Free Standard AU & NZ Shipping For All Book Orders Over $80!
Register      Login
Emu Emu Society
Journal of BirdLife Australia
RESEARCH ARTICLE

Conflict between the Greater Rhea and humans in agricultural landscapes: implications for conservation of the last large herbivore of the southern Pampas

J. Pedrana A B D , L. Bernad B , N. O. Maceira B and J. P. Isacch C
+ Author Affiliations
- Author Affiliations

A Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Recursos Naturales y Gestión Ambiental, Instituto Nacional de Tecnología Agropecuaria (INTA), Balcarce, Ruta 226 km 73.5, (7620) Balcarce, Buenos Aires, Argentina.

B Recursos Naturales y Gestión Ambiental, INTA, Balcarce, Ruta 226 km 73.5, (7620) Balcarce, Buenos Aires, Argentina.

C Instituto de Investigaciones Marinas y Costeras, CONICET – Facultad de Ciencias Exactas y Naturales, Universidad Nacional de Mar del Plata, Funes 3250, (7600) Mar del Plata, Argentina.

D Corresponding author. Email: pedrana.julieta@inta.gob.ar

Emu 115(4) 335-344 https://doi.org/10.1071/MU15049
Submitted: 17 December 2014  Accepted: 30 July 2015   Published: 26 October 2015

Abstract

South-eastern South America (SESA) hosts populations of a number of large herbivores, such as the Greater Rhea (Rhea americana). However, the natural grasslands of SESA have been subject to major transformation through agricultural development, primarily grazing, cropping and afforestation. Here, we assess the relative effects of environmental and anthropogenic predictors on the distribution of Greater Rheas in the southern Pampas at different spatial scales, and produce distributions maps of the species derived from habitat-suitability models. We undertook vehicle surveys in the southern Pampas over 2 years, surveying 4600 km of road each year, and recording a total of 146 sightings of 1353 individual Rheas. Generalised additive models were used to model the presence–absence of Greater Rheas in 250-m2 cells. The habitat suitability models suggest that preferred habitats included areas of high elevation supporting waterbodies and landscapes of grazing fields and native habitats, whereas centres of human activity negative affect the distribution of the species.

Additional keywords: agroecosystems, Greater Rhea occurrence, habitat-suitability maps, landscape ecology.


References

Aizen, M. A., Garibaldi, L. A., and Dondo, M. (2009). Soybean expansion and agriculture diversity in Argentina. Ecología Austral 19, 45–54.

Alcaráz, D., Paruelo, J., and Cabello, J. (2006). Identification of current ecosystem functional types in the Iberian Peninsula. Global Ecology and Biogeography 15, 200–212.
Identification of current ecosystem functional types in the Iberian Peninsula.Crossref | GoogleScholarGoogle Scholar |

Azpiroz, A. B., Isacch, J. P., Dias, R. A., Di Giacomo, A. S., Suertegaray Fontana, C., and Morales Palarea, C. (2012). Ecology and conservation of grassland birds in southeastern South America: a review. Journal of Field Ornithology 83, 217–246.
Ecology and conservation of grassland birds in southeastern South America: a review.Crossref | GoogleScholarGoogle Scholar |

Baldi, G., and Paruelo, J. M. (2008). Land-use and land cover dynamics in South American temperate grasslands. Ecology and Society 13, 6.

Bellis, L. M., Martella, M. B., and Navarro, J. L. (2004a). Habitat use by wild and captive-reared Greater Rheas in agricultural landscapes. Oryx 38, 304–310.
Habitat use by wild and captive-reared Greater Rheas in agricultural landscapes.Crossref | GoogleScholarGoogle Scholar |

Bellis, L. M., Martella, M. B., Navarro, J. L., and Vignolo, P. E. (2004b). Home range of Greater and Lesser Rhea in Argentina: relevance to conservation. Biodiversity and Conservation 13, 2589–2598.
Home range of Greater and Lesser Rhea in Argentina: relevance to conservation.Crossref | GoogleScholarGoogle Scholar |

Bellis, L. M., Pidgeon, A. M., Volker, C., Radeloff, V. S., Navarro, J. L., and Martella, M. B. (2008). Modeling habitat suitability for Greater Rheas based on satellite image texture. Ecological Applications 18, 1956–1966.
Modeling habitat suitability for Greater Rheas based on satellite image texture.Crossref | GoogleScholarGoogle Scholar | 19263890PubMed |

Bernad, L. (2012). El ñandú (Rhea americana) como controlador de malezas en cultivos agrícolas pampeanos. M.Sc. thesis, Faculty of Agricultural Sciences, National University of Mar del Plata, Argentina.

Bilenca, D., and Miñarro, F. (2004). ‘Identificación de Áreas Valiosas de Pastizal (AVP) en las Pampas y Campos de Argentina, Uruguay y sur de Brasil.’(Fundación Vida Silvestre Argentina: Buenos Aires.)

BirdLife International (2012). Rhea americana. The IUCN Red List of Threatened Species. Version 2015.2. Available at www.iucnredlist.org/details/22678073/0 [Verified 3 September 2015].

Bruning, D. F. (1974). Social structure and reproductive behavior in the Greater Rhea. Living Bird 13, 251–294.

Bucher, E. H., and Nores, M. (1988). Present status of birds in steppes and savannas of northern and central Argentina. In ‘Ecology and Conservation of Grassland Birds’. International Council for Bird Preservation Technical Publication No. 7. (Ed. P. Goriup.) pp. 71–79. (ICBP: Cambridge: UK.)

Burnham, K. P., and Anderson, D. R. (2002). ‘Model Selection and Multi-model Inference: A Practical Information-theoretic Approach.’ (Springer-Verlag: New York.)

Codenotti, T. L., and Alvarez, F. (2000). Habitat use by Greater Rheas Rhea americana in an agricultural area of southern Brazil. Revista de Etología 2, 77–84.

Codesido, M., González-Fischer, C., and Bilenca, D. (2011). Distributional changes of landbird species in agroecosystems of central Argentina. Condor 113, 266–273.
Distributional changes of landbird species in agroecosystems of central Argentina.Crossref | GoogleScholarGoogle Scholar |

Collingham, Y. C., and Huntley, B. (2000). Impacts of habitat fragmentation and patch size upon migration rates. Ecological Applications 10, 131–144.
Impacts of habitat fragmentation and patch size upon migration rates.Crossref | GoogleScholarGoogle Scholar |

Comparatore, V., and Yagueddú, C. (2007). Diet of the Greater Rhea (Rhea americana) in an agroecosystem of the Flooding Pampa, Argentina. Ornitologia Neotropical 18, 187–194.

Demaría, M. R. (1993). El efecto de las actividades agropecuarias sobre las poblaciones de Ñandú: Evaluación y pautas de manejo. M.Sc. thesis, Centro de Zoología Aplicada, Universidad Nacional de Córdoba, Argentina.

Demaría, M. R., McShea, W. J., Koy, K., and Maceira, N. O. (2004). Pampas deer conservation with respect to habitat loss and protected area considerations in San Luis, Argentina. Biological Conservation 115, 121–130.
Pampas deer conservation with respect to habitat loss and protected area considerations in San Luis, Argentina.Crossref | GoogleScholarGoogle Scholar |

Eastman, J. R. (2009). ‘IDRISI Taiga.ʼ (Clark University: Worcester, MA.)

Fernández, G., and Reboreda, J. C. (2002). Nest-site selection by male Greater Rheas. Journal of Field Ornithology 73, 166–173.
Nest-site selection by male Greater Rheas.Crossref | GoogleScholarGoogle Scholar |

Folch, A. (1992). Family Rheidae (‘ratites’). In ‘Handbook of the Birds of the World. Vol. 1: Ostrich to Ducks’. (Eds J. del Hoyo, A. Elliot and J. Sargatal.) pp. 84–89. (Lynx Edicions: Barcelona.)

Garriz, C. A., Bernad, L., Radogna, M. C., Vranic, L., and Maceira, N. O. (2009). Ñandú (Rhea americana): evaluación de cortes comerciales. Revista Argentina de Producción Animal 29, 87–88.

Giordano, P. F., Navarro, J. L., and Martella, M. B. (2010). Building large-scale spatially explicit models to predict the distribution of suitable habitat patches for the Greater Rhea (Rhea americana), a near-threatened species. Biological Conservation 143, 357–365.
Building large-scale spatially explicit models to predict the distribution of suitable habitat patches for the Greater Rhea (Rhea americana), a near-threatened species.Crossref | GoogleScholarGoogle Scholar |

Grau, R., Aide, M., and Gasparri, I. (2005). Globalization and soybean expansion into semiarid ecoystems of Argentina. Ambio 34, 265–266.
Globalization and soybean expansion into semiarid ecoystems of Argentina.Crossref | GoogleScholarGoogle Scholar |

Guisan, A., and Zimmermann, N. E. (2000). Predictive habitat distribution models in ecology. Ecological Modelling 135, 147–186.
Predictive habitat distribution models in ecology.Crossref | GoogleScholarGoogle Scholar |

Handford, P., and Mares, M. A. (1985). The mating systems of ratites and tinamous. An evolutionary perspective. Biological Journal of the Linnean Society. Linnean Society of London 25, 77–104.
The mating systems of ratites and tinamous. An evolutionary perspective.Crossref | GoogleScholarGoogle Scholar |

Harrell, F. E. (2001). ‘Regression Modelling Strategies.’ (Springer: New York.)

Hastie, T., and Tibshirani, R. J. (1990). ‘Generalized Additive Models. ‘(Chapman & Hall: London.)

Herrera, L. P., Comparatore, V. M., and Laterra, P. (2004). Habitat relations of Rhea americana in an agroecosystem of Buenos Aires Province, Argentina. Biological Conservation 119, 363–369.
Habitat relations of Rhea americana in an agroecosystem of Buenos Aires Province, Argentina.Crossref | GoogleScholarGoogle Scholar |

Hodder, D. P., Johnson, C. J., Rea, R. V., and Zedrosser, A. (2014). Application of a species distribution model to identify and manage bear den habitat in central British Columbia, Canada. Wildlife Biology 20, 238–245.
Application of a species distribution model to identify and manage bear den habitat in central British Columbia, Canada.Crossref | GoogleScholarGoogle Scholar |

INDEC (2002). Censo Nacional Agropecuario 2002, Argentina. Available at http://www.indec.mecon.gov.ar/agropecuario/cna_principal.asp [Verified 3 September 2015].

Johnson, D. H. (1980). The comparison of usage and availability measurements for evaluating resource preference. Ecology 61, 65–71.
The comparison of usage and availability measurements for evaluating resource preference.Crossref | GoogleScholarGoogle Scholar |

Lennon, J. J. (1999). Resource selection functions: taking space seriously? Trends in Ecology & Evolution 14, 399–400.
Resource selection functions: taking space seriously?Crossref | GoogleScholarGoogle Scholar |

Li, M., and Guo, X. L. (2014). Long term effect of major disturbances on the northern mixed grassland ecosystem – a review. Open Journal of Ecology 4, 214–233.
Long term effect of major disturbances on the northern mixed grassland ecosystem – a review.Crossref | GoogleScholarGoogle Scholar |

Lombardi, C. M. (1994). Feeding and vigilance in wild Greater Rhea harems. Bird Behaviour 10, 29–35.
Feeding and vigilance in wild Greater Rhea harems.Crossref | GoogleScholarGoogle Scholar |

López-Lanús, B., Grilli, P., Coconier, E., Di Giacomo, A., and Banchs, R. (2008). Categorización de las aves de la Argentina según su estado de conservación. Informe de Aves Argentinas/AOP y Secretaría de Ambiente y Desarrollo Sustentable, Buenos Aires, Argentina.

Martella, M. B., and Navarro, J. L. (2006). Proyecto ñandú. Manejo de Rhea americana y Rhea pennata en la Argentina. In ‘Manejo de Fauna en Argentina: Programas de uso sustentable’. (Eds M. L. Bolvovick and R. Ramadori.) pp. 39–50. (Dirección de Fauna Silvestre, Secretaría de Ambiente y Desarrollo Sustentable: Buenos Aires.)

Martella, M. B., Renison, D., and Navarro, J. L. (1995). Vigilance in the Greater Rheas: effects of vegetation height and group size. Journal of Field Ornithology 66, 215–220.

Martella, M. B., Navarro, J. L., Gonnet, J. M., and Monge, S. A. (1996). Diet of Greater Rheas in an agroecosystem of central Argentina. Journal of Wildlife Management 60, 586–592.
Diet of Greater Rheas in an agroecosystem of central Argentina.Crossref | GoogleScholarGoogle Scholar |

McGarigal, K., Cushman, S. A., and Ene, E. (2012). ‘FRAGSTATS v4: Spatial Pattern Analysis Program for Categorical and Continuous Maps.’ (University of Massachusetts: Amherst, MA.)

Murtaugh, P. A. (1996). The statistical evaluation of ecological indicators. Ecological Applications 6, 132–139.
The statistical evaluation of ecological indicators.Crossref | GoogleScholarGoogle Scholar |

Navarro, J. L., and Martella, M. B. (2011). Ratite conservation: linking captive-release and welfare. In ‘The Welfare of Farmed Ratites’. (Eds P. Glatz, C. Lunam and I. Malecki.) pp. 237–258. (Springer: Heidelberg, Germany.)

Paruelo, J. M., Jobbágy, E. G., and Sala, O. E. (2001). Current distribution of ecosystem functional types in temperate South America. Ecosystems 4, 683–698.
Current distribution of ecosystem functional types in temperate South America.Crossref | GoogleScholarGoogle Scholar |

Paruelo, J. M., Garbulsky, M. F., Guerschman, J. P., and Jobbagy, E. G. (2004). Two decades of normalized difference vegetation index changes in South America: identifying the imprint of global change. International Journal of Remote Sensing 25, 2793–2806.
Two decades of normalized difference vegetation index changes in South America: identifying the imprint of global change.Crossref | GoogleScholarGoogle Scholar |

Pedrana, J., Bustamante, J., Travaini, A., Rodríguez, A., Zapata, S., Zanón Martínez, J. I., and Procopio, D. (2011). Environmental factors influencing the distribution of the Lesser Rhea (Rhea pennata pennata) in southern Patagonia. Emu 111, 350–359.
Environmental factors influencing the distribution of the Lesser Rhea (Rhea pennata pennata) in southern Patagonia.Crossref | GoogleScholarGoogle Scholar |

Pedrana, J., Bernad, L., Maceira, N. O., and Isacch, J. P. (2014). Human–Sheldgeese conflict in agricultural landscapes: effects of environmental and anthropogenic predictors on Sheldgeese distribution in the southern Pampa, Argentina. Agriculture, Ecosystems & Environment 183, 31–39.
Human–Sheldgeese conflict in agricultural landscapes: effects of environmental and anthropogenic predictors on Sheldgeese distribution in the southern Pampa, Argentina.Crossref | GoogleScholarGoogle Scholar |

Pettorelli, N., Vik, J. O., Mysterud, A., Gaillard, J. M., Tucker, C. J., and Stenseth, N. C. (2005). Using the satellite-derived NDVI to assess ecological responses to environmentalchange. Trends in Ecology & Evolution 20, 503–510.
Using the satellite-derived NDVI to assess ecological responses to environmentalchange.Crossref | GoogleScholarGoogle Scholar |

Pütz, K., Trathan, P. N., Pedrana, J., Collins, M. A., Poncet, S., and Lüthi, B. (2014). Post-fledging dispersal of King Penguins (Aptenodytes patagonicus) from two breeding sites in the South Atlantic. PLoS One 9, e97164.
Post-fledging dispersal of King Penguins (Aptenodytes patagonicus) from two breeding sites in the South Atlantic.Crossref | GoogleScholarGoogle Scholar | 24828545PubMed |

Radogna, M. C., Bernad, L., Garriz, C. A., Cuello, O. M., and Maceira, N. O. (2010). Composición corporal de la carne de ñandú (Rhea americana) en la pampa húmeda. Revista Argentina de Producción Animal 30, 53.

Reboreda, J. C., and Fernández, G. (1997). Sexual, seasonal and group size differences in the allocation of time between vigilance and feeding in the Greater Rhea (Rhea americana). Ethology 103, 198–207.
Sexual, seasonal and group size differences in the allocation of time between vigilance and feeding in the Greater Rhea (Rhea americana).Crossref | GoogleScholarGoogle Scholar |

Rodríguez, J. P., Brotons, L., Bustamante, J., and Seoane, J. (2007). The application of predictive modelling of species distribution to biodiversity conservation. Diversity & Distributions 13, 243–251.
The application of predictive modelling of species distribution to biodiversity conservation.Crossref | GoogleScholarGoogle Scholar |

Soriano, A., León, R. J. C., Sala, O. E., Lavado, R. S., Deregibus, V. A., Cauhepé, M. A., Scaglia, O. A., Velázquez, C. A., and Lemcoff, J. H. (1991). Río de la Plata grasslands. In ‘Ecosystems of the World 8A. Natural Grasslands: Introduction and Western Hemisphere’. (Ed. R. T. Coupland.) pp. 367–407. (Elsevier: New York.)

Thomas, L., Buckland, S. T., Rexstad, E. A., Laake, J. L., Strindberg, S., Hedley, S. L., Bishop, J. R. B., Marques, T. A., and Burnham, K. P. (2010). Distance software: design and analysis of distance sampling surveys for estimating population size. Journal of Applied Ecology 47, 5–14.
Distance software: design and analysis of distance sampling surveys for estimating population size.Crossref | GoogleScholarGoogle Scholar | 20383262PubMed |

Travaini, A., Bustamante, J., Rodríguez, A., Zapata, S., Procopio, D., Pedrana, J., and Martínez Peck, R. (2007). An integrated framework to map animal distributions in large and remote regions. Diversity & Distributions 13, 289–298.
An integrated framework to map animal distributions in large and remote regions.Crossref | GoogleScholarGoogle Scholar |

Wiens, J. A. (1989). Spatial scaling in ecology. Functional Ecology 3, 385–397.
Spatial scaling in ecology.Crossref | GoogleScholarGoogle Scholar |