Free Standard AU & NZ Shipping For All Book Orders Over $80!
Register      Login
Marine and Freshwater Research Marine and Freshwater Research Society
Advances in the aquatic sciences
RESEARCH ARTICLE

Genetic analyses reveal limited dispersal and recovery potential in the large freshwater crayfish Euastacus armatus from the southern Murray–Darling Basin

Nick S. Whiterod A E , Sylvia Zukowski A , Martin Asmus B , Dean Gilligan C and Adam D. Miller A D E
+ Author Affiliations
- Author Affiliations

A Aquasave – Nature Glenelg Trust, Goolwa Beach, SA 5214, Australia.

B NSW Department of Primary Industries, Narrandera, NSW 2700, Australia.

C NSW Department of Primary Industries, Batemans Bay, NSW 2536, Australia.

D School of Life & Environmental Sciences, Centre for Integrative Ecology, Deakin University, Warrnambool, Vic. 3280, Australia.

E Corresponding authors. Email: nick.whiterod@aquasave.com.au; a.miller@deakin.edu.au

Marine and Freshwater Research 68(2) 213-225 https://doi.org/10.1071/MF16006
Submitted: 7 January 2016  Accepted: 30 January 2016   Published: 18 March 2016

Abstract

Understanding dispersal traits and adaptive potential is critically important when assessing the vulnerability of freshwater species in highly modified ecosystems. The present study investigates the population genetic structure of the Murray crayfish Euastacus armatus in the southern Murray–Darling Basin. This species has suffered significant population declines in sections of the Murray River in recent years, prompting the need for information on natural recruitment processes to help guide conservation. We assessed allele frequencies from 10 polymorphic microsatellite loci across 20 sites encompassing the majority of the species’ range. Low levels of gene flow were observed throughout hydrologically connected waterways, but significant spatial autocorrelation and low migration rate estimates reflect local genetic structuring and dispersal limitations, with home ranges limited to distances <50-km. Significant genetic differentiation of headwater populations upstream of barriers imposed by impoundments were also observed; however, population simulations demonstrate that these patterns likely reflect historical limitations to gene flow rather than contemporary anthropogenic impacts. Dispersal limitations, coupled with its biological traits, suggest that local populations are vulnerable to environmental disturbance with limited potential for natural recolonisation following population decline. We discuss the implications of these findings in the context of managing the recovery of the species.

Additional keywords: gene flow, genetic diversity, population fragmentation, population structure, recolonisation, spatial autocorrelation.


References

Allendorf, F. W., Luikart, G., and Aitken, S. N. (2013). ‘Conservation and the Genetics of Populations.’ (Wiley-Blackwell: Chichester, UK.)

Alp, M., Keller, I., Westram, A., and Robinson, C. T. (2012). How river structure and biological traits influence gene flow: a population genetic study of two stream invertebrates with differing dispersal abilities. Freshwater Biology 57, 969–981.
How river structure and biological traits influence gene flow: a population genetic study of two stream invertebrates with differing dispersal abilities.Crossref | GoogleScholarGoogle Scholar |

Alves, N., Merrick, J. R., Kohen, J., and Gilligan, D. (2010). Juvenile recruitment of the Murray crayfish, Euastacus armatus (Decapoda: Parastacidae), from south-eastern Australia. Freshwater Crayfish 17, 167–175.

Armstrong, D., Hayward, M., Moro, D., and Seddon, P. (2015). ‘Advances in Reintroduction Biology of Australian and New Zealand Fauna.’ (CSIRO Publishing: Melbourne.)

Baguette, M., Blanchet, S., Legrand, D., Stevens, V. M., and Turlure, C. (2013). Individual dispersal, landscape connectivity and ecological networks. Biological Reviews of the Cambridge Philosophical Society 88, 310–326.
Individual dispersal, landscape connectivity and ecological networks.Crossref | GoogleScholarGoogle Scholar | 23176626PubMed |

Beerli, P. (2004). Effect of unsampled populations on the estimation of population sizes and migration rates between sampled populations. Molecular Ecology 13, 827–836.
Effect of unsampled populations on the estimation of population sizes and migration rates between sampled populations.Crossref | GoogleScholarGoogle Scholar | 15012758PubMed |

Beerli, P., and Felsenstein, J. (2001). Maximum likelihood estimation of a migration matrix and effective population sizes in n subpopulations by using a coalescent approach. Proceedings of the National Academy of Sciences of the United States of America 98, 4563–4568.
Maximum likelihood estimation of a migration matrix and effective population sizes in n subpopulations by using a coalescent approach.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3MXjtVagtLY%3D&md5=2e7f7c8b85a12d61caca333f9fcf4cc8CAS | 11287657PubMed |

Beever, E. A., O’Leary, J., Mengelt, C., West, J. M., Julius, S., Green, N., Magness, D., Petes, L., Stein, B., Nicotra, A. B., Hellmann, J. J., Robertson, A. L., Staudinger, M. D., Rosenberg, A. A., Babij, E., Brennan, J., Schuurman, G. W., and Hofmann, G. E. (2015). Improving conservation outcomes with a new paradigm for understanding species’ fundamental and realized adaptive capacity. Conservation Letters , .
Improving conservation outcomes with a new paradigm for understanding species’ fundamental and realized adaptive capacity.Crossref | GoogleScholarGoogle Scholar |

Brookfield, J. F. Y. (1996). A simple new method for estimating null allele frequency from heterozygote deficiency. Molecular Ecology 5, 453–455.
A simple new method for estimating null allele frequency from heterozygote deficiency.Crossref | GoogleScholarGoogle Scholar | 1:STN:280:DyaK28zivFeqtQ%3D%3D&md5=d4bed85eebe56600610540e7f4ba3819CAS |

Cabrelli, A., Beaumont, L., and Hughes, L. (2015). The impacts of climate change on Australian and New Zealand flora and fauna. In ‘Austral Ark: the State of Wildlife in Australia and New Zealand’. (Eds A. Stow, N. Maclean, and G. I. Holwell.) pp. 65–82. (Cambridge University Press: Cambridge, UK.)

Chessman, B. C. (2013). Identifying species at risk from climate change: traits predict the drought vulnerability of freshwater fishes. Biological Conservation 160, 40–49.
Identifying species at risk from climate change: traits predict the drought vulnerability of freshwater fishes.Crossref | GoogleScholarGoogle Scholar |

Chester, E. T., Miller, A. D., Valenzuela, I., Wickson, S. J., and Robson, B. J. (2015). Drought survival strategies, dispersal potential and persistence of invertebrate species in an intermittent stream landscape. Freshwater Biology 60, 2066–2083.
Drought survival strategies, dispersal potential and persistence of invertebrate species in an intermittent stream landscape.Crossref | GoogleScholarGoogle Scholar |

Coleman, R. A., Weeks, A. R., and Hoffmann, A. A. (2013). Balancing genetic uniqueness and genetic variation in determining conservation and translocation strategies: a comprehensive case study of threatened dwarf galaxias, Galaxiella pusilla (Mack) (Pisces: Galaxiidae). Molecular Ecology 22, 1820–1835.
Balancing genetic uniqueness and genetic variation in determining conservation and translocation strategies: a comprehensive case study of threatened dwarf galaxias, Galaxiella pusilla (Mack) (Pisces: Galaxiidae).Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3sXnvFyns7g%3D&md5=33aca2f3a8b21d19c567bb80e1af3acaCAS | 23432132PubMed |

Collen, B., Whitton, F., Dyer, E. E., Baillie, J. E., Cumberlidge, N., Darwall, W. R., Pollock, C., Richman, N. I., Soulsby, A. M., and Böhm, M. (2014). Global patterns of freshwater species diversity, threat and endemism. Global Ecology and Biogeography 23, 40–51.
Global patterns of freshwater species diversity, threat and endemism.Crossref | GoogleScholarGoogle Scholar | 26430385PubMed |

Dawkins, K. L., Furse, J. M., Wild, C. H., and Hughes, J. M. (2010). Distribution and population genetics of the threatened freshwater crayfish genus Tenuibranchiurus (Decapoda: Parastacidae). Marine and Freshwater Research 61, 1048–1055.
Distribution and population genetics of the threatened freshwater crayfish genus Tenuibranchiurus (Decapoda: Parastacidae).Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3cXht1Snt7jP&md5=d63814bd1fcefe7a5e2ae8af10e84054CAS |

Dudgeon, D., Arthington, A. H., Gessner, M. O., Kawabata, Z. I., Knowler, D. J., Lévêque, C., Naiman, R. J., Prieur‐Richard, A. H., Soto, D., and Stiassny, M. L. (2006). Freshwater biodiversity: importance, threats, status and conservation challenges. Biological Reviews of the Cambridge Philosophical Society 81, 163–182.
Freshwater biodiversity: importance, threats, status and conservation challenges.Crossref | GoogleScholarGoogle Scholar | 16336747PubMed |

Durand, E., Jay, F., Gaggiotti, O. E., and François, O. (2009). Spatial inference of admixture proportions and secondary contact zones. Molecular Biology and Evolution 26, 1963–1973.
Spatial inference of admixture proportions and secondary contact zones.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1MXhtVWhs7vJ&md5=c445d8fa98617aa69d73f55f39de8967CAS | 19461114PubMed |

Fagan, W. F. (2002). Connectivity, fragmentation, and extinction risk in dendritic metapopulations. Ecology 83, 3243–3249.
Connectivity, fragmentation, and extinction risk in dendritic metapopulations.Crossref | GoogleScholarGoogle Scholar |

Faulks, L. K., Gilligan, D. M., and Beheregaray, L. B. (2010). Islands of water in a sea of dry land: hydrological regime predicts genetic diversity and dispersal in a widespread fish from Australia’s arid zone, the golden perch (Macquaria ambigua). Molecular Ecology 19, 4723–4737.
Islands of water in a sea of dry land: hydrological regime predicts genetic diversity and dispersal in a widespread fish from Australia’s arid zone, the golden perch (Macquaria ambigua).Crossref | GoogleScholarGoogle Scholar | 20887362PubMed |

Fetzner, J. W. J., and Crandall, K. (2002). Genetic variation. In ‘Biology of Freshwater Crayfish’. (Ed. D. M. Holdich.) pp. 291–329. (Blackwell Science: Oxford, UK.)

Frankham, R., Ballou, J. D., and Briscoe, D. A. (2010). ‘Introduction to Conservation Genetics.’ (Cambridge University Press: London.)

Furse, J. M., and Coughran, J. (2011). An assessment of the distribution, biology, threatening processes and conservation status of the freshwater crayfish, genus Euastacus (Decapoda: Parastacidae) in continental Australia. II. Threats, conservation assessments and key findings. In ‘New Frontiers in Crustacean Biology (Crustaceans Monographs 15)’. (Ed. A. Akasura.) pp. 253–263. (Brill Publishers: Leiden, Netherlands.)

Furse, J. M., Dawkins, K. L., and Coughran, J. (2013). Two new species of Euastacus (Decapoda: Parastacidae) from the Gondwana rainforests of central-eastern Australia. Freshwater Crayfish 19, 103–112.
Two new species of Euastacus (Decapoda: Parastacidae) from the Gondwana rainforests of central-eastern Australia.Crossref | GoogleScholarGoogle Scholar |

Geddes, M. C., Musgrove, R. J., and Campbell, N. J. H. (1993). The feasibility of re-establishing the River Murray crayfish, Euastacus armatus, in the lower River Murray. Freshwater Crayfish 9, 368–379.

Gilligan, D., Rolls, R., Merrick, J., Lintermans, M., Duncan, P., and Koehn, J. (2007). Scoping the Knowledge Requirements for Murray Crayfish (Euastacus armatus). Fisheries Final Report Series number 89. NSW Department of Primary Industries, Sydney.

Goudet, J. (1995). FSTAT (version 1.2): a computer program to calculate F-statistics. The Journal of Heredity 86, 485–486.

Gouin, N., Grandjean, F., and Souty-Grosset, C. (2006). Population genetic structure of the endangered crayfish Austropotamobius pallipes in France based on microsatellite variation: biogeographical inferences and conservation implications. Freshwater Biology 51, 1369–1387.
Population genetic structure of the endangered crayfish Austropotamobius pallipes in France based on microsatellite variation: biogeographical inferences and conservation implications.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD28XovFyqt7s%3D&md5=16e6468bca4cab4f3d0fc3a003c926adCAS |

Gouin, N., Souty-Grosset, C., Borquez, J., Bertin, A., and Grandjean, F. (2011). Disentangling the impact of demographic factors on population differentiation of an endangered freshwater crayfish (Austropotamobius pallipes) using population density and microsatellite data. Freshwater Biology 56, 2105–2118.
Disentangling the impact of demographic factors on population differentiation of an endangered freshwater crayfish (Austropotamobius pallipes) using population density and microsatellite data.Crossref | GoogleScholarGoogle Scholar |

Gross, R., Palm, S., Kõiv, K., Prestegaard, T., Jussila, J., Paaver, T., Geist, J., Kokko, H., Karjalainen, A., and Edsman, L. (2013). Microsatellite markers reveal clear geographic structuring among threatened noble crayfish (Astacus astacus) populations in Northern and Central Europe. Conservation Genetics 14, 809–821.
Microsatellite markers reveal clear geographic structuring among threatened noble crayfish (Astacus astacus) populations in Northern and Central Europe.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3sXhtVyrtLrN&md5=e777d89b1c2b6f5e9f86f2f875562036CAS |

Hedrick, P. (2011). ‘Genetics of Populations.’ (Jones & Bartlett Learning: Sudbury, MA, USA.)

Hess, J. E., Campbell, N. R., Close, D. A., Docker, M. F., and Narum, S. R. (2013). Population genomics of Pacific lamprey: adaptive variation in a highly dispersive species. Molecular Ecology 22, 2898–2916.
Population genomics of Pacific lamprey: adaptive variation in a highly dispersive species.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3sXos12nu7c%3D&md5=8b2dc452b05429694ad3e12d346e4b8bCAS | 23205767PubMed |

Hobday, A. J., and Lough, J. M. (2011). Projected climate change in Australian marine and freshwater environments. Marine and Freshwater Research 62, 1000–1014.
Projected climate change in Australian marine and freshwater environments.Crossref | GoogleScholarGoogle Scholar |

Hoffmann, A. A., and Parsons, P. A. (1997). ‘Extreme Environmental Change and Evolution.’ (Cambridge University Press: Cambridge, UK.)

Hoffmann, A. A., and Sgro, C. M. (2011). Climate change and evolutionary adaptation. Nature 470, 479–485.
Climate change and evolutionary adaptation.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3MXisVags7o%3D&md5=c7855daf231fda9e86381ab799af895aCAS | 21350480PubMed |

Hudman, S. P., and Gido, K. B. (2013). Multi‐scale effects of impoundments on genetic structure of creek chub (Semotilus atromaculatus) in the Kansas River Basin. Freshwater Biology 58, 441–453.
Multi‐scale effects of impoundments on genetic structure of creek chub (Semotilus atromaculatus) in the Kansas River Basin.Crossref | GoogleScholarGoogle Scholar |

Hughes, L. (2003). Climate change and Australia: trends, projections and impacts. Austral Ecology 28, 423–443.
Climate change and Australia: trends, projections and impacts.Crossref | GoogleScholarGoogle Scholar |

Hughes, J. M. (2007). Constraints on recovery: using molecular methods to study connectivity of aquatic biota in rivers and streams. Freshwater Biology 52, 616–631.
Constraints on recovery: using molecular methods to study connectivity of aquatic biota in rivers and streams.Crossref | GoogleScholarGoogle Scholar |

Hughes, L. (2011). Climate change and Australia: key vulnerable regions. Regional Environmental Change 11, 189–195.
Climate change and Australia: key vulnerable regions.Crossref | GoogleScholarGoogle Scholar |

Hughes, J. M., Schmidt, D. J., and Finn, D. S. (2009). Genes in streams: a molecular approach to understanding movement of freshwater fauna and their riverine habitat. Bioscience 59, 573–583.
Genes in streams: a molecular approach to understanding movement of freshwater fauna and their riverine habitat.Crossref | GoogleScholarGoogle Scholar |

Hughes, J. M., Huey, J. A., and Schmidt, D. J. (2013). Is realised connectivity among populations of aquatic fauna predictable from potential connectivity? Freshwater Biology 58, 951–966.
Is realised connectivity among populations of aquatic fauna predictable from potential connectivity?Crossref | GoogleScholarGoogle Scholar |

Jacobs, T. (1990). River regulation. In ‘The Murray’. (Eds N. Mackey and D. Eastburn.) pp. 39–60. (Murray–Darling Basin Commission: Canberra, ACT.)

Jakobsson, M., and Rosenberg, N. A. (2007). CLUMPP: a cluster matching and permutation program for dealing with label switching and multimodality in analysis of population structure. Bioinformatics 23, 1801–1806.
CLUMPP: a cluster matching and permutation program for dealing with label switching and multimodality in analysis of population structure.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2sXpt1ahtbs%3D&md5=44fa01b77786e9ace95ddad478376601CAS | 17485429PubMed |

Jost, L. (2008). G(ST) and its relatives do not measure differentiation. Molecular Ecology 17, 4015–4026.
G(ST) and its relatives do not measure differentiation.Crossref | GoogleScholarGoogle Scholar | 19238703PubMed |

Leigh, C., Bush, A., Harrison, E. T., Ho, S. S., Luke, L., Rolls, R. J., and Ledger, M. E. (2015). Ecological effects of extreme climatic events on riverine ecosystems: insights from Australia. Freshwater Biology 60, 2620–2638.
Ecological effects of extreme climatic events on riverine ecosystems: insights from Australia.Crossref | GoogleScholarGoogle Scholar |

Lowe, W. H., and Allendorf, F. W. (2010). What can genetics tell us about population connectivity? Molecular Ecology 19, 3038–3051.
What can genetics tell us about population connectivity?Crossref | GoogleScholarGoogle Scholar | 20618697PubMed |

McCarthy, B., Zukowski, S., Whiterod, N., Vilizzi, L., Beesley, L., and King, A. (2014). Hypoxic blackwater event severely impacts Murray crayfish (Euastacus armatus) populations in the Murray River, Australia. Austral Ecology 39, 491–500.
Hypoxic blackwater event severely impacts Murray crayfish (Euastacus armatus) populations in the Murray River, Australia.Crossref | GoogleScholarGoogle Scholar |

Milano, I., Babbucci, M., Cariani, A., Atanassova, M., Bekkevold, D., Carvalho, G. R., Espiñeira, M., Fiorentino, F., Garofalo, G., and Geffen, A. J. (2014). Outlier SNP markers reveal fine‐scale genetic structuring across European hake populations (Merluccius merluccius). Molecular Ecology 23, 118–135.
Outlier SNP markers reveal fine‐scale genetic structuring across European hake populations (Merluccius merluccius).Crossref | GoogleScholarGoogle Scholar | 24138219PubMed |

Miller, A. D., Van Rooyen, A., Sweeney, O. F., Whiterod, N. S., and Weeks, A. R. (2013). The development of 10 novel polymorphic microsatellite markers through next generation sequencing and a preliminary genetic analysis for the endangered Glenelg spiny crayfish, Euastacus bispinosus. Molecular Biology Reports 40, 4415–4419.
The development of 10 novel polymorphic microsatellite markers through next generation sequencing and a preliminary genetic analysis for the endangered Glenelg spiny crayfish, Euastacus bispinosus.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3sXps1CmsLk%3D&md5=efeaafeb03282ba4387f5df8e1f184b1CAS | 23644985PubMed |

Miller, A. D., Sweeney, O. F., Whiterod, N. S., Van Rooyen, A., Hammer, M., and Weeks, A. R. (2014). Critically low levels of genetic diversity in fragmented populations of the endangered Glenelg spiny freshwater crayfish Euastacus bispinosus. Endangered Species Research 25, 43–55.
Critically low levels of genetic diversity in fragmented populations of the endangered Glenelg spiny freshwater crayfish Euastacus bispinosus.Crossref | GoogleScholarGoogle Scholar |

Moore, A., Ingram, B., Friend, S., Hui, K. H., Robinson, N., McCormack, R., Coughran, J., and Hayes, B. (2010). ‘Management of Genetic Resources for Fish and Crustaceans in the Murray–Darling Basin.’ (Bureau of Rural Sciences, Australian Government, Canberra.)

Morgan, G. J. (1997). Freshwater crayfish of the genus Euastacus Clark (Decapoda: Parastacidae) from New South Wales, with a key to all species of the genus. Records of the Australian Museum 23, 1–110.
Freshwater crayfish of the genus Euastacus Clark (Decapoda: Parastacidae) from New South Wales, with a key to all species of the genus.Crossref | GoogleScholarGoogle Scholar |

Morrongiello, J. R., Beatty, S. J., Bennett, J. C., Crook, D. A., Ikedife, D. N., Kennard, M. J., Kerezsy, A., Lintermans, M., McNeil, D. G., and Pusey, B. J. (2011). Climate change and its implications for Australia’s freshwater fish. Marine and Freshwater Research 62, 1082–1098.
Climate change and its implications for Australia’s freshwater fish.Crossref | GoogleScholarGoogle Scholar |

Ovenden, J. R., Berry, O., Welch, D. J., Buckworth, R. C., and Dichmont, C. M. (2015). Ocean’s eleven: a critical evaluation of the role of population, evolutionary and molecular genetics in the management of wild fisheries. Fish and Fisheries 16, 125–159.
Ocean’s eleven: a critical evaluation of the role of population, evolutionary and molecular genetics in the management of wild fisheries.Crossref | GoogleScholarGoogle Scholar |

Park, S. D. E. (2001). Trypanotolerance in West African cattle and the population genetic effects of selection. Ph.D. Thesis, University of Dublin, Dublin.

Peakall, R., and Smouse, P. (2006). GENALEX 6: genetic analysis in Excel. Population genetic software for teaching and research. Molecular Ecology Notes 6, 288–295.
GENALEX 6: genetic analysis in Excel. Population genetic software for teaching and research.Crossref | GoogleScholarGoogle Scholar |

Peakall, R., and Smouse, P. E. (2012). GenAlEx 6.5: genetic analysis in Excel. Population genetic software for teaching and research – an update. Bioinformatics 28, 2537–2539.
GenAlEx 6.5: genetic analysis in Excel. Population genetic software for teaching and research – an update.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC38XhsVehtbjI&md5=95686093fc03106d79e4140f3e21d2fbCAS | 22820204PubMed |

Pérez-Figueroa, A., Saura, M., Fernandez, J., Toro, M. A., and Caballero, A. (2009). METAPOP-A software for the management and analysis of subdivided populations in conservation programs. Conservation Genetics 10, 1097–1099.
METAPOP-A software for the management and analysis of subdivided populations in conservation programs.Crossref | GoogleScholarGoogle Scholar |

Poff, N. L., Olden, J. D., and Strayer, D. L. (2012). Climate change and freshwater fauna extinction risk. In ‘Saving A Million Species: Extinction Risk from Climate Change’. (Ed. L Hannah.) pp. 309–336. (Island Press: Washington, DC., USA)

Rašić, G., Filipovic, I., Weeks, A. R., and Hoffmann, A. A. (2014). Genome-wide SNPs lead to strong signals of geographic structure and relatedness patterns in the major arbovirus vector, Aedes aegypti. BMC Genomics 15, 275.
Genome-wide SNPs lead to strong signals of geographic structure and relatedness patterns in the major arbovirus vector, Aedes aegypti.Crossref | GoogleScholarGoogle Scholar | 24726019PubMed |

Raymond, M., and Rousset, F. (1995). An exact test for population differentiation. Evolution 49, 1280–1283.
An exact test for population differentiation.Crossref | GoogleScholarGoogle Scholar |

Reis, K., Venere, P., Sampaio, I., Rêgo, P., Vallinoto, M., and Souza, I. (2015). Downstairs gene flow: the effects of a linear sequence of waterfalls on the only population of the endangered minnow Astyanax xavante. Journal of Fish Biology 87, 754–762.
Downstairs gene flow: the effects of a linear sequence of waterfalls on the only population of the endangered minnow Astyanax xavante.Crossref | GoogleScholarGoogle Scholar | 1:STN:280:DC%2BC28%2Fms1WjtQ%3D%3D&md5=78ece0a9176d86a6dcd2935a64ea6070CAS | 26212357PubMed |

Rice, W. R. (1989). Analyzing tables of statistical tests. Evolution 43, 223–225.
Analyzing tables of statistical tests.Crossref | GoogleScholarGoogle Scholar |

Richman, N. I., Böhm, M., Adams, S. B., Alvarez, F., Bergey, E. A., Bunn, J. J., Burnham, Q., Cordeiro, J., Coughran, J., Crandall, K. A., Dawkins, K. L., DiStefano, R. J., Doran, N. E., Edsman, L., Eversole, A. G., Füreder, L., Furse, J. M., Gherardi, F., Hamr, P., Holdich, D. M., Horwitz, P., Johnston, K., Jones, C. M., Jones, J. P. G., Jones, R. L., Jones, T. G., Kawai, T., Lawler, S., López-Mejía, M., Miller, R. M., Pedraza-Lara, C., Reynolds, J. D., Richardson, A. M. M., Schultz, M. B., Schuster, G. A., Sibley, P. J., Souty-Grosset, C., Taylor, C. A., Thoma, R. F., Walls, J., Walsh, T. S., and Collen, B. (2015). Multiple drivers of decline in the global status of freshwater crayfish (Decapoda: Astacidea). Philosophical Transactions of the Royal Society of London. Series B, Biological Sciences 370, 20140060.
Multiple drivers of decline in the global status of freshwater crayfish (Decapoda: Astacidea).Crossref | GoogleScholarGoogle Scholar | 25561679PubMed |

Robinson, C. A., Thom, T. J., and Lucas, M. C. (2000). Ranging behaviour of a large freshwater invertebrate, the white‐clawed crayfish Austropotamobius pallipes. Freshwater Biology 44, 509–521.
Ranging behaviour of a large freshwater invertebrate, the white‐clawed crayfish Austropotamobius pallipes.Crossref | GoogleScholarGoogle Scholar |

Rourke, M., McPartlan, H., Ingram, B., and Taylor, A. (2011). Variable stocking effect and endemic population genetic structure in Murray cod Maccullochella peelii. Journal of Fish Biology 79, 155–177.
Variable stocking effect and endemic population genetic structure in Murray cod Maccullochella peelii.Crossref | GoogleScholarGoogle Scholar | 1:STN:280:DC%2BC3Mnlt1ehtA%3D%3D&md5=fac037fcf17f1cad50013c620b70a713CAS | 21722117PubMed |

Rousset, F. (1997). Genetic differentiation and estimation of gene flow from F-statistics under isolation by distance. Genetics 145, 1219–1228.
| 1:STN:280:DyaK2s3kslOntQ%3D%3D&md5=72f634a859cec5a642412a51486d23acCAS | 9093870PubMed |

Rutherfurd, I. (1990). Ancient river young nation. In ‘The Murray’. (Eds N. Mackay and D. Eastburn.) pp. 17–36. (Murray–Darling Basin Commission: Canberra, ACT.)

Ryan, K. A., Ebner, B. C., and Norris, R. H. (2008). Radio-tracking interval effects on the accuracy of diel scale crayfish movement variables. Freshwater Crayfish 16, 87–92.

Ryman, N., and Palm, S. (2006). POWSIM: a computer program for assessing statistical power when testing for genetic differentiation. Molecular Ecology Notes 6, 600–602.
POWSIM: a computer program for assessing statistical power when testing for genetic differentiation.Crossref | GoogleScholarGoogle Scholar |

Taylor, E., Woods, R. J., Macdonald, J. I., Crook, D. A., Schmidt, D. J., and Hughes, J. M. (2010). Contemporary and historical patterns of connectivity among populations of an inland river fish species inferred from genetics and otolith chemistry. Canadian Journal of Fisheries and Aquatic Sciences 67, 1098–1115.
Contemporary and historical patterns of connectivity among populations of an inland river fish species inferred from genetics and otolith chemistry.Crossref | GoogleScholarGoogle Scholar |

Van Oosterhout, C., Hutchinson, W. F., Wills, D. P. M., and Shipley, P. (2004). MICRO-CHECKER: software for identifying and correcting genotyping errors in microsatellite data. Molecular Ecology Notes 4, 535–538.
MICRO-CHECKER: software for identifying and correcting genotyping errors in microsatellite data.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2cXnvFOktb8%3D&md5=ef2000248f2bb58bef70f9977c655eadCAS |

Versteegen, M., and Lawler, S. (1996). Population genetics of the Murray River crayfish Euastacus armatus. Freshwater Crayfish 11, 146–157.

Walker, K. F. (1985). A review of the ecological effects of river regulation in Australia. Hydrobiologia 125, 111–129.
A review of the ecological effects of river regulation in Australia.Crossref | GoogleScholarGoogle Scholar |

Walsh, P. S., Metzger, D. A., and Higuchi, R. (1991). Chelex 100 as a medium for simple extraction of DNA for PCR-based typing from forensic material. BioTechniques 10, 506–513.
| 1:STN:280:DyaK3MzivFSjtw%3D%3D&md5=ec19b54a8415bbcd95990c78da3b8e22CAS | 1867860PubMed |

Webb, M., and Richardson, A. (2004). A radio telemetry study of movement in the giant Tasmanian freshwater crayfish, Astacopsis gouldi. Freshwater Crayfish 14, 197–204.

Weeks, A. R., Sgro, C. M., Young, A. G., Frankham, R., Mitchell, N. J., Miller, K. A., Byrne, M., Coates, D. J., Eldridge, M. D. B., Sunnucks, P., Breed, M. F., James, E. A., and Hoffmann, A. A. (2011). Assessing the benefits and risks of translocations in changing environments: a genetic perspective. Evolutionary Applications 4, 709–725.
Assessing the benefits and risks of translocations in changing environments: a genetic perspective.Crossref | GoogleScholarGoogle Scholar | 22287981PubMed |

Weir, B., and Cockerham, C. (1984). Estimating F-statistics for the analysis of population structure. Evolution 38, 1358–1370.
Estimating F-statistics for the analysis of population structure.Crossref | GoogleScholarGoogle Scholar |

Whitworth, K. L., Baldwin, D. S., and Kerr, J. L. (2012). Drought, floods and water quality: drivers of a severe hypoxic blackwater event in a major river system (the southern Murray–Darling Basin, Australia). Journal of Hydrology 450-451, 190–198.
Drought, floods and water quality: drivers of a severe hypoxic blackwater event in a major river system (the southern Murray–Darling Basin, Australia).Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC38XptlWnsbw%3D&md5=5a9c33a297c8452808ced3e4a6cbdbb9CAS |

Zukowski, S. (2012). Impacts of fishing regulations on the sustainability of Murray crayfish (Euastacus armatus), Australia: social and biological perspectives. Ph.D. Thesis, Charles Sturt University, Albury, NSW.