Register      Login
Marine and Freshwater Research Marine and Freshwater Research Society
Advances in the aquatic sciences
RESEARCH ARTICLE

Population genetic structure and demographic history of Pacific blue sharks (Prionace glauca) inferred from mitochondrial DNA analysis

Mioko Taguchi A C , Jacquelynne R. King B , Michael Wetklo B , Ruth E. Withler B and Kotaro Yokawa A
+ Author Affiliations
- Author Affiliations

A National Research Institute of Far Seas Fisheries, Shimizu, Shizuoka 424-8633, Japan.

B Pacific Biological Station, Fisheries and Oceans Canada, Nanaimo, BC, V9T 6N7, Canada.

C Corresponding author. Email: miokotaguchi@gmail.com

Marine and Freshwater Research 66(3) 267-275 https://doi.org/10.1071/MF14075
Submitted: 12 July 2013  Accepted: 13 June 2014   Published: 6 November 2014

Abstract

Cosmopolitan pelagic species often show shallow genetic divergence and weak, or no, genetic structure across a species’ range. However, there have been few such genetic studies for pelagic sharks. The pelagic blue shark (Prionace glauca) has a broad circumglobal distribution in tropical and temperate oceans. To investigate the population genetic structure and demographic history of this species, we analysed variation in the mitochondrial cytochrome b sequence for a total of 404 specimens collected from 10 locations across the Indo-Pacific region. The observed genetic diversities were comparable among sampling locations (h = 0.77–0.87; π = 0.17–0.23%). Spatial analysis of molecular variance (SAMOVA), pairwise ΦST and conventional FST estimates, and analysis of isolation with migration indicated weak or no genetic differentiation of this species across the Indo-Pacific region. The results of three phylogeographic analyses (i.e. mismatch distribution and parsimony haplotype network analyses and a neutrality test) suggested that the Pacific blue shark had historically experienced a sudden population expansion. These results, coupled with the biological properties of this species, imply that historical climate fluctuation has had only a minor effect on the genetic structuring of the blue shark.

Additional keywords: Carcharhinidae, climate change, highly mobile fishes, open ocean.


References

Avise, J. C. (2000). ‘Phylogeography: The History and Formation of Species.’ (Harvard University Press: Cambridge, MA, USA.)

Avise, J. C., Ball, R. M., and Arnold, J. (1988). Current versus historical population sizes in vertebrate species with high gene flow: a comparison based on mitochondrial DNA lineages and inbreeding theory for neutral mutations. Molecular Biology and Evolution 5, 331–344.
| 1:CAS:528:DyaL1cXkvVOntLs%3D&md5=1f9851ce31d00cc3283189816b19fd9eCAS | 3405076PubMed |

Blower, D. C., Pandolfi, J. M., Bruce, D. B., Gomez-Cabrera, M. C., and Ovenden, J. R. (2012). Population genetics of Australian white sharks reveals fine-scale spatial structure, transoceanic dispersal events and low effective population sizes. Marine Ecology Progress Series 455, 229–244.
Population genetics of Australian white sharks reveals fine-scale spatial structure, transoceanic dispersal events and low effective population sizes.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC38Xht1Sht77I&md5=e6d69d6207a32a009215919f76866de3CAS |

Cabrera-Chávez-Costa, A. A., Galván-Magaña, F., and Escobar-Sánchez, O. (2010). Food habits of the silky shark Carcharhinus falciformis (Muller & Henle, 1839) off the western coast of Baja California Sur, Mexico. Journal of Applied Ichthyology 26, 499–503.
Food habits of the silky shark Carcharhinus falciformis (Muller & Henle, 1839) off the western coast of Baja California Sur, Mexico.Crossref | GoogleScholarGoogle Scholar |

Castro, A. L. F., Stewart, B. S., Wilson, S. G., Hueter, R. E., Meekan, M. G., Motta, P. J., Bowen, B. W., and Karl, S. A. (2007). Population genetic structure of Earth’s largest fish, the whale shark (Rhincodon typus). Molecular Ecology 16, 5183–5192.
Population genetic structure of Earth’s largest fish, the whale shark (Rhincodon typus).Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1cXhtVGmsrY%3D&md5=2d8ad306de2c11aa2ffe3069ed896801CAS |

Clarke, S., Yokawa, K., Matsunaga, H., and Nakano, H. (2011). Analysis of North Pacific shark data from Japanese commercial longline and research /training vessel records. Available at http://www.wcpfc.int/system/files/EB-WP-02%20%5BAnalysis%20of%20NP%20shark%20data%20form%20Japan%5D.pdf [Verified 5 February 2014].

Clement, M., Posada, D., and Crandall, K. A. (2000). TCS: a computer program to estimate gene genealogies. Molecular Ecology 9, 1657–1659.
TCS: a computer program to estimate gene genealogies.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3cXnvV2gtbw%3D&md5=391da7bb4e4824710758e3cd00fd0dd4CAS | 11050560PubMed |

Compagno, L. J. V. (1984). FAO species catalog. Vol. 4. Sharks of the world. Part 2: an annotated and illustrated catalogue of shark species known to date. Prionace glauca. FAO Fisheries Synopsis S125Vol.04Pt.2. Food and Agricultural Organization of the United Nations, Rome. Available at ftp://ftp.fao.org/docrep/fao/009/ad123e/ad123e32.pdf [Verified 24 January 2014].

Compagno, L. J. V. (2001). FAO species catalog. Vol. 4. Sharks of the world. Part 2: bullhead, mackerel and carpet sharks. Food and Agricultural Organization of the United Nations, Rome.

Cortés, E. (1999). Standardized diet compositions and trophic levels of sharks. ICES Journal of Marine Science 56, 707–717.
Standardized diet compositions and trophic levels of sharks.Crossref | GoogleScholarGoogle Scholar |

da Silva, C., Kerwath, S. E., Wilke, C. G., Meyer, M., and Lamberth, S. J. (2010). First documented southern transatlantic migration of a blue shark Prionace glauca tagged off South Africa. African Journal of Marine Science 32, 639–642.
First documented southern transatlantic migration of a blue shark Prionace glauca tagged off South Africa.Crossref | GoogleScholarGoogle Scholar |

Díaz-Jaimes, P., Uribe-Alcocer, M., Rocha-Olivares, A., Garcia-de-Leon, F. J., Nortmoon, P., and Durand, J. D. (2010). Global phylogeography of the dolphinfish (Coryphaena hippurus): the influence of large effective population size and recent dispersal on the divergence of a marine pelagic cosmopolitan species. Molecular Phylogenetics and Evolution 57, 1209–1218.
Global phylogeography of the dolphinfish (Coryphaena hippurus): the influence of large effective population size and recent dispersal on the divergence of a marine pelagic cosmopolitan species.Crossref | GoogleScholarGoogle Scholar | 20971198PubMed |

Dupanloup, I., Schneider, S., and Excoffier, L. (2002). A simulated annealing approach to define the genetic structure of populations. Molecular Ecology 11, 2571–2581.
A simulated annealing approach to define the genetic structure of populations.Crossref | GoogleScholarGoogle Scholar | 1:STN:280:DC%2BD38nptlaksw%3D%3D&md5=176debc90e4dd9949d678651fbb072a1CAS | 12453240PubMed |

Ely, B., Vinas, J., Bremer, J. R. A., Black, D., Lucas, L., Covello, K., Labrie, A. V., and Thelen, E. (2005). Consequences of the historical demography on the global population structure of two highly migratory cosmopolitan marine fishes: the yellowfin tuna (Thunnus albacares) and the skipjack tuna (Katsuwonus pelamis). BMC Evolutionary Biology 5, 19.
Consequences of the historical demography on the global population structure of two highly migratory cosmopolitan marine fishes: the yellowfin tuna (Thunnus albacares) and the skipjack tuna (Katsuwonus pelamis).Crossref | GoogleScholarGoogle Scholar | 15725349PubMed |

Excoffier, L. (2004). Patterns of DNA sequence diversity and genetic structure after a range expansion: lessons from the infinite-island model. Molecular Ecology 13, 853–864.
Patterns of DNA sequence diversity and genetic structure after a range expansion: lessons from the infinite-island model.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2cXjtFKnsL4%3D&md5=ccef901e883010c14923984b2a9856f2CAS | 15012760PubMed |

Excoffier, L., and Lischer, H. E. L. (2010). Arlequin suite ver 3.5: a new series of programs to perform population genetics analyses under Linux and Windows. Molecular Ecology Resources 10, 564–567.
Arlequin suite ver 3.5: a new series of programs to perform population genetics analyses under Linux and Windows.Crossref | GoogleScholarGoogle Scholar | 21565059PubMed |

Excoffier, L., Smouse, P. E., and Quattro, M. (1992). Analysis of molecular variance inferred from metric distances among DNA haplotypes: application to human mitochondrial DNA restriction data. Genetics 131, 479–491.
| 1:CAS:528:DyaK38XlsVCntro%3D&md5=250a741994f4e76df8d52eb5da21d9c7CAS | 1644282PubMed |

Funk, D. J., and Omland, K. E. (2003). Species-level paraphyly and polyphyly: frequency, causes, and consequences, with insights from animal mitochondrial DNA. Annual Review of Ecology Evolution and Systematics 34, 397–423.
Species-level paraphyly and polyphyly: frequency, causes, and consequences, with insights from animal mitochondrial DNA.Crossref | GoogleScholarGoogle Scholar |

Galván-Tirado, C., Diaz-Jaimes, P., Garcia-de Leon, F. J., Galvan-Magana, F., and Uribe-Alcocer, M. (2013). Historical demography and genetic differentiation inferred from the mitochondrial DNA of the silky shark (Carcharhinus falciformis) in the Pacific Ocean. Fisheries Research 147, 36–46.
Historical demography and genetic differentiation inferred from the mitochondrial DNA of the silky shark (Carcharhinus falciformis) in the Pacific Ocean.Crossref | GoogleScholarGoogle Scholar |

Goudet, J., Perrin, N., and Waser, P. (2002). Tests for sex-biased dispersal using bi-parentally inherited genetic markers. Molecular Ecology 11, 1103–1114.
Tests for sex-biased dispersal using bi-parentally inherited genetic markers.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD38Xls1arsrc%3D&md5=c6d0a43a792b52deb854317e65de9d46CAS | 12030985PubMed |

Graves, J. E. (1998). Molecular insights into the population structures of cosmopolitan marine fishes. The Journal of Heredity 89, 427–437.
Molecular insights into the population structures of cosmopolitan marine fishes.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK1cXntFCjtbc%3D&md5=8ad0e6ace990c47c78e0d4b38e5d7fd0CAS |

Harvey, J. T. (1989). Food habits, seasonal abundance, size, and sex of the blue shark, Prionace glauca, in Monterey bay, California. California Fish and Game 75, 33–44.

Hasegawa, M., Kishino, H., and Yano, T. A. (1985). Dating of the human ape splitting by a molecular clock of mitochondrial-DNA. Journal of Molecular Evolution 22, 160–174.
Dating of the human ape splitting by a molecular clock of mitochondrial-DNA.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaL2MXmtFSns7g%3D&md5=2970e30534e69ab3297237a72b6cac65CAS | 3934395PubMed |

Hazin, F. H. V., and Lessa, R. (2005). Synopsis of biological information available on blue shark, Prionace glauca, from the southwestern Atlantic Ocean. In ‘ICCAT Collective Volume of Scientific Papers’, Vol. 58, pp. 1179–1187. (International Commission for the Conservation of Atlantic Tunas: Madrid.)

Hazin, F. H. V., Kihara, K., Otsuka, K., Boeckman, C. E., and Leal, E. C. (1994). Reproduction of the blue shark Prionace glauca in the south-western equatorial Atlantic Ocean. Fisheries Science 60, 487–491.
| 1:CAS:528:DyaK2MXitFeku78%3D&md5=c1d169281efbfca5c4a7971cafbfe358CAS |

Heist, E. J., Musick, J. A., and Graves, J. E. (1996). Genetic population structure of the shortfin mako (Isurus oxyrinchus) inferred from restriction fragment length polymorphism analysis of mitochondrial DNA. Canadian Journal of Fisheries and Aquatic Sciences 53, 583–588.
Genetic population structure of the shortfin mako (Isurus oxyrinchus) inferred from restriction fragment length polymorphism analysis of mitochondrial DNA.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK28XkslGrsLY%3D&md5=39b23e7932dc433a56208e0575c9ecafCAS |

Hey, J., and Nielsen, R. (2007). Integration within the Felsenstein equation for improved Markov Chain Monte Carlo methods in population genetics. Proceedings of the National Academy of Sciences of the United States of America 104, 2785–2790.
Integration within the Felsenstein equation for improved Markov Chain Monte Carlo methods in population genetics.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2sXisVSgtbc%3D&md5=17ca9fa603651c20be871c62d1965a74CAS | 17301231PubMed |

Hoelzel, R. A., Shivji, M. S., Magnussen, J., and Francis, M. P. (2006). Low worldwide genetic diversity in the basking shark (Cetorhinus maximus). Biology Letters 2, 639–642.
Low worldwide genetic diversity in the basking shark (Cetorhinus maximus).Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2sXhtVOgsrw%3D&md5=bc0312aad8b21d5e9c1b19d7dff85df4CAS |

Holm, S. (1979). A simple sequentially rejective multiple test procedure. Scandinavian Journal of Statistics 6, 65–70.

Hudson, R. R., and Turelli, M. (2003). Stochasticity overrules the ‘three-times rule’: genetic drift, genetic draft, and coalescence times for nuclear loci versus mitochondrial DNA. Evolution 57, 182–190.
| 12643581PubMed |

ISC (2011). Report of the shark working group workshop. (International Scientific Committee for Tuna and Tuna-like Species in the North Pacific Ocean.) Available at isc.ac.affrc.go.jp/pdf/ISC12pdf/Annex%204%20-%20Report%20of%20the%20SHARKWG%20Workshop%20%28Nov%202011%29.pdf [Verified 22 January 2014].

Jolly, K. A., da Silva, C., and Attwood, C. G. (2013). Age, growth and reproductive biology of the blue shark Prionace glauca in South African waters. African Journal of Marine Science 35, 99–109.
Age, growth and reproductive biology of the blue shark Prionace glauca in South African waters.Crossref | GoogleScholarGoogle Scholar |

Librado, P., and Rozas, J. (2009). DnaSP v5: a software for comprehensive analysis of DNA polymorphism data. Bioinformatics 25, 1451–1452.
DnaSP v5: a software for comprehensive analysis of DNA polymorphism data.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1MXmtFeqtr8%3D&md5=3b4b01049e16e407c9cc2d39b36fc0c2CAS | 19346325PubMed |

Markaida, U., and Sosa-Nishizaki, O. (2010). Food and feeding habits of the blue shark Prionace glauca caught off Ensenada, Baja California, Mexico, with a review on its feeding. Journal of the Marine Biological Association of the United Kingdom 90, 977–994.
Food and feeding habits of the blue shark Prionace glauca caught off Ensenada, Baja California, Mexico, with a review on its feeding.Crossref | GoogleScholarGoogle Scholar |

Martin, A. P., and Palumbi, S. R. (1993). Protein evolution in different cellular environments: cytochrome b in sharks and mammals. Molecular Biology and Evolution 10, 873–891.
| 1:CAS:528:DyaK3sXmtF2rtrk%3D&md5=eb99672f7f3a9d1f581c287af8ea4732CAS | 8355604PubMed |

Matsunaga, H., and Nakano, H. (1996). Distribution of elasmobranchs occurred in the pelagic ocean of the Southern Hemisphere. Kaiyo Monthly 28, 416–423.

Menezes, M. R., Ikeda, M., and Taniguchi, M. (2006). Genetic variation in skipjack tuna Katsuwonus pelamis using PCR-RFLP analysis of the mitochondrial DNA D-loop region. Journal of Fish Biology 68, 156–161.
Genetic variation in skipjack tuna Katsuwonus pelamis using PCR-RFLP analysis of the mitochondrial DNA D-loop region.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD28XjvVaju7Y%3D&md5=7fdbc3ca1d42272cf57b274ab58974dcCAS |

Murray, B. W., Wang, J. Y., Yang, S. C., Stevens, J. D., Fisk, A., and Svavarsson, J. (2008). Mitochondrial cytochrome b variation in sleeper sharks (Squaliformes: Somniosidae). Marine Biology 153, 1015–1022.
Mitochondrial cytochrome b variation in sleeper sharks (Squaliformes: Somniosidae).Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1cXitFKgsrk%3D&md5=ec244038a5faf97549fc83b11f776e99CAS |

Nakano, H. (1994). Age, reproduction and migration of blue shark in the North Pacific Ocean. In ‘Bulletin of the National Research Institute of Far Seas Fisheries’, number 31, pp. 141–256. (National Research Institute of Far Seas Fisheries: Shizuoka, Japan.)

Nakano, H., and Seki, M. P. (2003). Synopsis of biological data on the blue shark, Prionace glauca Linnaeus. In ‘Bulletin of Fisheries Research Agency’, number 6, pp. 18–55. (Fisheries Research Agency: Yokohama, Japan.)

Naylor, G. J. P., Ryburn, J. A., Fedrigo, O., and López, A. (2005). Phylogenetic relationships among the major lineages of sharks and rays deduced from multiple genes. In ‘Reproductive Biology and Phylogeny of Chondrichthyans (Sharks, Skates, Stingrays and Chimaeras)’. (Eds W. Hamlett and B. Jamieson.) pp. 1–25. (University of Queensland Press: Brisbane.)

Nei, M. (1987). ‘Molecular Evolutionary Genetics.’ (Columbia University Press: New York.)

Nielsen, R., and Wakeley, J. (2001). Distinguishing migration from isolation. A Markov Chain Monte Carlo approach. Genetics 158, 885–896.
| 1:CAS:528:DC%2BD3MXltFSisbg%3D&md5=e298065f93aec6da66579c2e4a269dc0CAS | 11404349PubMed |

O’Brien, S. M., Gallucci, V. F., and Hauser, L. (2013). Effects of species biology on the historical demography of sharks and their implications for likely consequences of contemporary climate change. Conservation Genetics 14, 125–144.
Effects of species biology on the historical demography of sharks and their implications for likely consequences of contemporary climate change.Crossref | GoogleScholarGoogle Scholar |

Ovenden, J. R., Kashiwagi, T., Broderick, D., Giles, J., and Salini, J. (2009). The extent of population genetic subdivision differs among four co-distributed shark species in the Indo-Australian archipelago. BMC Evolutionary Biology 9, 40.
The extent of population genetic subdivision differs among four co-distributed shark species in the Indo-Australian archipelago.Crossref | GoogleScholarGoogle Scholar | 19216767PubMed |

Portnoy, D. S., Mcdowell, J. R., Heist, E. J., Musick, J. A., and Graves, J. (2010). World phylogeography and male-mediated gene flow in the sandbar shark, Carcharhinus plumbeus. Molecular Ecology 19, 1994–2010.
World phylogeography and male-mediated gene flow in the sandbar shark, Carcharhinus plumbeus.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3cXnsl2jsb4%3D&md5=3da577b10d7a56464a6cd2f23ee95750CAS | 20406387PubMed |

Rogers, A. R. (1995). Genetic evidence for a Pleistocene population explosion. Evolution 49, 608–615.
Genetic evidence for a Pleistocene population explosion.Crossref | GoogleScholarGoogle Scholar |

Rogers, A. R., and Harpending, H. (1992). Population-growth makes waves in the distribution of pairwise genetic-differences. Molecular Biology and Evolution 9, 552–569.
| 1:STN:280:DyaK383mtFeitA%3D%3D&md5=456bb68bb2885d22b4d660ba6e8e2dd7CAS | 1316531PubMed |

Schneider, S., and Excoffier, L. (1999). Estimation of past demographic parameters from the distribution of pairwise differences when the mutation rates vary among sites: application to human mitochondrial DNA. Genetics 152, 1079–1089.
| 1:STN:280:DyaK1MzhvVynsA%3D%3D&md5=030e1538cd362cfdd2a05a55ae0b5e3fCAS | 10388826PubMed |

Sippel, T., Wraith, J., Kohin, S., Taylor, V., Holdsworth, J., Taguchi, M., Matsunaga, H., and Yokawa, K. (2011). A summary of blue shark (Prionace glauca) and shortfin mako shark (Isurus oxyrinchus) tagging data available from the north and southwest Pacific Ocean. ISC/11SHARKWG-2/04. Available at http://isc.ac.affrc.go.jp/pdf/SHARK/ISC11_SHARK_2/04-Sippel_et_al._conventional_tagging.pdf [Verified 24 April 2014].

Strasburg, D. W. (1958). Distribution, abundance and habitats of pelagic sharks in the central Pacific Ocean. Fishery Bulletin 58, 335–361.

Suda, A. (1953). Ecological study of blue shark (Prionace glauca Linne). In ‘Bulletin of Nankai Fisheries Research Laboratory’, number 1, pp. 1–11. (Nankai Regional Fisheries Research Laboratory: Kochi, Japan.) [In Japanese].

Tajima, F. (1989). Statistical-method for testing the neutral mutation hypothesis by DNA polymorphism. Genetics 123, 585–595.
| 1:CAS:528:DyaK3cXhslentA%3D%3D&md5=8b607e6188546f8647101405a1596d5bCAS | 2513255PubMed |

Tamura, K., and Nei, M. (1993). Estimation of the number of nucleotide substitutions in the control region of mitochondrial-DNA in humans and chimpanzees. Molecular Biology and Evolution 10, 512–526.
| 1:CAS:528:DyaK3sXks1CksL4%3D&md5=5e0c968139f454acbeea7f8663ef39a2CAS | 8336541PubMed |

Tamura, K., Peterson, D., Peterson, N., Stecher, G., Nei, M., and Kumar, S. (2011). MEGA5: molecular evolutionary genetics analysis using maximum likelihood, evolutionary distance, and maximum parsimony methods. Molecular Biology and Evolution 28, 2731–2739.
MEGA5: molecular evolutionary genetics analysis using maximum likelihood, evolutionary distance, and maximum parsimony methods.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3MXht1eiu73K&md5=afbe368a3bf41a18152be0ac69bac6eeCAS | 21546353PubMed |

Theisen, T. C., Bowen, B. W., Lanier, W., and Baldwin, J. D. (2008). High connectivity on a global scale in the pelagic wahoo, Acanthocybium solandri (tuna family Scombridae). Molecular Ecology 17, 4233–4247.
High connectivity on a global scale in the pelagic wahoo, Acanthocybium solandri (tuna family Scombridae).Crossref | GoogleScholarGoogle Scholar | 1:STN:280:DC%2BD1M3os12hsA%3D%3D&md5=66d6cd7fc63a87612aa100301945d3bdCAS | 19378403PubMed |

Vandeperre, F., Aires-da-Silva, A., Santos, M., Ferreira, R., Bolten, A. B., Santos, R. S., and Afonso, P. (2014). Demography and ecology of blue shark (Prionace glauca) in the central North Atlantic. Fisheries Research 153, 89–102.
Demography and ecology of blue shark (Prionace glauca) in the central North Atlantic.Crossref | GoogleScholarGoogle Scholar |

WCPFC (2010). Summary report of 6th regular session of the scientific committee. (Western and Central Pacific Fisheries Commission.) Available at http://www.wcpfc.int/system/files/SC6%20Final_Edited-Reviewed-Cleaned%20-%2030Mar2011-edit.pdf [Verified 22 January 2014].

WCPFC (2013). Summary report of 9th regular session of the scientific committee. (Western and Central Pacific Fisheries Commission.) Available at http://www.wcpfc.int/system/files/0_SC9%20Summary%20Report%20-%20edited%20final%20%2824Nov2013%29.docx [Verified 22 January 2014].