Register      Login
Emu Emu Society
Journal of BirdLife Australia
RESEARCH ARTICLE

Parrot interrelationships – morphology and the new molecular phylogenies

Gerald Mayr
+ Author Affiliations
- Author Affiliations

Forschungsinstitut Senckenberg, Sektion Ornithologie, Senckenberganlage 25, D-60325 Frankfurt a.M., Germany. Email: gerald.mayr@senckenberg.de

Emu 110(4) 348-357 https://doi.org/10.1071/MU10035
Submitted: 12 May 2010  Accepted: 6 August 2010   Published: 30 November 2010

Abstract

Molecular analyses have started to provide a congruent picture of parrot interrelationships but the affinities of some taxa remain uncertain and there have been few attempts to correlate the new molecular phylogenies with anatomical characters. In the present study, anatomical features that were traditionally used to classify parrots are mapped onto the molecular tree topologies. Some characters show a high degree of homoplasy but the distributions of others correlate well with the molecular phylogenies. The morphology of the hypotarsus indicates a clade including the core-Platycercini and Loricoloriinae excluding Neophema and Neopsephotus. The lack of the ambiens muscle suggests a sister-group relationship between Coracopsis and Psittrichas, whose affinities are not congruently resolved by molecular data; a derived pattern of the carotid arteries indicates a position of these two taxa within a clade including Psittacus, Poicephalus and the Arini. Within the Arini, a clade including the long-tailed New World parrots is supported by the derived presence of unusually small narial openings, whereas a clade including some of the short-tailed taxa is supported by the loss of the ambiens muscle.


References

Astuti, D., Azuma, N., Suzuki, H., and Higashi, S. (2006). Phylogenetic relationships within parrots (Psittacidae) inferred from mitochondrial cytochrome-b gene sequences. Zoological Science 23, 191–198.
Phylogenetic relationships within parrots (Psittacidae) inferred from mitochondrial cytochrome-b gene sequences.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD28XmtlKhtrs%3D&md5=b0b5675f9554af0641280cfe2ca211b0CAS | 16603811PubMed |

Beddard, F. E. (1898). ‘The Structure and Classification of Birds.’ (Longmans, Green and Co.: London.)

Boles, W. E. (1993). A new cockatoo (Psittaciformes : Cacatuidae) from the Tertiary of Riversleigh, northwestern Queensland, and an evaluation of rostral characters in the systematics of parrots. Ibis 135, 8–18.
A new cockatoo (Psittaciformes : Cacatuidae) from the Tertiary of Riversleigh, northwestern Queensland, and an evaluation of rostral characters in the systematics of parrots.Crossref | GoogleScholarGoogle Scholar |

Brereton, J. L. (1963). Evolution within the Psittaciformes. Proceedings of the International Ornithological Congress 13, 499–517.

Christidis, L., and Boles, W. E. (2008). ‘Systematics and Taxonomy of Australian Birds.’ (CSIRO Publishing: Melbourne.)

Christidis, L., Schodde, R., Shaw, D. D., and Maynes, S. F. (1991). Relationships among the Australo-Papuan parrots, lorikeets, and cockatoos (Aves : Psittaciformes): protein evidence. Condor 93, 302–317.
Relationships among the Australo-Papuan parrots, lorikeets, and cockatoos (Aves : Psittaciformes): protein evidence.Crossref | GoogleScholarGoogle Scholar |

Collar, N. J. (1997). Family Psittacidae (Parrots). In ‘Handbook of the Birds of the World. Vol. 4: Sandgrouse to Cuckoos’. (Eds J. del Hoyo, A. Elliott and J. Sargatal.) pp. 280–477. (Lynx Edicions: Barcelona.)

de Kloet, R. S., and de Kloet, S. R. (2005). The evolution of the spindlin gene in birds: sequence analysis of an intron of the spindlin W and Z gene reveals four major divisions of the Psittaciformes. Molecular Phylogenetics and Evolution 36, 706–721.
The evolution of the spindlin gene in birds: sequence analysis of an intron of the spindlin W and Z gene reveals four major divisions of the Psittaciformes.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2MXnslyjur8%3D&md5=94c5f3cd2eed1f0e574787274338aac4CAS | 16099384PubMed |

Garrod, A. H. (1874). On some points in the anatomy of parrots which bear on the classification of the suborder. Proceedings of the Zoological Society of London 1874, 586–598.

Glenny, F. H. (1955). Modifications of pattern in the aortic arch system of birds and their phylogenetic significance. Proceedings of the United States National Museum 104, 525–621.

Güntert, M. (1981). Morphologische Untersuchungen zur adaptiven Radiation des Verdauungstraktes bei Papageien (Psittaci). Zoologische Jahrbücher. Abteilung für Anatomie und Ontogenie der Tiere 106, 471–526.

Hackett, S. J., Kimball, R. T., Reddy, S., Bowie, R. C. K., Braun, E. L., Braun, M. J., Chojnowski, J. L., Cox, W. A., Han, K.-L., Harshman, J., Huddleston, C. J., Marks, B. D., Miglia, K. J., Moore, W. S., Sheldon, F. H., Steadman, D. W., Witt, C. C., and Yuri, T. (2008). A phylogenomic study of birds reveals their evolutionary history. Science 320, 1763–1768.
A phylogenomic study of birds reveals their evolutionary history.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1cXnsF2qsr4%3D&md5=a6adaacb909752f35871306c8640fa1fCAS | 18583609PubMed |

Holyoak, D. T. (1973). Comments on taxonomy and relationships in the parrot subfamilies Nestorinae, Loriinae, and Platycercinae. Emu 73, 157–176.
Comments on taxonomy and relationships in the parrot subfamilies Nestorinae, Loriinae, and Platycercinae.Crossref | GoogleScholarGoogle Scholar |

Homberger, D. (1980). Funktionell-morphologische Untersuchungen zur Radiation der Ernährungs- und Trinkmethoden der Papageien (Psittaci). Bonner Zoologische Monographien 13, 1–192.

Leeton, P. R. J., Christidis, L., Westerman, M., and Boles, W. E. (1994). Molecular phylogenetic affinities of the Night Parrot (Geopsittacus occidentalis) and the Ground Parrot (Pezoporus wallicus). Auk 111, 833–843.

Maddison, W. P., and Maddison, D. R. (2009). Mesquite: a modular system for evolutionary analysis; version 2.71. Available at http://mesquiteproject.org [Verified 3 November 2010].

Mayr, G. (2008). The phylogenetic affinities of the parrot taxa Agapornis, Loriculus and Melopsittacus (Aves : Psittaciformes): hypotarsal morphology supports the results of molecular analyses. Emu 108, 23–27.
The phylogenetic affinities of the parrot taxa Agapornis, Loriculus and Melopsittacus (Aves : Psittaciformes): hypotarsal morphology supports the results of molecular analyses.Crossref | GoogleScholarGoogle Scholar |

Mivart, St. G. (1895). On the hyoid bone of certain parrots. Proceedings of the Zoological Society of London 1895, 162–174.

Rowley, I. (1997). Family Cacatuidae (Cockatoos). In ‘Handbook of the Birds of the World. Vol. 4: Sandgrouse to Cuckoos’. (Eds J. del Hoyo, A. Elliott and J. Sargatal.) pp. 246–279. (Lynx Edicions: Barcelona.)

Schweizer, M., Seehausen, O., Güntert, M., and Hertwig, S. T. (2010). The evolutionary diversification of parrots supports a taxon pulse model with multiple trans-oceanic dispersal events and local radiations. Molecular Phylogenetics and Evolution 54, 984–994.
The evolutionary diversification of parrots supports a taxon pulse model with multiple trans-oceanic dispersal events and local radiations.Crossref | GoogleScholarGoogle Scholar | 19699808PubMed |

Smith, G. (1975). Systematics of parrots. Ibis 116, 18–68.

Stegmann, B. (1964). Die funktionelle Bedeutung des Schlüsselbeines bei den Vögeln. Journal für Ornithologie 105, 450–463.
Die funktionelle Bedeutung des Schlüsselbeines bei den Vögeln.Crossref | GoogleScholarGoogle Scholar |

Tavares, E. S., Baker, A. J., Pereira, S. L., and Miyaki, C. Y. (2006). Phylogenetic relationships and historical biogeography of Neotropical Parrots (Psittaciformes : Psittacidaë : Arini) inferred from mitochondrial and nuclear DNA sequences. Systematic Biology 55, 454–470.
Phylogenetic relationships and historical biogeography of Neotropical Parrots (Psittaciformes : Psittacidaë : Arini) inferred from mitochondrial and nuclear DNA sequences.Crossref | GoogleScholarGoogle Scholar | 16861209PubMed |

Thompson, D. W. (1899). On characteristic points in the cranial osteology of the parrots. Proceedings of the Zoological Society of London 1899, 9–46.

Tokita, M., Kiyoshi, T., and Armstrong, K. N. (2007). Evolution of craniofacial novelty in parrots through developmental modularity and heterochrony. Evolution & Development 9, 590–601.
Evolution of craniofacial novelty in parrots through developmental modularity and heterochrony.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2sXhsVGisbzI&md5=13c070cf88928e4b80e761926e7fade5CAS | 17976055PubMed |

Wright, T. F., Schirtzinger, E. E., Matsumoto, T., Eberhard, J. R., Graves, G. R., Sanchez, J. J., Capelli, S., Müller, H., Scharpegge, J., Chambers, G. K., and Fleischer, R. C. (2008). A multilocus molecular phylogeny of the parrots (Psittaciformes): support for a Gondwanan origin during the Cretaceous. Molecular Biology and Evolution 25, 2141–2156.
A multilocus molecular phylogeny of the parrots (Psittaciformes): support for a Gondwanan origin during the Cretaceous.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1cXht1ektbjE&md5=b1cdc38d2e9f715b4ee5c24ab1d2cb49CAS | 18653733PubMed |

Zusi, R. L. (1993). Patterns of diversity in the avian skull. In ‘The Skull. Vol. 2’. (Eds J. Hanken and B. K. Hall.) pp. 391–437. (University of Chicago Press: Chicago.)