Register      Login
Emu Emu Society
Journal of BirdLife Australia
RESEARCH ARTICLE

Environmental factors influencing the distribution of the Lesser Rhea (Rhea pennata pennata) in southern Patagonia

Julieta Pedrana A D , Javier Bustamante B , Alejandro Travaini A , Alejandro Rodríguez C , Sonia Zapata A , Juan Ignacio Zanón Martínez A and Diego Procopio A
+ Author Affiliations
- Author Affiliations

A Centro de Investigaciones Puerto Deseado, Universidad Nacional de la Patagonia Austral, CONICET, Avenida Prefectura Naval s/n, 9050 Puerto Deseado, Santa Cruz, Argentina.

B Department of Wetland Ecology, & Remote Sensing and GIS Lab (LAST-EBD), Estación Biológica de Doñana, CSIC, Américo Vespucio s/n, E-41092 Sevilla, Spain.

C Department of Conservation Biology, Estación Biológica de Doñana, CSIC, Américo Vespucio s/n, E-41092 Sevilla, Spain.

D Corresponding author. Present address: Recursos Naturales y Gestión Ambiental, Instituto Nacional de Tecnología Agropecuaria (INTA), Estación Experimental Agropecuaria Balcarce, CC 276, CP 7620 Balcarce, Argentina. Email: jpedrana@yahoo.com.ar

Emu 111(4) 350-359 https://doi.org/10.1071/MU11007
Submitted: 28 January 2011  Accepted: 16 June 2011   Published: 28 November 2011

Abstract

The Lesser Rhea (Rhea pennata pennata) has suffered a marked decline in numbers over recent decades, probably mainly as a result of livestock production and overhunting. Our aim was to investigate the factors that determine the distribution of Lesser Rheas in southern Patagonia and to generate a predictive regional distribution map. We surveyed 8000 km of roads and sighted 795 Lesser Rhea individuals or flocks. We also estimated environmental predictors from remotely sensed data and analysed the occurrence of Lesser Rheas in relation to these predictors. The predictors we examined were associated with four hypotheses explaining the distribution of Lesser Rheas: the persecution by ranchers, primary productivity, topography, and anthropogenic disturbance hypotheses. We built models for each hypothesis. Our results suggest that the distribution of Lesser Rheas is not negatively affected by persecution by ranchers, as the species is more abundant in areas with high stocking levels of sheep, but is positively influenced by primary productivity and negatively by the proximity of human habitation. The resulting distribution map can be used as a management tool for government agencies and highlights the conservation priorities for managing this declining and emblematic species.

Additional keywords: Argentina, large-scale habitat models, ratite ecology, species distribution maps.


References

Abraham, E., Macagno, P., and Tomasini, D. (2005). Experiencia argentina vinculada a la obtención y evaluación de indicadores de desertificación. In ‘Desertificación: Indicadores y Puntos de Referencia en América Latina y el Caribe’. (Eds E. Abraham, D. Tomasini and P. Macagno.) pp. 81–85. (Secretaria de Ambiente y Desarrollo Sustentable: Mendoza, Argentina.)

Austin, M. (2007). Species distribution models and ecological theory: a critical assessment and some possible new approaches. Ecological Modelling 200, 1–19.
Species distribution models and ecological theory: a critical assessment and some possible new approaches.Crossref | GoogleScholarGoogle Scholar |

Baldi, R., Pelliza-Sbriller, A., Elston, D., and Albon, S. (2004). High potential for competition between guanacos and sheep in Patagonia. Journal of Wildlife Management 68, 924–938.
High potential for competition between guanacos and sheep in Patagonia.Crossref | GoogleScholarGoogle Scholar |

Barri, F. R., Martella, M. B., and Navarro, J. L. (2008). Effects of hunting, egg harvest and livestock grazing intensities on density and reproductive success of Lesser Rhea Rhea pennata pennata in Patagonia: implications for conservation. Oryx 42, 607–610.
Effects of hunting, egg harvest and livestock grazing intensities on density and reproductive success of Lesser Rhea Rhea pennata pennata in Patagonia: implications for conservation.Crossref | GoogleScholarGoogle Scholar |

Barri, F. R., Martella, M. B., and Navarro, J. L. (2009a). Nest-site habitat selection by Lesser Rheas (Rhea pennata pennata) in northwestern Patagonia, Argentina. Journal für Ornithologie 150, 511–514.
Nest-site habitat selection by Lesser Rheas (Rhea pennata pennata) in northwestern Patagonia, Argentina.Crossref | GoogleScholarGoogle Scholar |

Barri, F. R., Martella, M. B., and Navarro, J. L. (2009b). Reproductive success of wild Lesser Rheas (Pterocnemia - Rhea - pennata pennata) in north-western Patagonia, Argentina. Journal für Ornithologie 150, 127–132.
Reproductive success of wild Lesser Rheas (Pterocnemia - Rhea - pennata pennata) in north-western Patagonia, Argentina.Crossref | GoogleScholarGoogle Scholar |

Bellis, L. M., Martella, M. B., Navarro, J. L., and Vignolo, P. E. (2004). Home range of Greater and Lesser Rhea in Argentina: relevance to conservation. Biodiversity and Conservation 13, 2589–2598.
Home range of Greater and Lesser Rhea in Argentina: relevance to conservation.Crossref | GoogleScholarGoogle Scholar |

Bellis, L. M., Navarro, J. L., Vignolo, P., and Martella, M. B. (2006). Habitat preferences of Lesser Rhea in Argentine Patagonia. Biodiversity and Conservation 15, 3065–3075.
Habitat preferences of Lesser Rhea in Argentine Patagonia.Crossref | GoogleScholarGoogle Scholar |

Blanco, D. E., and De la Balze, V. M. (2006). Harvest of migratory geese Chloephaga spp. in Argentina: an overview of the present situation. In ‘Waterbirds Around the World’. (Eds G. C. Boere, C. A. Galbraith and D. A. Stroud.) pp. 870–873. (The Stationery Office: Edinburgh, UK.)

Bruning, D. F. (1974). Social structure and reproductive behaviour in the Greater Rhea. Living Bird 13, 251–294.

Buckland, S. T., Anderson, D. R., Burnham, K. P., Laake, J. L., Borchers, D. L., and Thomas, L. (2001). ‘Introduction to Distance Sampling.’ (Oxford University Press: Oxford, UK.)

Burnham, K. P., and Anderson, D. R. (2002). ‘Model Selection and Multi-Model Inference: A Practical Information-Theoretic Approach.’ (Springer: New York.)

Bustamante, J., and Seoane, J. (2004). Predicting the distribution of four species of raptors (Aves : Accipitridae) in southern Spain: statistical models work better than existing maps. Journal of Biogeography 31, 295–306.
Predicting the distribution of four species of raptors (Aves : Accipitridae) in southern Spain: statistical models work better than existing maps.Crossref | GoogleScholarGoogle Scholar |

Crawley, M. J. (2002). ‘Statistical Computing.’ (Wiley: New York.)

Eastman, J. (2003). ‘IDRISI Kilimanjaro: Guide to GIS and Image Processing.’ (Clark Laboratories, Clark University: Worcester, MA.)

Folch, A. (1992). Family Rheidae (Rheas). In ‘Handbook of the Birds of the World. Vol 1: Ostrich to Ducks’. (Eds J. Del Hoyo, A. Elliott and J. Sargatal.) pp. 83–84. (Lynx Edicions: Barcelona.)

Funes, M. C., Rosauer, M. M., Aldao, G. S., Monsalvo, O. B., and Novaro, A. J. (2000). ‘Manejo y Conservación del Choique en la Patagonia: Análisis de los relevamientos poblacionales.’ (C.E.A.N, Dirección General de Supervisión Técnico Administrativa, Subsecretaria de Producción y Recursos Naturales, Secretaría de Estado de Producción y Turismo: Río Negro, Argentina.)

Golluscio, R. A., Deregibus, V. A., and Paruelo, J. M. (1998). Sustainability and range management in the Patagonia steppes. Ecología Austral 8, 265–284.

González, L., and Rial, P. (2004). ‘Guía geográfica interactiva de Santa Cruz.’ (Ediciones Instituto Nacional de Tecnología Agropecuaria (INTA) and Universidad Nacional de la Patagonia Austral: Santa Cruz, Argentina.)

Gottschalk, T. K., Ekschmitt, K., İsfendiyaroglu, S., Gem, E., and Wolters, V. (2007). Assessing the potential distribution of the Caucasian Black Grouse Tetrao mlokosiewiczi in Turkey through spatial modelling. Journal für Ornithologie 148, 427–434.
Assessing the potential distribution of the Caucasian Black Grouse Tetrao mlokosiewiczi in Turkey through spatial modelling.Crossref | GoogleScholarGoogle Scholar |

Harrell, F. E. (2001). ‘Regression Modelling Strategies.’ (Springer: New York.)

Hastie, T., and Tibshirani, R. J. (1990). ‘Generalized Additive Models.’ (Chapman and Hall: London.)

Jiménez-Valverde, A. J., and Lobo, J. M. (2006). The ghost of unbalanced species distribution data in geographical model predictions. Diversity & Distributions 12, 521–524.
The ghost of unbalanced species distribution data in geographical model predictions.Crossref | GoogleScholarGoogle Scholar |

Lennon, J. J. (1999). Resource selection functions: taking space seriously? Trends in Ecology & Evolution 14, 399–400.
Resource selection functions: taking space seriously?Crossref | GoogleScholarGoogle Scholar |

Liu, C., Berry, P. M., Dawson, T. P., and Pearson, R. G. (2005). Selecting thresholds of occurrence in the prediction of species distributions. Ecography 28, 385–393.
Selecting thresholds of occurrence in the prediction of species distributions.Crossref | GoogleScholarGoogle Scholar |

Martella, M. J., and Navarro, J. L. (2006). Proyecto Ñandú: Manejo de Rhea americana y R. pennata en la Argentina. In ‘Manejo de fauna silvestre en la Argentina y programa de usos sustentables’. (Eds M. L. Bolkovic and D. Ramadori.) pp. 39–50. (Dirección de Fauna Silvestre, Secretaría de Medio Ambiente y Desarrollo Sustentable: Buenos Aires.)

MathSoft (1999). ‘S-Plus 2000. User’s Guide.’ (Mathsoft Data Analysis Products Division: Seattle, WA.)

Mazzoni, E., and Vázquez, M. (2004). ‘Ecosistemas de mallines y paisajes de la Patagonia austral (Provincia de Santa Cruz).’ (Ediciones Instituto Nacional de Tecnología Agropecuaria (INTA): Santa Cruz, Argentina.)

Murtaugh, P. A. (1996). The statistical evaluation of ecological indicators. Ecological Applications 6, 132–139.
The statistical evaluation of ecological indicators.Crossref | GoogleScholarGoogle Scholar |

Navarro, J. L., Cardón, R., Manero, A., and Clarke, R. (1999). Estimación de la abundancia poblacional del choique en la vida silvestre. Report to Dirección de Fauna y Flora Silvestres, Secretaría de Recursos Naturales y Desarrollo Sustentable, Buenos Aires, Argentina.

Novaro, A. J., Funes, M. C., and Walker, R. S. (2000). Ecological extinction of native prey of a carnivore assemblage in Argentine Patagonia. Biological Conservation 92, 25–33.
Ecological extinction of native prey of a carnivore assemblage in Argentine Patagonia.Crossref | GoogleScholarGoogle Scholar |

Pearce, J., and Ferrier, S. (2000). Evaluating the predictive performance of habitat models developed using logistic regression. Ecological Modelling 133, 225–245.
Evaluating the predictive performance of habitat models developed using logistic regression.Crossref | GoogleScholarGoogle Scholar |

Pedrana, J., Bustamante, J., Travaini, A., and Rodríguez, A. (2010). Factors influencing guanaco distribution in southern Argentine Patagonia and implications for its sustainable use. Biodiversity and Conservation 19, 3499–3512.
Factors influencing guanaco distribution in southern Argentine Patagonia and implications for its sustainable use.Crossref | GoogleScholarGoogle Scholar |

Pedrana, J., Bustamante, J., Rodríguez, A., and Travaini, A. (2011). Primary productivity and anthropogenic disturbance as determinants of Upland Goose Chloephaga picta distribution in southern Patagonia. Ibis 153, 517–530.
Primary productivity and anthropogenic disturbance as determinants of Upland Goose Chloephaga picta distribution in southern Patagonia.Crossref | GoogleScholarGoogle Scholar |

Rodríguez, J. P., Brotons, L., Bustamante, J., and Seoane, J. (2007). The application of predictive modelling of species distribution to biodiversity conservation. Diversity & Distributions 13, 243–251.
The application of predictive modelling of species distribution to biodiversity conservation.Crossref | GoogleScholarGoogle Scholar |

Sakamoto, Y., Ishiguro, M., and Kitagawa, G. (1986). ‘Akaike Information Criterion Statistics.’ (KTK Scientific Publishers: Tokyo.)

Scott, J. M., Heglund, P. J., and Morrison, M. I. (2002). ‘Predicting Species Occurrences: Issues of Accuracy and Scale.’ (Island Press: Washington, DC.)

Seoane, J., Viñuela, J., Díaz-Delgado, R., and Bustamante, J. (2003). The effects of land use and climate on Red Kite distribution in the Iberian Peninsula. Biological Conservation 111, 401–414.
The effects of land use and climate on Red Kite distribution in the Iberian Peninsula.Crossref | GoogleScholarGoogle Scholar |

Suárez-Seoane, S., Osborne, P., and Alonso, J. C. (2002). Large-scale habitat selection by agricultural steppe birds in Spain: identifying species-habitat responses using generalized additive models. Journal of Applied Ecology 39, 755–771.
Large-scale habitat selection by agricultural steppe birds in Spain: identifying species-habitat responses using generalized additive models.Crossref | GoogleScholarGoogle Scholar |

Thomas, L., Buckland, S. T., Rexstad, E. A., Laake, J. L., Strindberg, S., Hedley, S. L., Bishop, J. R. B., Marques, T. A., and Burnham, K. P. (2010). Distance software: design and analysis of distance sampling surveys for estimating population size. Journal of Applied Ecology 47, 5–14.
Distance software: design and analysis of distance sampling surveys for estimating population size.Crossref | GoogleScholarGoogle Scholar |

Travaini, A., Bustamante, J., Rodríguez, A., Zapata, S., Procopio, D., Pedrana, J., and Martínez Peck, R. (2007). An integrated framework to map animal distributions in large and remote regions. Diversity & Distributions 13, 289–298.
An integrated framework to map animal distributions in large and remote regions.Crossref | GoogleScholarGoogle Scholar |