Register      Login
Marine and Freshwater Research Marine and Freshwater Research Society
Advances in the aquatic sciences
RESEARCH ARTICLE

Spatial variability of phytoplankton in the Pacific western boundary currents during summer 2014

Yunyan Chen A B , Xiaoxia Sun A B C F , Mingliang Zhu A , Shan Zheng A , Yongquan Yuan D and Michel Denis E
+ Author Affiliations
- Author Affiliations

A Jiao Zhou Bay Marine Ecosystem Research Station, Institute of Oceanology, Chinese Academy of Sciences (IOCAS), number 7 Nanhai Road, Qingdao 266071, China.

B University of Chinese Academy of Sciences, 19 Yuquan Road, Beijing 100049, China.

C Laboratory for Marine Ecology and Environmental Science, Qingdao National Laboratory for Marine Science and Technology, Qingdao 266071, China.

D Key Laboratory of Marine Ecology and Environmental Sciences, Institute of Oceanology, Chinese Academy of Sciences, 7 Nanhai Road, Qingdao 266071, China.

E Aix Marseille University, Université de Toulon, CNRS/INSU, IRD, Institut Méditerranén d’Océanologie, 163 avenue de Luminy, Case 901, F-13288 Marseille cedex 09, France.

F Corresponding author. Email: xsun@qdio.ac.cn

Marine and Freshwater Research 68(10) 1887-1900 https://doi.org/10.1071/MF16297
Submitted: 31 August 2016  Accepted: 23 December 2016   Published: 16 March 2017

Abstract

The spatial distribution of phytoplankton was investigated during the summer of 2014 in two different regions of the Pacific western boundary current, namely the Warm Pool near the equator and the subtropical Kuroshio south area. Traditional approaches (size-fractionated chlorophyll-a (Chl-a) and microscopic analyses) combined with single-cell analysis (using a flow cytometer) were used to analyse the whole range of phytoplankton. Flow cytometry analysis resolved five clusters, two belonging to the pico-size fraction and three belonging to the nano-size fraction. Microscopy analysis revealed that the genera Coscinodiscus, Rhizosolenia, Chaetoceros and Ceratium were numerically dominant in the region studied. The lowest values of Chl-a, phytoplankton abundance and carbon biomass were found in the Kuroshio south area. Both Chl-a concentration data and flow cytometry analysis revealed that picophytoplankton were the predominant contributors to phytoplankton in the Pacific western boundary currents. Along the three transects during the summer cruise, Synechococcus and nanocyanobacteria-like organisms numerically dominated in surface waters with higher temperature. In contrast, eukaryotes were primarily distributed in subsurface waters with higher nutrients, especially in the eddy upwelling region mainly associated with the North Equatorial Counter Current. The vertical distribution of phytoplankton over the epipelagic layer reinforces the important role of currents in the north-western Pacific during summer.

Additional keywords: carbon biomass, flow cytometry, north-western Pacific.


References

Arruda, W. Z., and Nof, D. (2003). The Mindanao and Halmahera eddies – twin eddies induced by nonlinearities. Journal of Physical Oceanography 33, 2815–2830.
The Mindanao and Halmahera eddies – twin eddies induced by nonlinearities.Crossref | GoogleScholarGoogle Scholar |

Barber, R. T., and Chavez, F. P. (1991). Regulation of primary productivity rate in the equatorial Pacific. Limnology and Oceanography 36, 1803–1815.
Regulation of primary productivity rate in the equatorial Pacific.Crossref | GoogleScholarGoogle Scholar |

Bonato, S., Christaki, U., Lefebvre, A., Lizon, F., Thyssen, M., and Artigas, L. F. (2015). High spatial variability of phytoplankton assessed by flow cytometry, in a dynamic productive coastal area, in spring: the eastern English Channel. Estuarine, Coastal and Shelf Science 154, 214–223.
High spatial variability of phytoplankton assessed by flow cytometry, in a dynamic productive coastal area, in spring: the eastern English Channel.Crossref | GoogleScholarGoogle Scholar |

Chang, J., Chung, C. C., and Gong, G. C. (1996). Influences of cyclones on chlorophyll-a concentration and Synechococcus abundance in a subtropical western Pacific coastal ecosystem. Marine Ecology Progress Series 140, 199–205.
Influences of cyclones on chlorophyll-a concentration and Synechococcus abundance in a subtropical western Pacific coastal ecosystem.Crossref | GoogleScholarGoogle Scholar |

Christian, J. R., Murtugudde, R., Ballabrera-Poy, J., and McClain, C. R. (2004). A ribbon of dark water: phytoplankton blooms in the meanders of the Pacific North Equatorial Countercurrent. Deep-sea Research – II. Topical Studies in Oceanography 51, 209–228.
A ribbon of dark water: phytoplankton blooms in the meanders of the Pacific North Equatorial Countercurrent.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2cXltVKjur0%3D&md5=4e809d7efebea72e561bb68168b38093CAS |

Dai, L., Li, C., Yang, G., and Sun, X. (2016). Zooplankton abundance, biovolume and size spectra at western boundary currents in the subtropical North Pacific during winter 2012. Journal of Marine Systems 155, 73–83.
Zooplankton abundance, biovolume and size spectra at western boundary currents in the subtropical North Pacific during winter 2012.Crossref | GoogleScholarGoogle Scholar |

DiTullio, G. R., Hutchins, D. A., and Bruland, K. W. (1993). Interaction of iron and major nutrients controls phytoplankton growth and species composition in the tropical North Pacific Ocean. Limnology and Oceanography 38, 495–508.
Interaction of iron and major nutrients controls phytoplankton growth and species composition in the tropical North Pacific Ocean.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK2cXhvF2lt7w%3D&md5=7a7f8eed35357395d0b640b87103bb94CAS |

Fine, R. A., Lukas, R., Bingham, F. M., Warner, M. J., and Gammon, R. H. (1994). The western equatorial Pacific: a water mass crossroads. Journal of Geophysical Research: Oceans 99, 25063–25080.
The western equatorial Pacific: a water mass crossroads.Crossref | GoogleScholarGoogle Scholar |

Girault, M., Arakawa, H., Barani, A., Ceccaldi, H. J., Hashihama, F., Kinouchi, S., and Gregori, G. (2013). Distribution of ultraphytoplankton in the western part of the North Pacific subtropical gyre during a strong La Niña condition: relationship with the hydrological conditions. Biogeosciences 10, 5947–5965.
Distribution of ultraphytoplankton in the western part of the North Pacific subtropical gyre during a strong La Niña condition: relationship with the hydrological conditions.Crossref | GoogleScholarGoogle Scholar |

Girault, M., Arakawa, H., Barani, A., Ceccaldi, H. J., Hashihama, F., and Gregori, G. (2015). Heterotrophic prokaryote distribution along a 2300 km transect in the North Pacific subtropical gyre during a strong La Niña conditions: relationship between distribution and hydrological conditions. Biogeosciences 12, 3607–3621.
Heterotrophic prokaryote distribution along a 2300 km transect in the North Pacific subtropical gyre during a strong La Niña conditions: relationship between distribution and hydrological conditions.Crossref | GoogleScholarGoogle Scholar |

Goericke, R., and Montoya, J. P. (1998). Estimating the contribution of microalgal taxa to chlorophyll-a in the field – variations of pigment ratios under nutrient- and light-limited growth. Marine Ecology Progress Series 169, 97–112.
Estimating the contribution of microalgal taxa to chlorophyll-a in the field – variations of pigment ratios under nutrient- and light-limited growth.Crossref | GoogleScholarGoogle Scholar |

Grover, J. P. (1989). Influence of cell shape and size on algal competitive ability. Journal of Phycology 25, 402–405.
Influence of cell shape and size on algal competitive ability.Crossref | GoogleScholarGoogle Scholar |

Hashihama, F., Furuya, K., Kitajima, S., Takeda, S., Takemura, T., and Kanda, J. (2009). Macro-scale exhaustion of surface phosphate by dinitrogen fixation in the western North Pacific. Geophysical Research Letters 36, L03610.
Macro-scale exhaustion of surface phosphate by dinitrogen fixation in the western North Pacific.Crossref | GoogleScholarGoogle Scholar |

Henriksen, P., Riemann, B., Kaas, H., Sørensen, H. M., and Sørensen, H. L. (2002). Effects of nutrient-limitation and irradiance on marine phytoplankton pigments. Journal of Plankton Research 24, 835–858.
Effects of nutrient-limitation and irradiance on marine phytoplankton pigments.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD38Xot1Wjurs%3D&md5=b17eb6f41ca68534164ca6ebf799f16bCAS |

Hidaka, K., Kawaguchi, K., Tanabe, T., Takahashi, M., and Kubodera, T. (2003). Biomass and taxonomic composition of micronekton in the western tropical–subtropical Pacific. Fisheries Oceanography 12, 112–125.
Biomass and taxonomic composition of micronekton in the western tropical–subtropical Pacific.Crossref | GoogleScholarGoogle Scholar |

Hu, D., Wu, L., Cai, W., Gupta, A. S., Ganachaud, A., Qiu, B., Gordon, A. L., Lin, X., Chen, Z., Hu, S., Wang, G., Wang, Q., Sprintall, J., Qu, T., Kashino, Y., Wang, F., and Kessler, W. S. (2015). Pacific western boundary currents and their roles in climate. Nature 522, 299–308.
Pacific western boundary currents and their roles in climate.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC2MXhtFeiurzI&md5=1879a59e9a728e25d5956138ce511c84CAS |

Huang, S., Wilhelm, S. W., Harvey, H. R., Taylor, K., Jiao, N., and Chen, F. (2012). Novel lineages of Prochlorococcus and Synechococcus in the global oceans. The ISME Journal 6, 285–297.
Novel lineages of Prochlorococcus and Synechococcus in the global oceans.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC38XhtVCgurc%3D&md5=76225a399d3c18105f9bf496404561f7CAS |

Jyothibabu, R., Vinayachandran, P. N., Madhu, N. V., Robin, R. S., Karnan, C., Jagadeesan, L., and Anjusha, A. (2015). Phytoplankton size structure in the southern Bay of Bengal modified by the Summer Monsoon Current and associated eddies: implications on the vertical biogenic flux. Journal of Marine Systems 143, 98–119.
Phytoplankton size structure in the southern Bay of Bengal modified by the Summer Monsoon Current and associated eddies: implications on the vertical biogenic flux.Crossref | GoogleScholarGoogle Scholar |

Kang, J. H., Kim, W. S., and Son, S. K. (2004). Latitudinal differences in the distribution of mesozooplankton in the northeastern equatorial Pacific. Ocean and Polar Research 26, 351–360.
Latitudinal differences in the distribution of mesozooplankton in the northeastern equatorial Pacific.Crossref | GoogleScholarGoogle Scholar |

Karl, D. M., Bidigare, R. R., and Letelier, R. M. (2001). Long term changes in plankton community structure and productivity in the North Pacific Subtropical Gyre: the domain shift hypothesis. Deep-sea Research – II. Topical Studies in Oceanography 48, 1449–1470.
Long term changes in plankton community structure and productivity in the North Pacific Subtropical Gyre: the domain shift hypothesis.Crossref | GoogleScholarGoogle Scholar |

Kimura, S., and Tsukamoto, K. (2006). The salinity front in the North Equatorial Current: a landmark for the spawning migration of the Japanese eel (Anguilla japonica) related to the stock recruitment. Deep-sea Research – II. Topical Studies in Oceanography 53, 315–325.
The salinity front in the North Equatorial Current: a landmark for the spawning migration of the Japanese eel (Anguilla japonica) related to the stock recruitment.Crossref | GoogleScholarGoogle Scholar |

Lasternas, S., Tunin-Ley, A., Ibanez, F., Valérie, A., Pizay, M.-D., and Lemée, R. (2011). Short-term dynamics of microplankton abundance and diversity in NW Mediterranean Sea during late summer conditions (DYNAPROC 2 cruise; 2004). Biogeosciences 8, 743–761.
Short-term dynamics of microplankton abundance and diversity in NW Mediterranean Sea during late summer conditions (DYNAPROC 2 cruise; 2004).Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3MXpt1yntrg%3D&md5=d5338816189b63089cf25b74c46de359CAS |

Letelier, R. M., Karl, D. M., Abbott, M. R., and Bidigare, R. R. (2004). Light driven seasonal patterns of chlorophyll and nitrate in the lower euphotic zone of the North Pacific Subtropical Gyre. Limnology and Oceanography 49, 508–519.
Light driven seasonal patterns of chlorophyll and nitrate in the lower euphotic zone of the North Pacific Subtropical Gyre.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2cXjtFWgu7g%3D&md5=bb0b5c612d8cf96db609f91d1ff1f5d5CAS |

Lewis, M. R., Carr, M. E., Feldman, G. C., Esaia, W., and McClain, C. (1990). Influence of penetrating solar radiation on the heat budget of the equatorial Pacific Ocean. Nature 347, 543–545.
Influence of penetrating solar radiation on the heat budget of the equatorial Pacific Ocean.Crossref | GoogleScholarGoogle Scholar |

Li, B., Karl, D. M., Letelier, R. M., and Church, M. J. (2011). Size-dependent photosynthetic variability in the North Pacific Subtropical Gyre. Marine Ecology Progress Series 440, 27–40.
Size-dependent photosynthetic variability in the North Pacific Subtropical Gyre.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC38Xos1Sisg%3D%3D&md5=843a0ed305d2106760be35b717766643CAS |

Lorenzen, C. J. (1966). A method for the continuous measurement of in vivo chlorophyll concentration. Deep Sea Research and Oceanographic Abstracts 13, 223–227.
A method for the continuous measurement of in vivo chlorophyll concentration.Crossref | GoogleScholarGoogle Scholar |

Lu, G., Song, X., Yu, Z., Cao, X., and Yuan, Y. (2015). Environmental effects of modified clay flocculation on Alexandrium tamarense and paralytic shellfish poisoning toxins (PSTs). Chemosphere 127, 188–194.
Environmental effects of modified clay flocculation on Alexandrium tamarense and paralytic shellfish poisoning toxins (PSTs).Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC2MXisFCju70%3D&md5=bce00aa9cfcf75c5ea36c92c84ecd07cCAS |

Lukas, R., Firing, E., Hacker, P., Richardson, P. L., Collins, C. A., Fine, R., and Gammon, R. (1991). Observations of the Mindanao Current during the western equatorial Pacific Ocean circulation study. Journal of Geophysical Research – Oceans 96, 7089–7104.
Observations of the Mindanao Current during the western equatorial Pacific Ocean circulation study.Crossref | GoogleScholarGoogle Scholar |

Lukas, R., Yamagata, T., and McCreary, J. P. (1996). Pacific low-latitude western boundary currents and the Indonesian throughflow. Journal of Geophysical Research – Oceans 101, 12209–12216.
Pacific low-latitude western boundary currents and the Indonesian throughflow.Crossref | GoogleScholarGoogle Scholar |

Mackey, D. J., Parslow, J., Higgins, H. W., Griffiths, F. B., and O’Sullivan, J. E. (1995). Plankton productivity and biomass in the western equatorial Pacific: biological and physical controls. Deep-sea Research – II. Topical Studies in Oceanography 42, 499–533.
Plankton productivity and biomass in the western equatorial Pacific: biological and physical controls.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK2MXosFCisrw%3D&md5=192288d50b07334230cdd66e4236e2c2CAS |

Mackey, D. J., Blanchot, J., Higgins, H. W., and Neveux, J. (2002). Phytoplankton abundances and community structure in the equatorial Pacific. Deep-sea Research – II. Topical Studies in Oceanography 49, 2561–2582.
Phytoplankton abundances and community structure in the equatorial Pacific.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD38XksF2it7Y%3D&md5=a8d9f4e2c3a7bf6f0aa1395292094718CAS |

Mackinson, B. L., Moran, S. B., Lomas, M. W., Stewart, G. M., and Kelly, R. P. (2015). Estimates of micro-, nano-, and picoplankton contributions to particle export in the northeast Pacific. Biogeosciences 12, 3429–3446.
Estimates of micro-, nano-, and picoplankton contributions to particle export in the northeast Pacific.Crossref | GoogleScholarGoogle Scholar |

Matsumoto, K., and Furuya, K. (2011). Variations in phytoplankton dynamics and primary production associated with ENSO cycle in the western and central equatorial Pacific during 1994–2003. Journal of Geophysical Research. Oceans 116, C12042.
Variations in phytoplankton dynamics and primary production associated with ENSO cycle in the western and central equatorial Pacific during 1994–2003.Crossref | GoogleScholarGoogle Scholar |

Matsumoto, K., Furuya, K., and Kawano, T. (2004). Association of picophytoplankton distribution with ENSO events in the equatorial Pacific between 145°E and 160°W. Deep-sea Research – I. Oceanographic Research Papers 51, 1851–1871.
Association of picophytoplankton distribution with ENSO events in the equatorial Pacific between 145°E and 160°W.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2cXhtVWgtL%2FK&md5=d197ba1f2ee037e2fcd7a0856dd61ec6CAS |

Mella-Flores, D., Six, C., Ratin, M., Partensky, F., Boutte, C., Le Corguillé, G., Marie, D., Blot, N., Gourvil, P., Kolowrat, C., and Garczarek, L. (2012). Prochlorococcus and Synechococcus have evolved different adaptive mechanisms to cope with light and UV stress. Frontiers in Microbiology 3, 285.
Prochlorococcus and Synechococcus have evolved different adaptive mechanisms to cope with light and UV stress.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3sXms1Cmtb4%3D&md5=4ddf21b7efc8ff1797f283fd712ab3f5CAS |

Menden-Deuer, S., Lessard, E. J., and Satterberg, J. (2001). Effect of preservation on dinoflagellate and diatom cell volume and consequences for carbon biomass predictions. Marine Ecology Progress Series 222, 41–50.
Effect of preservation on dinoflagellate and diatom cell volume and consequences for carbon biomass predictions.Crossref | GoogleScholarGoogle Scholar |

Messié, M., and Radenac, M. H. (2006). Seasonal variability of the surface chlorophyll in the western tropical Pacific from SeaWiFS data. Deep-sea Research – I. Oceanographic Research Papers 53, 1581–1600.
Seasonal variability of the surface chlorophyll in the western tropical Pacific from SeaWiFS data.Crossref | GoogleScholarGoogle Scholar |

Michaels, A. F., and Silver, M. W. (1988). Primary production, sinking fluxes and the microbial food wed. Deep-sea Research – I. Oceanographic Research Papers 35, 473–490.
Primary production, sinking fluxes and the microbial food wed.Crossref | GoogleScholarGoogle Scholar |

Michelou, V. K., Lomas, M. W., and Kirchman, D. L. (2011). Phosphate and adenosine-5′-triphosphate uptake by cyanobacteria and heterotrophic bacteria in the Sargasso Sea. Limnology and Oceanography 56, 323–332.
Phosphate and adenosine-5′-triphosphate uptake by cyanobacteria and heterotrophic bacteria in the Sargasso Sea.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3MXisVGitL4%3D&md5=e7bdaceb6fb8733dbd4a1056e71c4100CAS |

Morán, X. A. G. (2007). Annual cycle of picophytoplankton photosynthesis and growth rates in a temperate coastal ecosystem: a major contribution to carbon fluxes. Aquatic Microbial Ecology 49, 267–279.
Annual cycle of picophytoplankton photosynthesis and growth rates in a temperate coastal ecosystem: a major contribution to carbon fluxes.Crossref | GoogleScholarGoogle Scholar |

Morán, X. A. G., López‐Urrutia, Á., Calvo‐Diaz, A., and Li, W. K. W. (2010). Increasing importance of small phytoplankton in a warmer ocean. Global Change Biology 16, 1137–1144.
Increasing importance of small phytoplankton in a warmer ocean.Crossref | GoogleScholarGoogle Scholar |

Moutin, T., Thingstad, T. F., Van Wambeke, F., Marie, D., Slawyk, G., Raimbault, P., and Claustre, H. (2002). Does competition for nanomolar phosphate supply explain the predominance of the cyanobacterium Synechococcus? Limnology and Oceanography 47, 1562–1567.
Does competition for nanomolar phosphate supply explain the predominance of the cyanobacterium Synechococcus?Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD38XnvVWgurs%3D&md5=66744bebcfca28d4965f43d81ad2f37eCAS |

Murray, J. W., Barber, R. T., Roman, M. R., Bacon, M. P., and Feely, R. A. (1994). Physical and biological controls on carbon cycling in the equatorial Pacific. Science 266, 58–65.
Physical and biological controls on carbon cycling in the equatorial Pacific.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK2cXmtlOrt7c%3D&md5=cd8b117a1a319aa4cf504ed6f632f472CAS |

Not, F., Latasa, M., Scharek, R., Viprey, M., Karleskind, P., Balagué, V., Ontoria-Oviedo, I., Cumino, A., Goetze, E., Vaulot, D., and Massana, R. (2008). Protistan assemblages across the Indian Ocean, with a specific emphasis on the picoeukaryotes. Deep-sea Research – I. Oceanographic Research Papers 55, 1456–1473.
Protistan assemblages across the Indian Ocean, with a specific emphasis on the picoeukaryotes.Crossref | GoogleScholarGoogle Scholar |

Olson, D. B. (2001). Biophysical dynamics of western transition zones: a preliminary synthesis. Fisheries Oceanography 10, 133–150.
Biophysical dynamics of western transition zones: a preliminary synthesis.Crossref | GoogleScholarGoogle Scholar |

Pomeroy, L. R. (1974). The ocean’s food web, a changing paradigm. Bioscience 24, 499–504.
The ocean’s food web, a changing paradigm.Crossref | GoogleScholarGoogle Scholar |

Radenac, M. H., Messié, M., Léger, F., and Bosc, C. (2013). A very oligotrophic zone observed from space in the equatorial Pacific warm pool. Remote Sensing of Environment 134, 224–233.
A very oligotrophic zone observed from space in the equatorial Pacific warm pool.Crossref | GoogleScholarGoogle Scholar |

Richardson, T. L., and Jackson, G. A. (2007). Small phytoplankton and carbon export from the surface ocean. Science 315, 838–840.
Small phytoplankton and carbon export from the surface ocean.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2sXhsVShs7s%3D&md5=8e6ad12378822c82a65fadbf692983fcCAS |

Riegman, R., Kuipers, B. R., Noordeloos, A. A., and Witte, H. J. (1993). Size-differential control of phytoplankton and the structure of plankton communities. Netherlands Journal of Sea Research 31, 255–265.
Size-differential control of phytoplankton and the structure of plankton communities.Crossref | GoogleScholarGoogle Scholar |

Rippka, R., Coursin, T., Hess, W., Lichtlé, C., Scanlan, D. J., Palinska, K. A., Iteman, I., Partensky, F., Houmard, J., and Herdman, M. (2000). Prochlorococcus marinus Chisholm et al. 1992 subsp. pastoris subsp. nov. strain PCC 9511, the first axenic chlorophyll-a2/b2-containing cyanobacterium (Oxyphotobacteria). International Journal of Systematic and Evolutionary Microbiology 50, 1833–1847.
Prochlorococcus marinus Chisholm et al. 1992 subsp. pastoris subsp. nov. strain PCC 9511, the first axenic chlorophyll-a2/b2-containing cyanobacterium (Oxyphotobacteria).Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3cXns1Slsbk%3D&md5=4eb65dc983b5d94c92415287e7c20b8aCAS |

Sato, M., Hashihama, F., Kitajima, S., Takeda, S., and Furuya, K. (2010). Distribution of nano-sized Cyanobacteria in the western and central Pacific Ocean. Aquatic Microbial Ecology 59, 273–282.
Distribution of nano-sized Cyanobacteria in the western and central Pacific Ocean.Crossref | GoogleScholarGoogle Scholar |

Smith, R. E. H., and Kalff, J. (1982). Size-dependent phosphorus uptake kinetics and cell quota in phytoplankton. Journal of Phycology 18, 275–284.
Size-dependent phosphorus uptake kinetics and cell quota in phytoplankton.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaL38Xlt1ahs7k%3D&md5=543dae129af5e3b16d6c613b777f3b72CAS |

Su, X., Liu, C., Beaufort, L., Barbarin, N., and Jian, Z. (2015). Differences in Late Quaternary primary productivity between the western tropical Pacific and the South China Sea: evidence from coccoliths. Deep-sea Research – II. Topical Studies in Oceanography 122, 131–141.
Differences in Late Quaternary primary productivity between the western tropical Pacific and the South China Sea: evidence from coccoliths.Crossref | GoogleScholarGoogle Scholar |

Sun, C., Xu, J., Liu, Z., Tong, M., and Zhu, B. (2008). Application of Argo data in the analysis of water masses in the Northwest Pacific Ocean. Marine Science Bulletin 10, 1–13.

Taniguchi, A. (1973). Phytoplankton–zooplankton relationships in the Western Pacific Ocean and adjacent seas. Marine Biology 21, 115–121.
Phytoplankton–zooplankton relationships in the Western Pacific Ocean and adjacent seas.Crossref | GoogleScholarGoogle Scholar |

Tarran, G. A., Heywood, J. L., and Zubkow, M. V. (2006). Latitudinal changes in the standing stocks of nano- and picoeukaryotic phytoplankton in the Atlantic Ocean. Deep-sea Research – II. Topical Studies in Oceanography 53, 1516–1529.
Latitudinal changes in the standing stocks of nano- and picoeukaryotic phytoplankton in the Atlantic Ocean.Crossref | GoogleScholarGoogle Scholar |

Thyssen, M., Alvain, S., Lefèbvre, A., Dessailly, D., Rijkeboer, M., Guiselin, N., Creach, V., and Artigas, L.-F. (2015). High-resolution analysis of a North Sea phytoplankton community structure based on in situ flow cytometry observations and potential implication for remote sensing. Biogeosciences 12, 4051–4066.
High-resolution analysis of a North Sea phytoplankton community structure based on in situ flow cytometry observations and potential implication for remote sensing.Crossref | GoogleScholarGoogle Scholar |

Utermöhl, H. (1958). Zur vervollkommnung der quantitativen phytoplankton-methodik. Mitteilung Internationale Vereinigung fuer Theoretische unde Amgewandte Limnologie 9, 1–38.

Veldhuis, M. J., Timmermans, K. R., Croot, P., and van der Wagt, B. (2005). Picophytoplankton; a comparative study of their biochemical composition and photosynthetic properties. Journal of Sea Research 53, 7–24.
Picophytoplankton; a comparative study of their biochemical composition and photosynthetic properties.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2MXjsFSj&md5=d1824f5a5eeb54f0d982bcc6034b52d8CAS |

Verity, P. G., Robertson, C. Y., Tronzo, C. R., Andrews, M. G., Nelson, J. R., and Sieracki, M. E. (1992). Relationships between cell volume and the carbon and nitrogen content of marine photosynthetic nanoplankton. Limnology and Oceanography 37, 1434–1446.
Relationships between cell volume and the carbon and nitrogen content of marine photosynthetic nanoplankton.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK3sXktVCmtrs%3D&md5=98f20452ed05325bc7432c2964b2d3afCAS |

Viviani, D. A., Björkman, K. M., Karl, D. M., and Church, M. J. (2011). Plankton metabolism in surface waters of the tropical and subtropical Pacific Ocean. Aquatic Microbial Ecology 62, 1–12.
Plankton metabolism in surface waters of the tropical and subtropical Pacific Ocean.Crossref | GoogleScholarGoogle Scholar |

Wood, E. J. F., and Davis, P. S. (1956). Importance of smaller phytoplankton elements. Nature 177, 438.
Importance of smaller phytoplankton elements.Crossref | GoogleScholarGoogle Scholar |

Worden, A. Z., Nolan, J. K., and Palenik, B. (2004). Assessing the dynamics and ecology of marine picophytoplankton: the importance of the eukaryotic component. Limnology and Oceanography 49, 168–179.
Assessing the dynamics and ecology of marine picophytoplankton: the importance of the eukaryotic component.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2cXhsVeltL4%3D&md5=ff3e0a83b7a5bcb6dda10dda2eee6a26CAS |

Wu, L., Cai, W., Zhang, L., Nakamura, H., Timmermann, A., Joyce, T., McPhade, M. J., Alexander, M., Qiu, B., Visbeck, M., and Giese, B. (2012). Enhanced warming over the global subtropical western boundary currents. Nature Climate Change 2, 161–166.
Enhanced warming over the global subtropical western boundary currents.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC38XivVentb8%3D&md5=e8992bf1bb87694f3002411ce987cb74CAS |

Wu, W., Huang, B., and Zhong, C. (2014). Photosynthetic picoeukaryote assemblages in the South China Sea from the Pearl River estuary to the SEATS station. Aquatic Microbial Ecology 71, 271–284.
Photosynthetic picoeukaryote assemblages in the South China Sea from the Pearl River estuary to the SEATS station.Crossref | GoogleScholarGoogle Scholar |

Yan, X. H., Ho, C. R., Zheng, Q., and Klemas, V. (1992). Temperature and size variabilities of the Western Pacific Warm Pool. Science 258, 1643–1645.
Temperature and size variabilities of the Western Pacific Warm Pool.Crossref | GoogleScholarGoogle Scholar | 1:STN:280:DC%2BC3cvitFShtA%3D%3D&md5=cd27fa07c5c5d33cbd5419532a0cb0f7CAS |

Yaremchuk, M., and Qu, T. (2004). Seasonal variability of the large-scale currents near the coast of the Philippines. Journal of Physical Oceanography 34, 844–855.
Seasonal variability of the large-scale currents near the coast of the Philippines.Crossref | GoogleScholarGoogle Scholar |

Yentsch, C. S., and Menzel, D. W. (1963). A method for the determination of phytoplankton chlorophyll and phaeophytin by fluorescence. Deep Sea Research and Oceanographic Abstracts 10, 221–231.
A method for the determination of phytoplankton chlorophyll and phaeophytin by fluorescence.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaF3sXkvVelu78%3D&md5=1dcf11293934dc3391cbaf50c8d22c6cCAS |

Zehr, J. P., Waterbury, J. B., Turner, P. J., Montoya, J. P., Omoregie, E., Steward, G. F., Hansen, A., and Karl, D. M. (2001). Unicellular cyanobacteria fix N2 in the subtropical North Pacific Ocean. Nature 412, 635–638.
Unicellular cyanobacteria fix N2 in the subtropical North Pacific Ocean.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3MXmtVCisb0%3D&md5=6482e750711a348aa26d70294b692c60CAS |