Free Standard AU & NZ Shipping For All Book Orders Over $80!
Register      Login
Pacific Conservation Biology Pacific Conservation Biology Society
A journal dedicated to conservation and wildlife management in the Pacific region.
RESEARCH ARTICLE

Assessment of the network of protected areas for birds in Taiwan with regard to functional and phylogenetic diversity

Hungyen Chen A C , Satoshi Nagai A and Hirohisa Kishino B
+ Author Affiliations
- Author Affiliations

A National Research Institute of Fisheries Science, Fisheries Research Agency, Kanagawa 236-8648, Japan.

B Graduate School of Agricultural and Life Sciences, The University of Tokyo, Tokyo 113-8657, Japan.

C Corresponding author. Email: chen@lbm.ab.a.u-tokyo.ac.jp

Pacific Conservation Biology 22(1) 61-71 https://doi.org/10.1071/PC15046
Submitted: 30 November 2015  Accepted: 26 February 2016   Published: 15 March 2016

Abstract

In Taiwan, conserved areas represent more than 20% of the current jurisdiction, which is about twice that of the proportion of protected land worldwide. In this study, we explored the spatial distribution of bird assemblages in Taiwan. By analysing functional and phylogenetic diversity relative to elevational gradient, we assessed the network of bird protected areas. Hotspots of species richness were located at the coastal areas of northern and western Taiwan, although hotspots for protected bird species were located in the mountain areas. We found that phylogenetically close birds have similar trait values, and the protected species were evenly distributed in the functional and phylogenetic trees. The assemblages in higher-elevation areas were more phylogenetically clumped than those in lower-elevation areas, indicating that, in addition to elevational gradient, phylogenetic constraint may be a crucial factor that influences bird distribution in Taiwan. However, the current bird protected areas in Taiwan may overly depend on species richness and overlook the importance of the overall phylogenetic diversity.

Additional keywords: biodiversity conservation, biogeography, community ecology.


References

Bellwood, D. R., Hoey, A. S., and Choat, J. H. (2003). Limited functional redundancy in high diversity systems: resilience and ecosystem function on coral reefs. Ecology Letters 6, 281–285.
Limited functional redundancy in high diversity systems: resilience and ecosystem function on coral reefs.Crossref | GoogleScholarGoogle Scholar |

Cadotte, M. W., Cardinale, B. J., and Oakley, T. H. (2008). Evolutionary history and the effect of biodiversity on plant productivity. Proceedings of the National Academy of Sciences of the United States of America 105, 17012–17017.
Evolutionary history and the effect of biodiversity on plant productivity.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1cXhtlKmu7fI&md5=2c3908f93151ff982daebfb6b7155374CAS | 18971334PubMed |

Chao, A., Chiu, C.-H., and Jost, L. (2014). Unifying species diversity, phylogenetic diversity, functional diversity, and related similarity and differentiation measures through hill numbers. Annual Review of Ecology Evolution and Systematics 45, 297–324.
Unifying species diversity, phylogenetic diversity, functional diversity, and related similarity and differentiation measures through hill numbers.Crossref | GoogleScholarGoogle Scholar |

Chen, H., and Kishino, H. (2015). Global pattern of phylogenetic species composition of shark and its conservation priority. Ecology and Evolution 5, 4455–4465.
Global pattern of phylogenetic species composition of shark and its conservation priority.Crossref | GoogleScholarGoogle Scholar | 26819704PubMed |

Chen, H., Shao, K.-T., and Kishino, H. (2015). Phylogenetic skew: an index of community diversity. Molecular Ecology 24, 759–770.
Phylogenetic skew: an index of community diversity.Crossref | GoogleScholarGoogle Scholar | 25580733PubMed |

Construction and Planning Agency (2016). Ministry of the Interior, R. O. C., Taiwan. Available at: http://np.cpami.gov.tw [accessed 2 February 2016].

Dehling, D. M., Fritz, S. A., Töpfer, T., Päckert, M., Estler, P., Böhning-Gaese, K., and Schleuning, M. (2014). Functional and phylogenetic diversity and assemblage structure of frugivorous birds along an elevational gradient in the tropical Andes. Ecography 37, 1047–1055.

Devictor, V., Mouillot, D., Meynard, C. N., Jiguet, F., Thuiller, W., and Mouquet, N. (2010). Spatial mismatch and congruence between taxonomic, phylogenetic and functional diversity: the need for integrative conservation strategies in a changing world. Ecology Letters 13, 1030–1040.
| 20545736PubMed |

Díaz, S., and Cabido, M. (2001). Vive la difference: plant functional diversity matters to ecosystem processes. Trends in Ecology & Evolution 16, 646–655.
Vive la difference: plant functional diversity matters to ecosystem processes.Crossref | GoogleScholarGoogle Scholar |

Digital Museum of Zoology, National Taiwan University (2015). Digital databank of wildlife species at National Taiwan University. Available at: http://archive.zo.ntu.edu.tw [accessed 10 August 2015].

Douzery, E. J. P., Delsuc, F., Stanhope, M. J., and Huchon, D. (2003). Local molecular clocks in three nuclear genes: divergence times for rodents and other mammals and incompatibility among fossil calibrations. Journal of Molecular Evolution 57, S201–S213.
Local molecular clocks in three nuclear genes: divergence times for rodents and other mammals and incompatibility among fossil calibrations.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2cXjsVehsg%3D%3D&md5=08f7914c0029554d19cf97d4b5a9fb56CAS |

Drummond, A., and Suchard, M. A. (2010). Bayesian random local clocks, or one rate to rule them all. BMC Biology 8, 114.
Bayesian random local clocks, or one rate to rule them all.Crossref | GoogleScholarGoogle Scholar | 20807414PubMed |

Drummond, A. J., Suchard, M. A., Xie, D., and Rambaut, A. (2012). Bayesian phylogenetics with BEAUti and the BEAST 1.7. Molecular Biology and Evolution 29, 1969–1973.
Bayesian phylogenetics with BEAUti and the BEAST 1.7.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC38XhtFagu7fO&md5=9b71b25c5c9decf08f7ae0f808f8709eCAS | 22367748PubMed |

Dudley, N. (2008). Guidelines for applying protected areas management categories. IUCN, Switzerland.

Edgar, R. C. (2004). MUSCLE: multiple sequence alignment with high accuracy and high throughput. Nucleic Acids Research 32, 1792–1797.
MUSCLE: multiple sequence alignment with high accuracy and high throughput.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2cXisF2ks7w%3D&md5=2253521909ac02da017f45e00d16304eCAS | 15034147PubMed |

Faith, D. P. (1992). Conservation evaluation and phylogenetic diversity. Biological Conservation 61, 1–10.
Conservation evaluation and phylogenetic diversity.Crossref | GoogleScholarGoogle Scholar |

Felsenstein, J. (1981). Evolutionary trees from DNA sequences: a maximum likelihood approach. Journal of Molecular Evolution 17, 368–376.
Evolutionary trees from DNA sequences: a maximum likelihood approach.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaL3MXls1Cisr8%3D&md5=fcf9e49c75e1b3ea58d6ac153d90a965CAS | 7288891PubMed |

Frishkoff, L. O., Karp, D. S., M’Gonigle, L. K., Mendenhall, C. D., Zook, J., Kremen, C., Hadly, E. A., and Daily, G. C. (2014). Loss of avian phylogenetic diversity in neotropical agricultural systems. Science 345, 1343–1346.
Loss of avian phylogenetic diversity in neotropical agricultural systems.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC2cXhsV2qtL%2FE&md5=63541a9408ff2519e3acd97a30f99192CAS | 25214627PubMed |

Google Inc (2015). ‘Google Earth (Version 7.1.5.1557).’ Available at: https://www.google.com/earth [accessed 1 September 2015].

Hasegawa, M., Kishino, H., and Yano, T. (1985). Dating the human–ape splitting by a molecular clock of mitochondrial DNA. Journal of Molecular Evolution 22, 160–174.
Dating the human–ape splitting by a molecular clock of mitochondrial DNA.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaL2MXmtFSns7g%3D&md5=7ba37431393c160206f8003759dc05b6CAS | 3934395PubMed |

Hidasi-Neto, J., Loyola, R. D., and Cianciaruso, M. V. (2013). Conservation actions based on red lists do not capture the functional and phylogenetic diversity of birds in Brazil. PLoS One 8, e73431.
Conservation actions based on red lists do not capture the functional and phylogenetic diversity of birds in Brazil.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3sXhsVOrtb3L&md5=7b8f194bc8ad83b1a964f0d1230472b6CAS | 24039939PubMed |

Hooper, D. U., Solan, M., Symstad, A., Díaz, S., Gessner, M. O., Buchmann, N., and Degrange, V. (2002). Species diversity, functional diversity, and ecosystem functioning. In ‘Biodiversity and Ecosystem Functioning: Synthesis and Perspectives’. (Eds P. Inchausti, M. Loreau. and S. Naeem.) pp. 195–208. (Oxford University Press: New York.)

Hsu, F.-H., Yao, C.-T., Lin, S. R.-S., Yang, C. C., and Lai, S. J. (2004). Avian species composition and distribution along elevation gradient in the southern Taiwan. Endemic Species Research 6, 41–66.

IUCN and UNEP-WCMC (2016). ‘The World Database on Protected Areas (WDPA) Cambridge, UK: UNEP-WCMC.’ Available at: www.protectedplanet.net [accessed 17 February 2016].

Knapp, S., Kühn, I., Schweiger, O., and Klotz, S. (2008). Challenging urban species diversity: contrasting phylogenetic patterns across plant functional groups in Germany. Ecology Letters 11, 1054–1064.
Challenging urban species diversity: contrasting phylogenetic patterns across plant functional groups in Germany.Crossref | GoogleScholarGoogle Scholar | 18616547PubMed |

Ko, C.-Y., Lin, R.-S., Ding, T.-S., Hsieh, C.-H., and Lee, P.-F. (2009). Identifying biodiversity hotspots by predictive models: a case study using Taiwan’s endemic bird species. Zoological Studies (Taipei, Taiwan) 48, 418–431.

Koh, C.-N., and Lee, P.-F. (2003). Elevational gradients in breeding birds in northern Taiwan. Taiwan Journal of Forest Science 18, 349–361.

Koh, C.-N., Lee, P.-F., and Lin, R.-S. (2006). Bird species richness patterns of northern Taiwan: primary productivity, human population density, and habitat heterogeneity. Diversity & Distributions 12, 546–554.
Bird species richness patterns of northern Taiwan: primary productivity, human population density, and habitat heterogeneity.Crossref | GoogleScholarGoogle Scholar |

Lee, P.-F., Lue, K.-Y., Lee, Y.-C., Hsieh, C.-J., Chen, S.-W., Pang, T.-C., and Ding, T.-S. (1997). An ecological and environmental GIS database for Taiwan. Council of Agriculture, Taipei. [In Chinese with English abstract.]

Lee, P.-F., Ding, T.-S., Hsu, F.-H., and Geng, S. (2004). Breeding bird species richness in Taiwan: distribution on gradients of elevation, primary productivity and urbanization. Journal of Biogeography 31, 307–314.
Breeding bird species richness in Taiwan: distribution on gradients of elevation, primary productivity and urbanization.Crossref | GoogleScholarGoogle Scholar |

Lei, F.-M., Qu, Y.-H., Liu, J.-L., Liu, Y., and Yin, Z.-H. (2003). Conservation on diversity and distribution patterns of endemic birds in China. Biodiversity and Conservation 12, 239–254.
Conservation on diversity and distribution patterns of endemic birds in China.Crossref | GoogleScholarGoogle Scholar |

Lepš, J., Osbornová-Kosinová, J., and Rejmánek, M. (1982). Community stability, complexity and species life-history strategies. Vegetatio 50, 53–63.
Community stability, complexity and species life-history strategies.Crossref | GoogleScholarGoogle Scholar |

Losos, J. B., and Glor, R. E. (2003). Phylogenetic comparative methods and the geography of speciation. Trends in Ecology & Evolution 18, 220–227.
Phylogenetic comparative methods and the geography of speciation.Crossref | GoogleScholarGoogle Scholar |

MacArthur, R. H. (1972). ‘Geographical Ecology: Patterns in the Distribution of Species.’ (Harper and Row: New York.)

Mace, G. M., Gittleman, J. L., and Purvis, A. (2003). Preserving the tree of life. Science 300, 1707–1709.
Preserving the tree of life.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3sXksVKisbw%3D&md5=496becdc51110a40374a4bf97c805db4CAS | 12805539PubMed |

MacGillivray, C. W., Grime, J. P., and the Integrated Screening Programme (ISP) Team (1995). Testing predictions of the resistance and resilience of vegetation subjected to extreme events. Functional Ecology 9, 640–649.
Testing predictions of the resistance and resilience of vegetation subjected to extreme events.Crossref | GoogleScholarGoogle Scholar |

Meynard, C. N., Devictor, V., Mouillot, D., Thuiller, W., Jiguet, F., and Mouquet, N. (2011). Beyond taxonomic diversity patterns: how do α, β and γ components of bird functional and phylogenetic diversity respond to environmental gradients across France? Global Ecology and Biogeography 20, 893–903.
Beyond taxonomic diversity patterns: how do α, β and γ components of bird functional and phylogenetic diversity respond to environmental gradients across France?Crossref | GoogleScholarGoogle Scholar |

Monnet, A.-C., Jiguet, F., Meynard, C. N., Mouillot, D., Mouquet, N., Thuiller, W., and Devictor, V. (2014). Asynchrony of taxonomic, functional and phylogenetic diversity in birds. Global Ecology and Biogeography 23, 780–788.
Asynchrony of taxonomic, functional and phylogenetic diversity in birds.Crossref | GoogleScholarGoogle Scholar | 25067904PubMed |

Mouquet, N., Devictor, V., Meynard, C. N., Munoz, F., Bersier, L.-F., Chave, J., Couteron, P., Dalecky, A., Fontaine, C., Gravel, D., Hardy, O. J., Jabot, F., Lavergne, S., Leibold, M., Mouillot, D., Münkemüller, T., Pavoine, S., Prinzing, A., Rodrigues, A. S. L., Rohr, R. P., Thébault, E., and Thuiller, W. (2012). Ecophylogenetics: advances and perspectives. Biological Reviews of the Cambridge Philosophical Society 87, 769–785.
Ecophylogenetics: advances and perspectives.Crossref | GoogleScholarGoogle Scholar | 22432924PubMed |

Naeem, S. (1998). Species redundancy and ecosystem reliability. Conservation Biology 12, 39–45.
Species redundancy and ecosystem reliability.Crossref | GoogleScholarGoogle Scholar |

NCBI (2015). Nucleotide. Available at: http://www.ncbi.nlm.nih.gov/nuccore [accessed 20 August 2015].

Petchey, O. L., and Gaston, K. J. (2002). Functional diversity (FD), species richness and community composition. Ecology Letters 5, 402–411.
Functional diversity (FD), species richness and community composition.Crossref | GoogleScholarGoogle Scholar |

Petchey, O. L., and Gaston, K. J. (2006). Functional diversity: back to basics and looking forward. Ecology Letters 9, 741–758.
Functional diversity: back to basics and looking forward.Crossref | GoogleScholarGoogle Scholar | 16706917PubMed |

Petchey, O. L., Evans, K. L., Fishburn, I. S., and Gaston, K. J. (2007). Low functional diversity and no redundancy in British avian assemblages. Journal of Animal Ecology 76, 977–985.
Low functional diversity and no redundancy in British avian assemblages.Crossref | GoogleScholarGoogle Scholar | 17714276PubMed |

R Core Team (2013). R: A language and environment for statistical computing. R Foundation for Statistical Computing, Vienna, Austria. Available at: https://www.R-project.org/.

Safi, K., Cianciaruso, M. V., Loyola, R. D., Brito, D., Armour-Marshall, K., and Diniz-Filho, J. A. F. (2011). Understanding global patterns of mammalian functional and phylogenetic diversity. Philosophical Transactions of the Royal Society of London. Series B, Biological Sciences 366, 2536–2544.
Understanding global patterns of mammalian functional and phylogenetic diversity.Crossref | GoogleScholarGoogle Scholar | 21807734PubMed |

Schweiger, O., Klotz, S., Durka, W., and Kühn, I. (2008). A comparative test of phylogenetic diversity indices. Oecologia 157, 485–495.
A comparative test of phylogenetic diversity indices.Crossref | GoogleScholarGoogle Scholar | 18566837PubMed |

Sgrò, C. M., Lowe, A. J., and Hoffmann, A. A. (2011). Building evolutionary resilience for conserving biodiversity under climate change. Evolutionary Applications 4, 326–337.
Building evolutionary resilience for conserving biodiversity under climate change.Crossref | GoogleScholarGoogle Scholar | 25567976PubMed |

Soutullo, A. (2010). Extent of the global network of terrestrial protected areas. Conservation Biology 24, 362–363.
Extent of the global network of terrestrial protected areas.Crossref | GoogleScholarGoogle Scholar | 20491846PubMed |

Stevens, R. D., Cox, S. B., Strauss, R. E., and Willig, M. R. (2003). Patterns of functional diversity across an extensive environmental gradient: vertebrate consumers, hidden treatments and latitudinal trends. Ecology Letters 6, 1099–1108.
Patterns of functional diversity across an extensive environmental gradient: vertebrate consumers, hidden treatments and latitudinal trends.Crossref | GoogleScholarGoogle Scholar |

Tamura, K., Stecher, G., Peterson, D., Filipski, A., and Kumar, S. (2013). MEGA6: Molecular Evolutionary Genetics Analysis version 6.0 Molecular Biology and Evolution 30, 2725–2729.
MEGA6: Molecular Evolutionary Genetics Analysis version 6.0Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3sXhvVKhurzP&md5=f7fe01cc0152ab985da1bc40c16388b0CAS | 24132122PubMed |

Tilman, D., Knops, J., Wedin, D., Reich, P., Ritchie, M., and Siemann, E. (1997). The influence of functional diversity and composition on ecosystem processes Science 277, 1300–1302.
The influence of functional diversity and composition on ecosystem processesCrossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK2sXlslans7s%3D&md5=30d275152945b5f10ed1c42a1620edd6CAS |

Trindade-Filho, J., Sobral, F. L., Cianciaruso, M. V., and Loyola, R. D. (2012). Using indicator groups to represent bird phylogenetic and functional diversity. Biological Conservation 146, 155–162.
Using indicator groups to represent bird phylogenetic and functional diversity.Crossref | GoogleScholarGoogle Scholar |

Vane-Wright, R. I., Humphries, C. J., and Williams, P. H. (1991). What to protect? – systematics and the agony of choice. Biological Conservation 55, 235–254.
What to protect? – systematics and the agony of choice.Crossref | GoogleScholarGoogle Scholar |

Walker, B., Kinzig, A., and Langridge, J. (1999). Plant attribute diversity, resilience, and ecosystem function: the nature and significance of dominant and minor species. Ecosystems 2, 95–113.
Plant attribute diversity, resilience, and ecosystem function: the nature and significance of dominant and minor species.Crossref | GoogleScholarGoogle Scholar |

Webb, C. O. (2000). Exploring the phylogenetic structure of ecological communities: an example for rain forest trees. American Naturalist 156, 145–155.
Exploring the phylogenetic structure of ecological communities: an example for rain forest trees.Crossref | GoogleScholarGoogle Scholar | 10856198PubMed |

Webb, C. O., Ackerly, D., McPeek, M. A., and Donoghue, M. (2002). Phylogenies and community ecology. Annual Review of Ecology Evolution and Systematics 33, 475–505.
Phylogenies and community ecology.Crossref | GoogleScholarGoogle Scholar |

Wiens, J. J., and Graham, C. H. (2005). Niche conservatism: integrating evolution, ecology, and conservation biology. Annual Review of Ecology Evolution and Systematics 36, 519–539.
Niche conservatism: integrating evolution, ecology, and conservation biology.Crossref | GoogleScholarGoogle Scholar |

Wildlife Conservation Law (1989). Republic of China’s Wildlife Conservation Law 1–3266, Government of the R. O. C., Taiwan.

Willig, M. R., Kaufman, D. M., and Stevens, R. D. (2003). Latitudinal gradients of biodiversity: pattern, process, scale, and synthesis. Annual Review of Ecology Evolution and Systematics 34, 273–309.
Latitudinal gradients of biodiversity: pattern, process, scale, and synthesis.Crossref | GoogleScholarGoogle Scholar |

Winter, M., Schweiger, O., Klotz, S., Nentwig, W., Andriopoulos, P., Arianoutsou, M., Basnou, C., Delipetrou, P., Didžiulis, V., Hejda, M., Hulme, P. E., Lambdon, P. W., Pergl, J., Pyšek, P., Roy, D. B., and Kühn, I. (2009). Plant extinctions and introductions lead to phylogenetic and taxonomic homogenization of the European flora. Proceedings of the National Academy of Sciences of the United States of America 106, 21721–21725.
Plant extinctions and introductions lead to phylogenetic and taxonomic homogenization of the European flora.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3cXltlKitQ%3D%3D&md5=9363421295a9101a225341ef6f8242c4CAS | 20007367PubMed |

Winter, M., Devictor, V., and Schweiger, O. (2013). Phylogenetic diversity and nature conservation: where are we? Trends in Ecology & Evolution 28, 199–204.
Phylogenetic diversity and nature conservation: where are we?Crossref | GoogleScholarGoogle Scholar |

Yang, Z. (1994). Estimating the pattern of nucleotide substitution. Journal of Molecular Evolution 39, 105–111.
Estimating the pattern of nucleotide substitution.Crossref | GoogleScholarGoogle Scholar | 8064867PubMed |