling of ecosystem services in support of ecosystem accounting. Ecosystem Services , .

Shoo, L., Hoffmann, A., Garnett, S., Pressey, R., Williams, Y., Taylor, M., Falconi, L., Yates, C., Scott, J., Alagador, D., and Williams, S. (2013). Making decisions to conserve species under climate change. Climatic Change 119, 239–246.
Making decisions to conserve species under climate change.Crossref | GoogleScholarGoogle Scholar |

Smith, A., Lambeck, R. J. and Greening Australia (WA) (2004). ‘Living Landscapes: the Story of a Successful Landcare Program in Western Australia.’ (Greening Australia (WA): Fremantle, WA.)

Stenhouse, R. N. (2004). Local government conservation and management of native vegetation in urban Australia. Environmental Management 34, 209–222.
Local government conservation and management of native vegetation in urban Australia.Crossref | GoogleScholarGoogle Scholar | 15559945PubMed |

Stewart, R., Noyce, T., and Possingham, H. (2003). Opportunity cost of ad hoc marine reserve design decisions: an example from South Australia. Marine Ecology Progress Series 253, 25–38.
Opportunity cost of ad hoc marine reserve design decisions: an example from South Australia.Crossref | GoogleScholarGoogle Scholar |

Syfert, M. M., Smith, M. J., and Coomes, D. A. (2013). The effects of sampling bias and model complexity on the predictive performance of MaxEnt species distribution models. PLoS One 8, e55158.
The effects of sampling bias and model complexity on the predictive performance of MaxEnt species distribution models.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3sXjtl2qtrg%3D&md5=ef56fcc23a44a5d52775be50d77404b7CAS | 23457462PubMed |

Thackway, R. M., and Cresswell, I. D. (1995). ‘An Interim Bio-geographic Regionalisation for Australia: a Framework for Setting Priorities in the National Reserves System Cooperative Program.’ (Australian Nature Conservation Agency: Canberra.)

Thuiller, W., Georges, D., and Engler, R. (2015). ‘biomod2: Ensemble Platform for Species Distribution Modeling. R Package Version.’ Available at https://cran.r-project.org/web/packages/biomod2/biomod2.pdf [Accessed 21 July 2015]

Tischendorf, L., and Fahrig, L. (2000). On the usage and measurement of landscape connectivity. Oikos 90, 7–19.
On the usage and measurement of landscape connectivity.Crossref | GoogleScholarGoogle Scholar |

Turner, M. G., Arthaud, G. J., Engstrom, R. T., Hejl, S. J., Liu, J. G., Loeb, S., and Mckelvey, K. (1995). Usefulness of Spatially Explicit Population-Models in Land Management. Ecological Applications 5, 12–16.
Usefulness of Spatially Explicit Population-Models in Land Management.Crossref | GoogleScholarGoogle Scholar |

Wall, J., Wittemyer, G., Klinkenberg, B., and Douglas-Hamilton, I. (2014). Novel opportunities for wildlife conservation and research with real-time monitoring. Ecological Applications 24, 593–601.
Novel opportunities for wildlife conservation and research with real-time monitoring.Crossref | GoogleScholarGoogle Scholar | 24988762PubMed |

Watson, J. E. M., Whittaker, R. J., and Freudenberger, D. (2005). Bird community responses to habitat fragmentation: how consistent are they across landscapes? Journal of Biogeography 32, 1353–1370.
Bird community responses to habitat fragmentation: how consistent are they across landscapes?Crossref | GoogleScholarGoogle Scholar |

Watts, M. E., Ball, I. R., Stewart, R. S., Klein, C. J., Wilson, K., Steinback, C., Lourival, R., Kircher, L., and Possingham, H. P. (2009). Marxan with zones: software for optimal conservation based land- and sea-use zoning. Environmental Modelling & Software 24, 1513–1521.
Marxan with zones: software for optimal conservation based land- and sea-use zoning.Crossref | GoogleScholarGoogle Scholar |

Yates, C. J., Elith, J., Latimer, A. M., Le Maitre, D., Midgley, G. F., Schurr, F. M., and West, A. G. (2010). Projecting climate change impacts on species distributions in megadiverse South African Cape and Southwest Australian Floristic Regions: opportunities and challenges. Austral Ecology 35, 374–391.
Projecting climate change impacts on species distributions in megadiverse South African Cape and Southwest Australian Floristic Regions: opportunities and challenges.Crossref | GoogleScholarGoogle Scholar |

Zafra-Calvo, N., Cerro, R., Fuller, T., Lobo, J. M., Rodriguez, M. A., and Sarkar, S. (2010). Prioritizing areas for conservation and vegetation restoration in post-agricultural landscapes: a biosphere reserve plan for Bioko, Equatorial Guinea. Biological Conservation 143, 787–794.
Prioritizing areas for conservation and vegetation restoration in post-agricultural landscapes: a biosphere reserve plan for Bioko, Equatorial Guinea.Crossref | GoogleScholarGoogle Scholar |

Zielinski, W. J., Carroll, C., and Dunk, J. R. (2006). Using landscape suitability models to reconcile conservation planning for two key forest predators. Biological Conservation 133, 409–430.
Using landscape suitability models to reconcile conservation planning for two key forest predators.Crossref | GoogleScholarGoogle Scholar |