Register      Login
Marine and Freshwater Research Marine and Freshwater Research Society
Advances in the aquatic sciences
RESEARCH ARTICLE (Open Access)

New parameterisation method for three-dimensional otolith surface images

P. Marti-Puig A C , J. Danés A , A. Manjabacas B and A. Lombarte B
+ Author Affiliations
- Author Affiliations

A Grup de Tractament de Dades i Senyals, University of Vic (UVIC-UCC), Sagrada Família, 7, E-08500 Vic, Catalonia, Spain.

B Institut de Ciències del Mar, ICM (CSIC), Passeig Marítim de la Barceloneta, 37-49, E-08003 Barcelona, Catalonia, Spain.

C Corresponding author. Email: pmartip67@gmail.com

Marine and Freshwater Research 67(7) 1059-1071 https://doi.org/10.1071/MF15069
Submitted: 20 February 2015  Accepted: 31 July 2015   Published: 26 October 2015

Journal Compilation © CSIRO Publishing 2016 Open Access CC BY-NC-ND

Abstract

The three-dimensional (3-D) otolith shapes recently included in the Anàlisi de FORmes d’Otòlits (AFORO) database are defined by means of clouds of points across their surfaces. Automatic retrieval and classification of natural objects from 3-D databases becomes a difficult and time-consuming task when the number of elements in the database becomes large. In order to simplify that task we propose a new method for compacting data from 3-D shapes. The new method has two main steps. The first is a subsampling process, the result of which can always be interpreted as a closed curve in the 3-D space by considering the retained points in an appropriate order. The subsampling preserves morphological information, but greatly reduces the number of points required to represent the shape. The second step treats the coordinates of the 3-D closed curves as periodic functions. Therefore, Fourier expansions can be applied to each coordinate, producing more information compression into a reduced set of points. The method can reach very high information compression factors. It also allows reconstruction of the 3-D points resulting from the subsampling process in the first step. This parameterisation method is able to capture 3-D information relevant to classification of fish species from their otoliths, providing a greater percentage of correctly classified specimens compared with the previous two-dimensional analysis.

Additional keywords: fast Fourier transforms, feature extraction, shape analysis, three-dimensional contour descriptors, three-dimensional shape parameterisation.


References

Bird, J. L., Eppler, D. T., and Checkley, D. M. (1986). Comparison of herring otoliths using Fourier series shape analyses. Canadian Journal of Fisheries and Aquatic Sciences 43, 1228–1234.
Comparison of herring otoliths using Fourier series shape analyses.Crossref | GoogleScholarGoogle Scholar |

Brett, A. D., and Taylor, C. J. (2000). Automated construction of 3-D shape models using harmonic maps. In ‘Proceedings of Medical Image Understanding and Analysis’, July 2000, London. (Eds S. Arridge and A. Todd-Pokropek.) pp. 173–178. (BMVA: London.)

Campana, S. E. (2004). ‘Photographic Atlas of Fish Otoliths of the Northwest Atlantic Ocean.’ (NRC Research Press: Ottawa, ON, Canada.)

Capoccioni, F., Costa, C., Aguzzi, J., Menesatti, P., Lombarte, A., and Ciccotti, E. (2011). Ontogenetic and environmental effects on otolith shape variability in three European eel (Anguilla anguilla, L.) Mediterranean populations. Journal of Experimental Marine Biology and Ecology 397, 1–7.
Ontogenetic and environmental effects on otolith shape variability in three European eel (Anguilla anguilla, L.) Mediterranean populations.Crossref | GoogleScholarGoogle Scholar |

Cardinale, M., Doering-Arjes, P., Kastowsky, M., and Mosegaard, H. (2004). Effects of sex, stock, and environment on the shape of known-age Atlantic cod (Gadus morhua) otoliths. Canadian Journal of Fisheries and Aquatic Sciences 61, 158–167.
Effects of sex, stock, and environment on the shape of known-age Atlantic cod (Gadus morhua) otoliths.Crossref | GoogleScholarGoogle Scholar |

Caunce, A., and Taylor, C. J. (2001). Building 3-D sulcal models using local geometry. Medical Image Analysis 5, 69–80.
Building 3-D sulcal models using local geometry.Crossref | GoogleScholarGoogle Scholar | 1:STN:280:DC%2BD3MzjvFKhsQ%3D%3D&md5=b107f2e551402c8048234e2441abf644CAS | 11231178PubMed |

Cruz, A., and Lombarte, A. (2004). Otolith size and its relationship with colour patterns and sound production. Journal of Fish Biology 65, 1512–1525.
Otolith size and its relationship with colour patterns and sound production.Crossref | GoogleScholarGoogle Scholar |

Dam, E. B., Fletcher, P. T., and Pizer, S. M. (2008). Automatic shape model building based on principal geodesic analysis bootstrapping. Medical Image Analysis 12, 136–151.
Automatic shape model building based on principal geodesic analysis bootstrapping.Crossref | GoogleScholarGoogle Scholar | 18178124PubMed |

Doering-Arjes, P., Cardinale, M., and Mosegaard, H. (2008). Estimating population age structure using otolith morphometrics: a test with known-age Atlantic cod (Gadus morhua) individuals. Canadian Journal of Fisheries and Aquatic Sciences 65, 2342–2350.
Estimating population age structure using otolith morphometrics: a test with known-age Atlantic cod (Gadus morhua) individuals.Crossref | GoogleScholarGoogle Scholar |

Ertürk, S., and Dennis, T. J. (1997). 3-D model representation using spherical harmonics. Electronics Letters 33, 951–952.
3-D model representation using spherical harmonics.Crossref | GoogleScholarGoogle Scholar |

Fitch, J. E., and Brownell, R. L. (1968). Fish otoliths in cetacean stomachs and their importance in interpreting feeding habits. Journal of the Fisheries Research Board of Canada 25, 2561–2574.
Fish otoliths in cetacean stomachs and their importance in interpreting feeding habits.Crossref | GoogleScholarGoogle Scholar |

Gaemers, P. A. M. (1983). Taxonomic position of Cichlidae (Pisces, Perciformes) as demonstrated by the morphology of their otoliths. Netherlands Journal of Zoology 34, 566–595.
Taxonomic position of Cichlidae (Pisces, Perciformes) as demonstrated by the morphology of their otoliths.Crossref | GoogleScholarGoogle Scholar |

Gauldie, R. W. (1988). Function, form and time-keeping properties of fish otoliths. Comparative Biochemistry and Physiology Part A: Physiology 91, 395–402.
Function, form and time-keeping properties of fish otoliths.Crossref | GoogleScholarGoogle Scholar |

Greenshields, I. (2001). 3D shape approximants via spherical wavelet decompositions. In ‘14th IEEE Symposium on Computer-Based Medical Systems’, 26–27 July 2001, Bethesda, MD. p. 31–35. (Institute of Electrical and Electronics Engineers: Bethesda, MD.) 10.1109/CBMS.2001.941693

Hamrin, S.F., Arneri, E., Doering-Arjes, P., Mosegaard, H., Patwardhan, A., Sasovq, A., Schatz, M., Van Dyck, D., Wickström, H., and Van Heel, M. (1999). A new method for three-dimensional otolith analysis. Journal of Fish Biology 54, 223–225.
A new method for three-dimensional otolith analysis.Crossref | GoogleScholarGoogle Scholar |

Harrison, R. (2009). The archaeology of the Port Hedland coastal plain and implications for understanding the prehistory of shell mounds and middens in northwestern Australia. Archaeology in Oceania 44, 81–98.
The archaeology of the Port Hedland coastal plain and implications for understanding the prehistory of shell mounds and middens in northwestern Australia.Crossref | GoogleScholarGoogle Scholar |

Kéver, L., Colleye, O., Lugli, M., Lecchini, D., Lerouvreur, F., Herrel, A., and Parmentier, E. (2014). Sound production in Onuxodon fowleri (Carapidae) and its amplification by the host shell. Journal of Experimental Biology 217, 4283–4294.
Sound production in Onuxodon fowleri (Carapidae) and its amplification by the host shell.Crossref | GoogleScholarGoogle Scholar | 25520383PubMed |

Kuhl, F. P., and Giardina, C. R. (1982). Elliptic Fourier features of a closed contour. Computer Graphics and Image Processing 18, 236–258.
Elliptic Fourier features of a closed contour.Crossref | GoogleScholarGoogle Scholar |

Lin, C.-H., and Chang, C.-W. (2012). ‘Otolith Atlas of Taiwan fishes.’ (National Museum of Marine Biology and Aquarium: Taiwan.)

Lombarte, A., and Cruz, A. (2007). Otolith size trends in marine fish communities from different depth strata. Journal of Fish Biology 71, 53–76.
Otolith size trends in marine fish communities from different depth strata.Crossref | GoogleScholarGoogle Scholar |

Lombarte, A., and Fortuño, J. M. (1992). Differences in morphological features of the saculus of the inner ear of two hakes (Merluccius capensis and M. paradoxus, Gadiformes) inhabits from different depth of sea. Journal of Morphology 214, 97–107.
Differences in morphological features of the saculus of the inner ear of two hakes (Merluccius capensis and M. paradoxus, Gadiformes) inhabits from different depth of sea.Crossref | GoogleScholarGoogle Scholar |

Lombarte, A., Chic, Ò., Parisi-Baradad, V., Olivella, R., Piera, J., and García-Ladona, E. (2006). A web-based environment from shape analysis of fish otoliths. The AFORO database. Scientia Marina 70, 147–152.

Luczkovich, J. J., Sprague, M. W., Johnson, S. E., and Pullinger, R. C. (1999). Delimiting spawning areas of weakfish Cynoscion regalis (Family Sciaenidae) in Pamlico Sound, North Carolina using passive hydroacoustic surveys. Bioacoustics 10, 143–160.
Delimiting spawning areas of weakfish Cynoscion regalis (Family Sciaenidae) in Pamlico Sound, North Carolina using passive hydroacoustic surveys.Crossref | GoogleScholarGoogle Scholar |

Monteiro, L., Di Beneditto, A. P. M., Guilhermo, L. H., and Rivera, L. A. (2005). Allometric changes and shape differentiation of sagitta otoliths in sciaenid fishes. Fisheries Research 74, 288–299.
Allometric changes and shape differentiation of sagitta otoliths in sciaenid fishes.Crossref | GoogleScholarGoogle Scholar |

Neves, V. C., Bried, J., Gonzalez-Solis, J., Roscales, J. L., and Clarke, M. R. (2012). Feeding ecology and movements of the Barolo shearwater Puffinus baroli baroli in the Azores, NE Atlantic. Marine Ecology Progress Series 452, 269–285.
Feeding ecology and movements of the Barolo shearwater Puffinus baroli baroli in the Azores, NE Atlantic.Crossref | GoogleScholarGoogle Scholar |

Nolf, D. (1985). Otolithi piscium. In ‘Handbook of Paleoichthyology’. (Ed. H. P. Schultze.) pp. 1–10. (Gustav Fischer Verlag: Stuttgart.)

Nolf, D. (2013). ‘The Diversity of Fish Otoliths, Past and Present’. (Eds E. Steurbaut, R. Brzobohaty and K. Hoedemakers.) (Royal Belgian Institute of Natural Sciences: Bruxelles.)

Otálora-Ardila, A., Herrera, L. G., Flores-Martinez, J. J., and Voigt, C. C. (2013). Marine and terrestrial food sources in the diet of the fish-eating myotis (Myotis vivesi). Journal of Mammalogy 94, 1102–1110.
Marine and terrestrial food sources in the diet of the fish-eating myotis (Myotis vivesi).Crossref | GoogleScholarGoogle Scholar |

Parisi-Baradad, V., Lombarte, A., García-Ladona, E., Cabestany, J., Piera, J., and Chic, Ò. (2005). Otolith shape contour analysis using affine transformation invariant wavelet transforms and curvature scale space representation. Marine and Freshwater Research 56, 795–804.
Otolith shape contour analysis using affine transformation invariant wavelet transforms and curvature scale space representation.Crossref | GoogleScholarGoogle Scholar |

Parisi-Baradad, V., Manjabacas, A., Lombarte, A., Olivella, R., Chic, Ò., Piera, J., and García- Ladona, E. (2010). Automatic taxon identification of teleost fishes in an otolith online database. Fisheries Research 105, 13–20.
Automatic taxon identification of teleost fishes in an otolith online database.Crossref | GoogleScholarGoogle Scholar |

Popper, A. N., and Fay, R. R. (1993). Sound detection and processing by fish: critical review and major research questions. Brain, Behavior and Evolution 41, 14–38.
Sound detection and processing by fish: critical review and major research questions.Crossref | GoogleScholarGoogle Scholar | 1:STN:280:DyaK3s7mtFSrsA%3D%3D&md5=c1442f1c489f1257578c6580d2d21bb7CAS | 8431753PubMed |

Proakis, J. G., and Manolakis, D. G. (1996). ‘Digital Signal Processing. Principles, Algorithms and Applications’, 3rd edn. (Prentice-Hall: Upper Saddle River, NJ, USA.)

Ramcharitar, J., Higgs, D. M., and Popper, A. N. (2001). Sciaenid inner ears: a study in diversity. Brain, Behavior and Evolution 58, 152–162.
Sciaenid inner ears: a study in diversity.Crossref | GoogleScholarGoogle Scholar | 1:STN:280:DC%2BD387ns1yqtg%3D%3D&md5=e37b65e0c51500395256257d652f94c6CAS | 11910172PubMed |

Ramcharitar, J., Deng, X., Ketten, D., and Popper, A. N. (2004). Form and function in the unique inner ear of a Teleost: the silver perch (Bairdiella chrysoura). The Journal of Comparative Neurology 475, 531–539.
Form and function in the unique inner ear of a Teleost: the silver perch (Bairdiella chrysoura).Crossref | GoogleScholarGoogle Scholar | 15236234PubMed |

Ramcharitar, J., Gannon, D. P., and Popper, A. N. (2006). Bioacoustics of the family Sciaenidae (croakers and drumfishes). Transactions of the American Fisheries Society 135, 1409–1431.
Bioacoustics of the family Sciaenidae (croakers and drumfishes).Crossref | GoogleScholarGoogle Scholar |

Reichenbacher, B., Sienknecht, U., Küchenhoff, H., and Fenske, N. (2007). Combined otolith morphology and morphometry for assessing taxonomy and diversity in fossil and extant killifish (Aphanius, †Prolebias). Journal of Morphology 268, 898–915.
Combined otolith morphology and morphometry for assessing taxonomy and diversity in fossil and extant killifish (Aphanius, †Prolebias).Crossref | GoogleScholarGoogle Scholar | 17674357PubMed |

Rosas-Luis, R., Villanueva, R., and Sánchez, P. (2014). Trophic habits of the Ommastrephid squid Illex coindetii and Todarodes sagittatus in the northwestern Mediterranean Sea. Fisheries Research 152, 21–28.
Trophic habits of the Ommastrephid squid Illex coindetii and Todarodes sagittatus in the northwestern Mediterranean Sea.Crossref | GoogleScholarGoogle Scholar |

Sadighzadeh, Z., Tuset, V. M., Dadpour, M. R., Otero-Ferrrer, J. L., and Lombarte, A. (2012). ‘Otolith Atlas from the Persian Gulf and the Oman Sea Fishes.’ (Lambert Academic Publications: Saarbrücken, Germany.)

Sadighzadeh, Z., Valinassab, T., Vosugi, G., Motallebi, A. A., Fatemi, M. R., Lombarte, A., and Tuset, V. M. (2014a). Stock differentiation of Lutjanus johnii (Lutjanidae) of the Persian Gulf and the Oman Sea using otoliths. Fisheries Research 155, 59–63.
Stock differentiation of Lutjanus johnii (Lutjanidae) of the Persian Gulf and the Oman Sea using otoliths.Crossref | GoogleScholarGoogle Scholar |

Sadighzadeh, Z., Otero-Ferrer, J. L., Lombarte, A., Fatemi, M. R., and Tuset, V. M. (2014b). An approach to unraveling the coexistence of snappers (Lutjanidae) using otolith morphology. Scientia Marina 78, 353–362.
An approach to unraveling the coexistence of snappers (Lutjanidae) using otolith morphology.Crossref | GoogleScholarGoogle Scholar |

Schmidt, W. (1969). The otoliths as a means for differentiation between species of fish of very similar appearance. In ‘Proceedings of Symposium of Oceanography of Fisheries Research in Tropical Atlantic, Abidjan, Ivory Coast, 1966’. pp. 393–396. (UNESCO: Paris, France.)

Schulz-Mirbach, T., Heß, M., and Plath, M. (2011). Inner ear morphology in the Atlantic molly Poecilia mexicana: first detailed microanatomical study of the inner ear of a Cyprinodontiform species. PLoS One 6, e27734.
Inner ear morphology in the Atlantic molly Poecilia mexicana: first detailed microanatomical study of the inner ear of a Cyprinodontiform species.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3MXhsF2is7fK&md5=d7b79460cdd341887012baf578058959CAS | 22110746PubMed |

Schulz-Mirbach, T., Heß, M., and Metscher, B. D. (2013). Sensory epithelia of the fish inner ear in 3-D: studied with high-resolution contrast enhanced microCT. Frontiers in Zoology 10, 63.
Sensory epithelia of the fish inner ear in 3-D: studied with high-resolution contrast enhanced microCT.Crossref | GoogleScholarGoogle Scholar | 24160754PubMed |

Schwarzhans, W. (1996). Otoliths from the Maastrichtian of Bavaria and their evolutionary significance. In ‘Mesozoic Fishes – Systematics and Paleoecology’. (Eds G. Arratia and G. Viohl.) pp. 417–431. (Verlag Dr. Friedrich Pfeil: München.)

Smale, M. J., Watson, G., and Hecht, T. (1995). Otolith atlas of southern African marine fishes. Ichthyological Bulletin of the J. L. B. Smith Institute of Ichthyology 1, 1–253.

Tanaka, K., Sano, M., Mukawa, N., and Kaneko, H. (1993). 3-D object representation using spherical harmonic functions. In ‘Proceedings of the 1993 IEEE/RSJ International Conference on Intelligent Robots and Systems ’93, IROS ’93’, 26–30 July 1993, Yokohama. pp. 1873–1880. (Institute of Electrical and Electronics Engineers: Yokohama, Japan.)

Torres, G. J., Lombarte, A., and Morales-Nin, B. (2000). Variability of the sulcus acusticus in the sagitta otolith of the genus Merluccius. Fisheries Research 46, 5–13.
Variability of the sulcus acusticus in the sagitta otolith of the genus Merluccius.Crossref | GoogleScholarGoogle Scholar |

Tubić, D., Hébert, P., and Laurendeau, D. (2004). 3-D surface modeling from curves. Image and Vision Computing 22, 719–734.
3-D surface modeling from curves.Crossref | GoogleScholarGoogle Scholar |

Tuset, V. M., Rosin, P. L., and Lombarte, A. (2006). Sagittae otolith shape used in the identification of fishes of the genus Serranus. Fisheries Research 81, 316–325.
Sagittae otolith shape used in the identification of fishes of the genus Serranus.Crossref | GoogleScholarGoogle Scholar |

Tuset, V. M., Lombarte, A., and Assis, C. A. (2008). Otolith atlas for the western Mediterranean, north and central eastern Atlantic. Scientia Marina 72, 1–198.
Otolith atlas for the western Mediterranean, north and central eastern Atlantic.Crossref | GoogleScholarGoogle Scholar |

Tuset, V. M., Azzurro, E., and Lombarte, A. (2012). Identification of Lessepsian fish species using the sagittae otolith. Scientia Marina 76, 289–299.
Identification of Lessepsian fish species using the sagittae otolith.Crossref | GoogleScholarGoogle Scholar |

Tuset, V. M., Parisi-Baradad, V., and Lombarte, A. (2013). Application of Fourier weight and shape for discriminating scabbarfishes (Aphanopus spp.) in the Norteastern Atlantic waters. Journal of Fish Biology 82, 1746–1752.
Application of Fourier weight and shape for discriminating scabbarfishes (Aphanopus spp.) in the Norteastern Atlantic waters.Crossref | GoogleScholarGoogle Scholar | 1:STN:280:DC%2BC3sngsFejtw%3D%3D&md5=02aaf14252b50d2ee40a011a64401fffCAS | 23639170PubMed |

Van Loan, C. (1992). ‘Computational Frameworks for the Fast Fourier Transform.’ (Siam: Philadelphia.)

Veiga, P., Xavier, J. C., Assis, C. A., and Erzini, K. (2011). Diet of the blue marlin, Makaira nigricans, off the south coast of Portugal. Marine Biology Research 7, 820–825.
Diet of the blue marlin, Makaira nigricans, off the south coast of Portugal.Crossref | GoogleScholarGoogle Scholar |

Volpedo, A. V., and Echevarría, D. D. (2000). ‘Catálogo y claves de otolitos para la identificación de peces del Mar Argentino. 1. Peces de Importáncia Económica.’ (Dunken: Buenos Aires.)

Wu, M.-F., and Sheu, H.-T. (1998). Representation of 3-D surfaces by two-variable Fourier descriptors. IEEE Transactions on Pattern Analysis and Machine Intelligence 20, 858–863.
Representation of 3-D surfaces by two-variable Fourier descriptors.Crossref | GoogleScholarGoogle Scholar |

Zitek, A., Mayrhofer, B., Oehm, J., Irrgeher, J., and Prohaska, T. (2014): Affordable 3-D scanning of small otoliths for improved shape analysis by photogrammetry techniques. In ‘ICES/CIEM, Book of Abstracts of the 5th International Otolith Symposium 2014 (IOS2014)’, 20–24 October 2014, Mallorca. (Eds B. Morales-Nin and A. J. Geffren.) pp. 287–290. (ICES/CIEM Symposium: Peguera, Spain.)