Genetic analysis of the Australian whipbirds and wedgebills illuminates the evolution of their plumage and vocal diversity
Alicia Toon A D , Leo Joseph B and Allan H. Burbidge CA Griffith University, Australian Rivers Institute, Griffith School of Environment, 170 Kessels Road, Nathan, Qld 4111, Australia.
B Australian National Wildlife Collection, CSIRO Sustainable Ecosystems, GPO Box 1700, Canberra, ACT 2601, Australia.
C Department of Environment and Conservation, PO Box 51, Wanneroo, WA 6946, Australia.
D Corresponding author. Email: aliciatoon@gmail.com
Emu 113(4) 359-366 https://doi.org/10.1071/MU13005
Submitted: 22 January 2013 Accepted: 27 May 2013 Published: 9 September 2013
Abstract
Morphological and vocal diversity among closely related species reflects a combination of shared ancestry and recent species-specific adaptations. A small group of Australo-Papuan passerines in the core Corvoidea, the whipbirds and wedgebills (Psophodes, Androphobus), provide an opportunity to explore this. Vocally, the Western Whipbird (Psophodes nigrogularis sensu lato) is very similar to the two species of wedgebills, whereas the sibilant whipcrack-like song of male Eastern Whipbirds is distinctive among the group. Using phylogenetic analysis of mitochondrial DNA we show that Australian whipbirds are not sister taxa but that the Eastern Whipbird is sister to the wedgebills and that the Western Whipbird is sister to the other three members of the group. Wedgebills are nested within the whipbird clade, supporting their current inclusion in Psophodes. The topology and reconstruction of ancestral states suggests the similarity in vocalisation among wedgebills and the Western Whipbird is a result of shared ancestral character states, whereas the whipcrack-like song of the Eastern Whipbirds is autapomorphic.
References
Barker, F. K., Cibois, A., Schikler, P., Feinstein, J., and Cracraft, J. (2004). Phylogeny and diversification of the largest avian radiation. Proceedings of the National Academy of Sciences of the United States of America 101, 11 040–11 045.| Phylogeny and diversification of the largest avian radiation.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2cXmsVCmt7k%3D&md5=43be8013611d2c143440ea2ddb28299aCAS |
Beruldsen, G. (1980). ‘A Field Guide to Nests and Eggs of Australian Birds.’ (Rigby: Adelaide.)
Byrne, M., Yeates, D. K., Joseph, L., Kearney, M., Bowler, J., Williams, M. A. J., Cooper, S., Donnellan, S. C., Keogh, J. S., Leys, R., Melville, J., Murphy, D. J., Porch, N., and Wyrwoll, K. H. (2008). Birth of a biome: insights into the assembly and maintenance of the Australian arid zone biota. Molecular Ecology 17, 4398–4417.
| Birth of a biome: insights into the assembly and maintenance of the Australian arid zone biota.Crossref | GoogleScholarGoogle Scholar | 1:STN:280:DC%2BD1cjhvFGruw%3D%3D&md5=0173dff59083bb7b190c0b9cc9f48865CAS | 18761619PubMed |
Charif, R., Ponirakis, D., and Krein, T. (2006). ‘Raven Lite 1.0 User’s Guide.’ (Cornell Laboratory of Ornithology: Ithaca, NY.)
Christidis, L., and Boles, W. (2008). ‘Systematics and Taxonomy of Australia Birds.’ (CSIRO Publishing: Melbourne.)
Ford, J., and Parker, S. A. (1973). A second species of wedgebill. Emu 73, 113–118.
| A second species of wedgebill.Crossref | GoogleScholarGoogle Scholar |
Hackett, S. J. (1996). Molecular phylogenetics and biogeography of tanagers in the genus Ramphocelus (Aves). Molecular Phylogenetics and Evolution 5, 368–382.
| Molecular phylogenetics and biogeography of tanagers in the genus Ramphocelus (Aves).Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK28XjtVCku74%3D&md5=590c1649f4b4aecb1b4dbeb670fd87b6CAS | 8728395PubMed |
Higgins, P. J., and Peter, J. M. (Eds) (2002). ‘Handbook of Australian, New Zealand, and Antarctic Birds. Vol. 6: Pardalotes to Shrike-thrushes.’ (Oxford University Press: Melbourne.)
Katoh, K., and Toh, H. (2008). Recent developments in the MAFFT multiple sequence alignment program. Briefings in Bioinformatics 9, 286–298.
| Recent developments in the MAFFT multiple sequence alignment program.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1cXpt1artrs%3D&md5=b11ea20be82152713238c0dc899e1f65CAS | 18372315PubMed |
Katoh, K., Misawa, K., Kuma, K., and Miyata, T. (2002). MAFFT: a novel method for rapid multiple sequence alignment based on fast Fourier transform. Nucleic Acids Research 30, 3059–3066.
| MAFFT: a novel method for rapid multiple sequence alignment based on fast Fourier transform.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD38XlslOqu7s%3D&md5=ef551c3cde397aa06731522db4c57ae5CAS | 12136088PubMed |
Lerner, Heather. R. L., Meyer, M., James, Helen. F., Hofreiter, M., and Fleischer, Robert. C. (2011). Multilocus resolution of phylogeny and timescale in the extant adaptive radiation of Hawaiian honeycreepers. Current Biology 21, 1838–1844.
| Multilocus resolution of phylogeny and timescale in the extant adaptive radiation of Hawaiian honeycreepers.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3MXhsVKmurnN&md5=951a561662cecb8be6a54c5ae600c3beCAS | 22018543PubMed |
Maddison, W. P., and Maddison, D. R. (2010). ‘Mesquite: A Modular System for Evolutionary Analysis. Version 2.73.’ Available at http://mesquiteproject.org [Verified 2 August 2013].
McGowran, B., Holdgate, G. R., Li, Q., and Gallagher, S. J. (2004). Cenozoic stratigraphic succession in southeastern Australia. Australian Journal of Earth Sciences 51, 459–496.
| Cenozoic stratigraphic succession in southeastern Australia.Crossref | GoogleScholarGoogle Scholar |
Mennill, D. J., and Rogers, A. C. (2006). Whip it good! Geographic consistency in male songs and variability in female songs of the duetting Eastern Whipbird Psophodes olivaceus. Journal of Avian Biology 37, 93–100.
| Whip it good! Geographic consistency in male songs and variability in female songs of the duetting Eastern Whipbird Psophodes olivaceus.Crossref | GoogleScholarGoogle Scholar |
Miller, S. A., Dykes, D. D., and Polesky, H. F. (1988). A simple salting out procedure for extracting DNA from human nucleated cells. Nucleic Acids Research 16, 1215.
| A simple salting out procedure for extracting DNA from human nucleated cells.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaL1cXhsVKlsrs%3D&md5=a8a7bb2d23bee942960e1486b43aec96CAS | 3344216PubMed |
Miller, M. A., Pfeiffer, W., and Schwartz, T. (2010). Creating the CIPRES Science Gateway for inference of large phylogenetic trees. In ‘Proceedings of the Gateway Computing Environments Workshop (GCE)’, 14 November 2010, New Orleans, LA. pp. 1–8. Available at http://ieeexplore.ieee.org/xpl/articleDetails.jsp?arnumber=5676129 [Verified 2 August 2013].
Nei, M., and Li, W.-H. (1979). Mathematical model for studying genetic variation in terms of restriction endonucleases. Proceedings of the National Academy of Sciences of the United States of America 76, 5269–5273.
| Mathematical model for studying genetic variation in terms of restriction endonucleases.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaL3cXitVWn&md5=5d24c3a9e0a9cd6bac2dbf18280fc364CAS | 291943PubMed |
Norman, J. A., Rheindt, F. E., Rowe, D. L., and Christidis, L. (2007). Speciation dynamics in the Australo-Papuan Meliphaga honeyeaters. Molecular Phylogenetics and Evolution 42, 80–91.
| Speciation dynamics in the Australo-Papuan Meliphaga honeyeaters.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD28Xht1CgsbvK&md5=7b0a8d9c508cfad61da39f33730d217aCAS | 16904917PubMed |
Norman, J. A., Ericson, P. G. P., Jonsson, K. A., Fjeldsa, J., and Christidis, L. (2009). A multi-gene phylogeny reveals novel relationships for aberrant genera of Australo-Papuan core Corvoidea and polyphyly of the Pachycephalidae and Psophodidae (Aves : Passeriformes). Molecular Phylogenetics and Evolution 52, 488–497.
| A multi-gene phylogeny reveals novel relationships for aberrant genera of Australo-Papuan core Corvoidea and polyphyly of the Pachycephalidae and Psophodidae (Aves : Passeriformes).Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1MXms12hsbY%3D&md5=c15a3e91ceb01b75d10983585cd4be26CAS | 19341806PubMed |
Nylander, J. A. A., Ronquist, F., Huelsenbeck, J. P., and Nieves-Aldrey, J. L. (2004). Bayesian phylogenetic analysis of combined data. Systematic Biology 53, 47–67.
| Bayesian phylogenetic analysis of combined data.Crossref | GoogleScholarGoogle Scholar |
Nylander, J. A. A., Wilgenbusch, J. C., Warren, D. L., and Swofford, D. L. (2008). AWTY (are we there yet?): a system for graphical exploration of MCMC convergence in Bayesian phylogenetics. Bioinformatics 24, 581–583.
| AWTY (are we there yet?): a system for graphical exploration of MCMC convergence in Bayesian phylogenetics.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1cXitVKis7g%3D&md5=978108708ef9d0d981ab231a133567d2CAS |
Ronquist, F., and Huelsenbeck, J. P. (2003). MrBayes 3: Bayesian phylogenetic inference under mixed models. Bioinformatics 19, 1572–1574.
| MrBayes 3: Bayesian phylogenetic inference under mixed models.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3sXntlKms7k%3D&md5=15122cb52d66de37595c1e41a3018e68CAS | 12912839PubMed |
Schodde, R., and Mason, I. J. (1991). Subspeciation in the Western Whipbird Psophodes nigrogularis and its zoogeographical significance, with descriptions of two new subspecies. Emu 91, 133–144.
| Subspeciation in the Western Whipbird Psophodes nigrogularis and its zoogeographical significance, with descriptions of two new subspecies.Crossref | GoogleScholarGoogle Scholar |
Schodde, R., and Mason, I. J. (1999). ‘The Directory of Australian Birds: Passerines.’ (CSIRO Publishing: Melbourne.)
Smith, G. T. (1991). Ecology of the Western Whipbird Psophodes nigrogularis in Western Australia. Emu 91, 145–157.
| Ecology of the Western Whipbird Psophodes nigrogularis in Western Australia.Crossref | GoogleScholarGoogle Scholar |
Smith, B. T., and Klicka, J. (2010). The profound influence of the Late Pliocene Panamanian uplift on the exchange, diversification, and distribution of New World birds. Ecography 33, 333–342.
Swofford, D. L. (2002). ‘PAUP*: Phylogenetic Analysis Using Parsimony (* and Other Methods).’ v.4.0b10. (Sinauer: Sunderland, MA.)
Tamura, K., Peterson, D., Peterson, N., Stecher, G., Nei, M., and Kumar, S. (2011). MEGA5: molecular evolutionary genetics analysis using maximum likelihood, evolutionary distance, and maximum parsimony methods. Molecular Biology and Evolution 28, 2731–2739.
| MEGA5: molecular evolutionary genetics analysis using maximum likelihood, evolutionary distance, and maximum parsimony methods.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3MXht1eiu73K&md5=2b0500328212dce711161963a0c1b8ffCAS | 21546353PubMed |
Toon, A., Austin, J. J., Dolman, G., Pedler, L., and Joseph, L. (2012). Evolution of arid zone birds in Australia: leapfrog distribution patterns and mesic-arid connections in quail-thrush (Cinclosoma, Cinclosomatidae). Molecular Phylogenetics and Evolution 62, 286–295.
| Evolution of arid zone birds in Australia: leapfrog distribution patterns and mesic-arid connections in quail-thrush (Cinclosoma, Cinclosomatidae).Crossref | GoogleScholarGoogle Scholar |
Weir, J. T., and Schluter, D. (2008). Calibrating the avian molecular clock. Molecular Ecology 17, 2321–2328.
| Calibrating the avian molecular clock.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1cXotVOksrk%3D&md5=11a8e6061e322df427e00c03bb139492CAS | 18422932PubMed |
Werle, E., Schneider, C., Renner, M., Volker, M., and Fiehn, W. (1994). Convenient single-step, one tube purification of PCR products for direct sequencing. Nucleic Acids Research 22, 4354–4355.
| Convenient single-step, one tube purification of PCR products for direct sequencing.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK2MXhvF2itbY%3D&md5=572913bc1ffce4f6f0d94b908baec16eCAS | 7937169PubMed |
Wilgenbusch, J. C., Warren, D. L., and Swofford, D. L. (2004). ‘AWTY: A System for Graphical Exploration of MCMC Convergence in Bayesian Phylogenetic Inference.’ Available at http://ceb.csit.fsu.edu/awty [Verified 24 January 2013].