Native vegetation of coastal floodplains ? a diagnosis of the major plant communities in New South Wales
David A. Keith and Judith Scott
Pacific Conservation Biology
11(2) 81 - 104
Published: 2005
Abstract
Coastal floodplains are among the most modified landscapes in southeastern Australia. We used available vegetation survey data for coastal alluvium and other unconsolidated Quarternary sediments to construct a diagnosis of the major plant communities and document their flora. We used soil landscape maps and historical portion plans to gain an understanding of the distribution and environmental relationships of the communities. The flora of coastal floodplains includes more than 1 000 native vascular plant taxa and more than 200 introduced taxa. The introduced flora is likely to be considerably larger, given that sampling was biased toward the least disturbed sites. Six major plant communities were diagnosed including a rainforest found north from the Shoalhaven floodplain, a mixed forest of eucalypts and melaleucas found north from Jervis Bay, a casuarina forest (sometimes with melaleuca) found throughout the coast, one open eucalypt forest found principally south from the Hunter region, another open eucalypt forest found north of the Hunter region and a complex of treeless wetland assemblages scattered throughout the coast. The extent and spatial arrangement of these communities varies between floodplains, with landform, rainfall, water regime and soil properties including moisture, fertility and salinity thought to be important factors mediating their distribution patterns. All six assemblages are listed as Endangered Ecological Communities under Threatened Species legislation. The coastal floodplain communities continue to be threatened by land clearing and crop conversion, fragmentation, changes to water flows, flooding and drainage, input of polluted runoff, weed invasion, activation of acid sulphate soils, climate change and degradation through rubbish dumping and other physical disturbances.https://doi.org/10.1071/PC050081
© CSIRO 2005