Register      Login
Marine and Freshwater Research Marine and Freshwater Research Society
Advances in the aquatic sciences
RESEARCH ARTICLE

Bacteria in tropical floodplain soils are sensitive to changes in saltwater

Tiffanie M. Nelson A D , Claire Streten A , Karen S. Gibb B and Anthony A. Chariton C
+ Author Affiliations
- Author Affiliations

A Australian Institute of Marine Science, Sustainable Coastal Ecosystems and Industries in Tropical Australia, Arafura Timor Research Facility, 23 Ellengowan Drive, Casuarina, NT 0810, Australia.

B Research Institute for the Environment and Livelihoods, Charles Darwin University, Darwin, NT 0810, Australia.

C CSIRO Oceans and Atmosphere, Locked Bag 2007, Kirrawee, NSW 2232, Australia.

D Corresponding author. Present address: Geelong Centre for Emerging Infectious Disease, Faculty of Health, School of Medicine, Deakin University, Geelong, Vic. 3220, Australia. Email: tiffanie.nelson@deakin.edu.au

Marine and Freshwater Research 69(7) 1110-1123 https://doi.org/10.1071/MF16033
Submitted: 1 February 2016  Accepted: 5 July 2016   Published: 29 August 2016

Abstract

Bacterial communities in floodplain and wetland soils cycle elements essential for flora and fauna. The coastal habitats of northern Australia are threatened with increasing saltwater intrusion (SWI) events that will destroy freshwater habitats. The effect of the impending SWI on bacterial communities is unknown. Here, we examined the bacterial communities of a tropical river floodplain located in World Heritage Kakadu National Park. Using 16S rRNA gene pyrosequencing, we measured the baseline bacterial communities from three morphologically distinct regions of the floodplain (lower, upper and backwater swamp), within three zones of the South Alligator River (upstream, cuspate and estuarine funnel or sinuous). Significant differences in the bacterial community were observed at each category of floodplain morphology and river zone. The greatest differences were due to pH and salinity. Large changes in bacterial compositions are predicted to occur with increases in salinity and pH. Saltwater intrusion is predicted to increase substantially in the next decades with sea-level rise, and is likely to cause large and significant changes to the bacterial community with unknown consequences for biogeochemical cycling. Kakadu National Park may benefit from incorporating bacteria into routine studies, because we have shown here that they are sensitive indicators of change, even across small ranges of abiotic variables.

Additional keywords: biogeochemistry, biomonitoring, hydrology, microbiology, tropics.


References

Ambler, R. P., Meyer, T. E., and Kamen, M. D. (1993). Amino acid sequence of a high redox potential ferredoxin (HiPIP) from the purple phototrophic bacterium Rhodopila globiformis, which has the highest known redox potential of its class. Archives of Biochemistry and Biophysics 306, 215–222.
Amino acid sequence of a high redox potential ferredoxin (HiPIP) from the purple phototrophic bacterium Rhodopila globiformis, which has the highest known redox potential of its class.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK2cXjtVWq&md5=66841d5c210f8ce84ca858153b901af4CAS | 8215406PubMed |

Anderson, M. J., Gorley, R. N., and Clarke, K. R. (2008). ‘PRIMER+ for PERMANOVA: Guide to Software and Statistical Methods. 214.’ (Primer-E: Plymouth, UK.)

Baldwin, A. H., and Mendelssohn, I. A. (1998). Effects of salinity and water level on coastal marshes: an experimental test of disturbance as a catalyst for vegetation change. Aquatic Botany 61, 255–268.
Effects of salinity and water level on coastal marshes: an experimental test of disturbance as a catalyst for vegetation change.Crossref | GoogleScholarGoogle Scholar |

Benning, M. M., Meyer, T. E., and Holden, H. M. (1996). Molecular structure of a high potential cytochrome c2 isolated from Rhodopila globiformis. Archives of Biochemistry and Biophysics 333, 338–348.
Molecular structure of a high potential cytochrome c2 isolated from Rhodopila globiformis.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK28XlslSiur0%3D&md5=4703e30f1b3f0198acccb93508fc359eCAS | 8809072PubMed |

Bowman, D. M. J. S., Prior, L. D., and De Little, S. C. (2010). Retreating Melaleuca swamp forests in Kakadu National Park: evidence of synergistic effects of climate change and past feral buffalo impacts. Austral Ecology 35, 898–905.
Retreating Melaleuca swamp forests in Kakadu National Park: evidence of synergistic effects of climate change and past feral buffalo impacts.Crossref | GoogleScholarGoogle Scholar |

Bray, J. R., and Curtis, J. T. (1957). An ordination of the upland forest communities of southern Wisconsin. Ecological Monographs 27, 325–349.
An ordination of the upland forest communities of southern Wisconsin.Crossref | GoogleScholarGoogle Scholar |

Campbell, B. J., and Kirchman, D. L. (2013). Bacterial diversity, community structure and potential growth rates along an estuarine salinity gradient. The ISME Journal 7, 210–220.
Bacterial diversity, community structure and potential growth rates along an estuarine salinity gradient.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC38XhvVOrsbfL&md5=da88aaad2ced6a158a5cc71aedc9f880CAS | 22895159PubMed |

Chan, K. -G., and Chong, T. -M. (2014). Prevalence of unclassified bacteria in tropical coastal waters of Malaysia revealed by metagenomic approach. Genome Announcements 2, e00419-14.
Prevalence of unclassified bacteria in tropical coastal waters of Malaysia revealed by metagenomic approach.Crossref | GoogleScholarGoogle Scholar | 24812226PubMed |

Claesson, M. J., Claesson, M. J., Wang, Q., Wang, Q., O’Sullivan, O., Greene-Diniz, R., Cole, J. R., Cole, J. R., Ross, R. P., Ross, R. P., O’Toole, P. W., and O’Toole, P. W. (2010). Comparison of two next-generation sequencing technologies for resolving highly complex microbiota composition using tandem variable 16S rRNA gene regions. Nucleic Acids Research 38, e200.
Comparison of two next-generation sequencing technologies for resolving highly complex microbiota composition using tandem variable 16S rRNA gene regions.Crossref | GoogleScholarGoogle Scholar | 20880993PubMed |

Clarke, K. R., and Gorley, R. N. (2006). ‘PRIMER v6: User Manual/Tutorial.’ (PRIMER-E: Plymouth, UK.)10.1371/JOURNAL.PONE.0073143

Dai, Y., Yang, Y., Wu, Z., Feng, Q., Xie, S., and Liu, Y. (2016). Spatiotemporal variation of planktonic and sediment bacterial assemblages in two plateau freshwater lakes at different trophic status. Applied Microbiology and Biotechnology 100, 4161–4175.
Spatiotemporal variation of planktonic and sediment bacterial assemblages in two plateau freshwater lakes at different trophic status.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC2MXitV2ktbrM&md5=f6e299f6f63698d3676a563bcba791dbCAS | 26711281PubMed |

DeBruyn, J. M., Nixon, L. T., Fawaz, M. N., Johnson, A. M., and Radosevich, M. (2011). Global biogeography and quantitative seasonal dynamics of Gemmatimonadetes in soil. Applied and Environmental Microbiology 77, 6295–6300.
Global biogeography and quantitative seasonal dynamics of Gemmatimonadetes in soil.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3MXht1Oju77E&md5=c620704a54fb5b0f5d7e36e1459e86b3CAS | 21764958PubMed |

Dedysh, S. N. (2011). Cultivating uncultured bacteria from northern wetlands: knowledge gained and remaining gaps. Frontiers in Microbiology 184, 1–15.
Cultivating uncultured bacteria from northern wetlands: knowledge gained and remaining gaps.Crossref | GoogleScholarGoogle Scholar |

Du Laing, G., Rinklebe, J., Vandecasteele, B., Meers, E., and Tack, F. M. G. (2009). Trace metal behaviour in estuarine and riverine floodplain soils and sediments: a review. The Science of the Total Environment 407, 3972–3985.
Trace metal behaviour in estuarine and riverine floodplain soils and sediments: a review.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1MXls1Oku7Y%3D&md5=b8d8b5ed51fcc5b1754bb11c7f153df4CAS | 18786698PubMed |

Dupuy, N. C., and Dreyfus, B. L. (1992). Bradyrhizobium populations occur in deep soil under the leguminous tree Acacia albida. Applied and Environmental Microbiology 58, 2415–2419.
| 1:STN:280:DC%2BC3crot1WntQ%3D%3D&md5=9fd569c106f755429a7691072720634fCAS | 16348745PubMed |

Evans, S. E., and Wallenstein, M. D. (2012). Soil microbial community response to drying and rewetting stress: does historical precipitation regime matter? Biogeochemistry 109, 101–116.
Soil microbial community response to drying and rewetting stress: does historical precipitation regime matter?Crossref | GoogleScholarGoogle Scholar |

Finlayson, C. M. (2005). Plant ecology of Australia’s tropical floodplain wetlands: a review. Annals of Botany 96, 541–555.
Plant ecology of Australia’s tropical floodplain wetlands: a review.Crossref | GoogleScholarGoogle Scholar | 1:STN:280:DC%2BD2MvotVehtQ%3D%3D&md5=e51f1f5fdcfef6e1e7d5f79e8dadf232CAS | 16093268PubMed |

Foulquier, A., Volat, B., Neyra, M., Bornette, G., and Montuelle, B. (2013). Long-term impact of hydrological regime on structure and functions of microbial communities in riverine wetland sediments. FEMS Microbiology Ecology 85, 211–226.
Long-term impact of hydrological regime on structure and functions of microbial communities in riverine wetland sediments.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3sXht1ymsbjJ&md5=9dbc89259eb3fa4a04a5d3f7477a051eCAS | 23496074PubMed |

Fuentes, S., Ding, G.-C., Cárdenas, F., Smalla, K., and Seeger, M. (2015). Assessing environmental drivers of microbial communities in estuarine soils of the Aconcagua River in central Chile. FEMS Microbiology Ecology 91, fiv110.
Assessing environmental drivers of microbial communities in estuarine soils of the Aconcagua River in central Chile.Crossref | GoogleScholarGoogle Scholar | 26362923PubMed |

Harmsen, H., Van Kuijk, B., Plugge, C. M., Akkermans, A., De Vos, W. M., and Stams, A. (1998). Syntrophobacter fumaroxidans sp. nov., a syntrophic propionate-degrading sulfate-reducing bacterium. International Journal of Systematic Bacteriology 48, 1383–1387.
Syntrophobacter fumaroxidans sp. nov., a syntrophic propionate-degrading sulfate-reducing bacterium.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK1cXns12rtbo%3D&md5=2ed0c31e145dc9d9ac2af7269d6d6007CAS | 9828440PubMed |

Hatje, V., Payne, T. E., Hill, D. M., McOrist, G., Birch, G. F., and Szymczak, R. (2003). Kinetics of trace element uptake and release by particles in estuarine waters: effects of pH, salinity, and particle loading. Environment International 29, 619–629.
Kinetics of trace element uptake and release by particles in estuarine waters: effects of pH, salinity, and particle loading.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3sXjs1Kgtrw%3D&md5=f0a539cacdc7212e23762bfa84638582CAS | 12742405PubMed |

Herbert, E. R., Boon, P., Burgin, A. J., Neubauer, S. C., Franklin, R. B., Ardón, M., Hopfensperger, K. N., Lamers, L. P. M., and Gell, P. (2015). A global perspective on wetland salinization: ecological consequences of a growing threat to freshwater wetlands. Ecosphere 6, art206.
A global perspective on wetland salinization: ecological consequences of a growing threat to freshwater wetlands.Crossref | GoogleScholarGoogle Scholar |

Intergovernmental Panel on Climate Change (2007). ‘Climate Change 2007: Mitigation of Climate Change.’ (Cambridge University Press: Cambridge, UK, and New York.)10.1017/CBO9780511546013

Jones, R. T., Robeson, M. S., Lauber, C. L., Hamady, M., Knight, R., and Fierer, N. (2009). A comprehensive survey of soil acidobacterial diversity using pyrosequencing and clone library analyses. The ISME Journal 3, 442–453.
A comprehensive survey of soil acidobacterial diversity using pyrosequencing and clone library analyses.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1MXms12jur4%3D&md5=65a2a957f58848375ab517c683c81b09CAS | 19129864PubMed |

King, R. S., and Baker, M. E. (2010). Considerations for analyzing ecological community thresholds in response to anthropogenic environmental gradients. Journal of the North American Benthological Society 29, 998–1008.
Considerations for analyzing ecological community thresholds in response to anthropogenic environmental gradients.Crossref | GoogleScholarGoogle Scholar |

Kulichevskaya, I. S., Guzev, V. S., Gorlenko, V. M., Liesack, W., and Dedysh, S. N. (2006). Rhodoblastus sphagnicola sp. nov., a novel acidophilic purple non-sulfur bacterium from Sphagnum peat bog. International Journal of Systematic and Evolutionary Microbiology 56, 1397–1402.
Rhodoblastus sphagnicola sp. nov., a novel acidophilic purple non-sulfur bacterium from Sphagnum peat bog.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD28XmvFGqsbY%3D&md5=e24d6af1e6524774c87d383463f2574dCAS | 16738120PubMed |

Lamers, L. P. M., Tomassen, H. B. M., and Roelofs, J. G. M. (1998). Sulfate-induced eutrophication and phytotoxicity in freshwater wetlands. Environmental Science & Technology 32, 199–205.
Sulfate-induced eutrophication and phytotoxicity in freshwater wetlands.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK1cXjtFKkuw%3D%3D&md5=69c534bfa690c478e3395cc9e114e1e6CAS |

Liu, Y., Balkwill, D. L., Aldrich, H. C., Drake, G. R., and Boone, D. R. (1999). Characterization of the anaerobic propionate-degrading syntrophs Smithella propionica gen. nov., sp. nov. and Syntrophobacter wolinii. International Journal of Systematic and Evolutionary Microbiology 49, 545–556.
Characterization of the anaerobic propionate-degrading syntrophs Smithella propionica gen. nov., sp. nov. and Syntrophobacter wolinii.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK1MXjt1Cru70%3D&md5=9e0692fca1a12c996e57fd2572c448d5CAS |

Lowell, J. L., Gordon, N., Engstrom, D., Stanford, J. A., Holben, W. E., and Gannon, J. E. (2009). Habitat heterogeneity and associated microbial community structure in a small-scale floodplain hyporheic flow path. Microbial Ecology 58, 611–620.
Habitat heterogeneity and associated microbial community structure in a small-scale floodplain hyporheic flow path.Crossref | GoogleScholarGoogle Scholar | 19462196PubMed |

Lozupone, C. A., and Knight, R. (2007). Global patterns in bacterial diversity. Proceedings of the National Academy of Sciences of the United States of America 104, 11436–11440.
Global patterns in bacterial diversity.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2sXnvFOms7c%3D&md5=379c5034062e79a10d0772982764790eCAS | 17592124PubMed |

Marupakula, S., Mahmood, S., and Finlay, R. D. (2016). Analysis of single root tip microbiomes suggests that distinctive bacterial communities are selected by Pinus sylvestris roots colonized by different ectomycorrhizal fungi. Environmental Microbiology 18, 1470–1483.
Analysis of single root tip microbiomes suggests that distinctive bacterial communities are selected by Pinus sylvestris roots colonized by different ectomycorrhizal fungi.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC28XmslKitrc%3D&md5=3022a99dd76b7a1a17fc533fe37c7f23CAS | 26521936PubMed |

Megonigal, J. P., and Neubauer, S. C. (2009). Biogeochemistry of tidal freshwater wetlands. In ‘Coastal Wetlands: an Integrated Ecosystem Approach’. (Eds G. M. E. Perillo, E. Wolanski, D. R. Cahoon, and M. M. Brinson.) 1st edn, pp. 535–562. (Elsevier: Amsterdam, Netherlands)

Munksgaard, N. C., and Parry, D. L. (2001). Trace metals, arsenic and lead isotopes in dissolved and particulate phases of north Australian coastal and estuarine seawater. Marine Chemistry 75, 165–184.
Trace metals, arsenic and lead isotopes in dissolved and particulate phases of north Australian coastal and estuarine seawater.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3MXkvVWmtbY%3D&md5=7826b4d421154e0e1866b8576f2623f2CAS |

Nelson, T. M., Streten, C., Streten, C., Gibb, K. S., Gibb, K. S., Chariton, A. A., and Chariton, A. A. (2015). Saltwater intrusion history shapes the response of bacterial communities upon rehydration. The Science of the Total Environment 502, 143–148.
Saltwater intrusion history shapes the response of bacterial communities upon rehydration.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC2cXhsFGlurzL&md5=cda625d1de9dbf5789ce8d6b40a05facCAS | 25247483PubMed |

Palijan, G. (2012). Abundance and biomass responses of microbial food web components to hydrology and environmental gradients within a floodplain of the river Danube. Microbial Ecology 64, 39–53.
Abundance and biomass responses of microbial food web components to hydrology and environmental gradients within a floodplain of the river Danube.Crossref | GoogleScholarGoogle Scholar | 22327270PubMed |

Parameswaran, P., Jalili, R., Tao, L., Shokralla, S., Gharizadeh, B., Ronaghi, M., and Fire, A. Z. (2007). A pyrosequencing-tailored nucleotide barcode design unveils opportunities for large-scale sample multiplexing. Nucleic Acids Research 35, e130.
A pyrosequencing-tailored nucleotide barcode design unveils opportunities for large-scale sample multiplexing.Crossref | GoogleScholarGoogle Scholar | 17932070PubMed |

Pati, A., LaButti, K., Pukall, R., Nolan, M., Glavina del Rio, T., Tice, H., Cheng, J. -F., Lucas, S., Chen, F., Copeland, A., Ivanova, N., Mavromatis, K., Mikhailova, N., Pitluck, S., Bruce, D., Goodwin, L., Land, M., Hauser, L., Chang, Y. -J., Jeffries, C. D., Chen, A., Palaniappan, K., Chain, P., Brettin, T., Sikorski, J., Rohde, M., Göker, M., Bristow, J., Eisen, J. A., Markowitz, V., Hugenholtz, P., Kyrpides, N. C., Klenk, H. -P., and Lapidus, A. (2010). Complete genome sequence of Sphaerobacter thermophilus type strain (S 6022). Standards in Genomic Sciences 2, 49–56.
Complete genome sequence of Sphaerobacter thermophilus type strain (S 6022).Crossref | GoogleScholarGoogle Scholar | 21304677PubMed |

Pester, M. (2012). Sulfate-reducing microorganisms in wetlands: fameless actors in carbon cycling and climate change. Frontiers in Microbiology 3, 00072.
Sulfate-reducing microorganisms in wetlands: fameless actors in carbon cycling and climate change.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3sXhtFSltLbI&md5=d9d70a7fd28d43de5af4378becc6711eCAS |

Pinay, G., Black, V. J., Planty-Tabacchi, A. M., Gumiero, B., and Décamps, H. (2000). Geomorphic control of denitrification in large river floodplain soils. Biogeochemistry 50, 163–182.
Geomorphic control of denitrification in large river floodplain soils.Crossref | GoogleScholarGoogle Scholar |

Pruesse, E., Quast, C., Knittel, K., Fuchs, B. M., Ludwig, W. G., Peplies, J., and Glockner, F. O. (2007). SILVA: a comprehensive online resource for quality checked and aligned ribosomal RNA sequence data compatible with ARB. Nucleic Acids Research 35, 7188–7196.
SILVA: a comprehensive online resource for quality checked and aligned ribosomal RNA sequence data compatible with ARB.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1cXhtFGmtg%3D%3D&md5=e482f0639a2de2be9836d7fac45e0438CAS | 17947321PubMed |

Rietz, D. N., Haynes, R. J., and Chidoma, S. (2001). Effects of soil salinity induced under irrigated sugarcane in the Zimbabwean lowveld on soil microbial activity. In ‘Proceedings of the South African Sugar Technologists’, 31 July–3 August 2001, Durban, South Africa. Vol. 75, pp. 68–74, (Congress Proceedings: Mount Edgecombe, South Africa.)

Rousk, J., Brookes, P. C., and Bååth, E. (2009). Contrasting soil pH effects on fungal and bacterial growth suggest functional redundancy in carbon mineralization. Applied and Environmental Microbiology 75, 1589–1596.
Contrasting soil pH effects on fungal and bacterial growth suggest functional redundancy in carbon mineralization.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1MXjsFKgsLo%3D&md5=06d6347500ab811a2765ee5ed3c4b542CAS | 19151179PubMed |

Rysgaard, S., Thastum, P., Dalsgaard, T., Christensen, P. B., and Sloth, N. P. (1999). Effects of salinity on NH4 + adsorption capacity, nitrification, and denitrification in Danish estuarine sediments. Estuaries 22, 21–30.
Effects of salinity on NH4 + adsorption capacity, nitrification, and denitrification in Danish estuarine sediments.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK1MXjtFynsr0%3D&md5=3a56afe987c93c72019be08e91981083CAS |

Sanka Loganathachetti, D., Sadaiappan, B., Poosakkannu, A., and Muthuraman, S. (2016). Pyrosequencing-based seasonal observation of prokaryotic diversity in pneumatophore-associated soil of Avicennia marina. Current Microbiology 72, 68–74.
Pyrosequencing-based seasonal observation of prokaryotic diversity in pneumatophore-associated soil of Avicennia marina.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC2MXhs1eiu73P&md5=07167f46f74ce600f8f491b91cf79325CAS | 26446550PubMed |

Schloss, P. D., Schloss, P. D., Westcott, S. L., Westcott, S. L., Ryabin, T., Ryabin, T., Hall, J. R., Hall, J. R., Hartmann, M., Hartmann, M., Hollister, E. B., Hollister, E. B., Lesniewski, R. A., Lesniewski, R. A., Oakley, B. B., Oakley, B. B., Parks, D. H., Parks, D. H., Robinson, C. J., Robinson, C. J., Sahl, J. W., Sahl, J. W., Stres, B., Stres, B., Thallinger, G. G., Thallinger, G. G., Van Horn, D. J., Van Horn, D. J., Weber, C. F., and Weber, C. F. (2009). Introducing mothur: open-source, platform-independent, community-supported software for describing and comparing microbial communities. Applied and Environmental Microbiology 75, 7537–7541.
Introducing mothur: open-source, platform-independent, community-supported software for describing and comparing microbial communities.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3cXis1yltw%3D%3D&md5=4c0365071128d90c5f951c36808d5385CAS | 19801464PubMed |

Serna-Chavez, H. M., Fierer, N., and van Bodegom, P. M. (2013). Global drivers and patterns of microbial abundance in soil. Global Ecology and Biogeography 22, 1162–1172.
Global drivers and patterns of microbial abundance in soil.Crossref | GoogleScholarGoogle Scholar |

Shannon, C. E., and Shannon, C. E. (1948). A mathematical theory of communication. The Bell System Technical Journal 27, 623–656.
A mathematical theory of communication.Crossref | GoogleScholarGoogle Scholar |

Sogin, M. L., Morrison, H. G., Huber, J. A., Mark Welch, D., Huse, S. M., Neal, P. R., Arrieta, J. M., and Herndl, G. J. (2006). Microbial diversity in the deep sea and the underexplored ‘rare biosphere’. Proceedings of the National Academy of Sciences of the United States of America 103, 12115–12120.
Microbial diversity in the deep sea and the underexplored ‘rare biosphere’.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD28Xotlyisb4%3D&md5=d50e4d09ce3df11a6b7aff45957e578dCAS | 16880384PubMed |

Sun, B., Cole, J. R., and Tiedje, J. M. (2001). Desulfomonile limimaris sp. nov., an anaerobic dehalogenating bacterium from marine sediments. International Journal of Systematic and Evolutionary Microbiology 51, 365–371.
Desulfomonile limimaris sp. nov., an anaerobic dehalogenating bacterium from marine sediments.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3MXivVOrtLY%3D&md5=1dee6c3476ee7ff2f6d83abb8f688b81CAS | 11321081PubMed |

Wells, G. F., Wu, C. H., Piceno, Y. M., Eggleston, B., Brodie, E. L., DeSantis, T. Z., Andersen, G. L., Hazen, T. C., Francis, C. A., and Criddle, C. S. (2014). Microbial biogeography across a full-scale wastewater treatment plant transect: evidence for immigration between coupled processes. Applied Microbiology and Biotechnology 98, 4723–4736.
Microbial biogeography across a full-scale wastewater treatment plant transect: evidence for immigration between coupled processes.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC2cXivVChtLk%3D&md5=1ee7bdced85ec99bfc78890db2ecfd87CAS | 24553968PubMed |

Werner, J. J., Koren, O., Hugenholtz, P., DeSantis, T. Z., Walters, W. A., Caporaso, J. G., Angenent, L. T., Knight, R., and Ley, R. E. (2012). Impact of training sets on classification of high-throughput bacterial 16s rRNA gene surveys. The ISME Journal 6, 94–103.
Impact of training sets on classification of high-throughput bacterial 16s rRNA gene surveys.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3MXhs1Gjs7rO&md5=6a65bc9391f8ec5a1d1ada6c65dc82e8CAS | 21716311PubMed |

Weston, N. B., Vile, M. A., Neubauer, S. C., and Velinsky, D. J. (2011). Accelerated microbial organic matter mineralization following salt-water intrusion into tidal freshwater marsh soils. Biogeochemistry 102, 135–151.
Accelerated microbial organic matter mineralization following salt-water intrusion into tidal freshwater marsh soils.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3cXhsFOjsL7N&md5=3b5235c18d9c6f85b6ae84b82fe0aab7CAS |

Whitehead, P. J., Wilson, B. A., and Bowman, D. M. J. S. (1990). Conservation of coastal wetlands of the Northern Territory of Australia: the Mary River floodplain. Biological Conservation 52, 85–111.
Conservation of coastal wetlands of the Northern Territory of Australia: the Mary River floodplain.Crossref | GoogleScholarGoogle Scholar |

Wolanski, E., and Chappell, J. (1996). The response of tropical Australian estuaries to a sea level rise. Journal of Marine Systems 7, 267–279.
The response of tropical Australian estuaries to a sea level rise.Crossref | GoogleScholarGoogle Scholar |

Woodhouse, J. N., Kinsela, A. S., Collins, R. N., Bowling, L. C., Honeyman, G. L., Holliday, J. K., and Neilan, B. A. (2016). Microbial communities reflect temporal changes in cyanobacterial composition in a shallow ephemeral freshwater lake. The ISME Journal 10, 1337–1351.
Microbial communities reflect temporal changes in cyanobacterial composition in a shallow ephemeral freshwater lake.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC28XotFOitbs%3D&md5=f3da3bc481ec7664bace8f32bff38959CAS | 26636552PubMed |

Woodroffe, C. D., Chappell, J. M. A., and Thom, B. G. (1986). ‘Geomorphological Dynamics and Evolution of the South Alligator Tidal River and Plains, Northern Territory.’ (North Australia Research Unit: Darwin, NT, Australia.)

Woodroffe, C. D., Chappell, J., Thom, B. G., and Wallensky, E. (1989). Depositional model of a macrotidal estuary and floodplain, South Alligator River, northern Australia. Sedimentology 36, 737–756.
Depositional model of a macrotidal estuary and floodplain, South Alligator River, northern Australia.Crossref | GoogleScholarGoogle Scholar |

Wu, D., Raymond, J., Wu, M., Chatterji, S., Ren, Q., Graham, J. E., Bryant, D. A., Robb, F., Colman, A., Tallon, L. J., Badger, J. H., Madupu, R., Ward, N. L., and Eisen, J. A. (2009). Complete genome sequence of the aerobic CO-oxidizing thermophile Thermomicrobium roseum. PLoS One 4, e4207.
Complete genome sequence of the aerobic CO-oxidizing thermophile Thermomicrobium roseum.Crossref | GoogleScholarGoogle Scholar | 19148287PubMed |

Zhang, J., Zhang, X., Liu, Y., Xie, S., Liu, Y., and Liu, Y. (2014). Bacterioplankton communities in a high-altitude freshwater wetland. Annals of Microbiology 64, 1405–1411.
Bacterioplankton communities in a high-altitude freshwater wetland.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC2cXhtlWmtrnE&md5=e7ef4b0b18ddd983814502f030ec815eCAS |