Register      Login
Marine and Freshwater Research Marine and Freshwater Research Society
Advances in the aquatic sciences
RESEARCH ARTICLE

Atypical correlation of otolith strontium : calcium and barium : calcium across a marine–freshwater life history transition of a diadromous fish

Paul Hamer A E , Angela Henderson B , Michael Hutchison C , Jodie Kemp A , Corey Green A and Pierre Feutry D
+ Author Affiliations
- Author Affiliations

A Department of Environment and Primary Industries, 2a Bellarine Highway, Queenscliff, Vic 3225, Australia.

B Department of Agriculture, Forestry and Fisheries, Northern Fisheries Centre, 38–40 Tingira Street, Portsmith, Qld 4870, Australia.

C Queensland Department of Agriculture, Fisheries and Forestry, Bribie Island Research Centre, 140 North Street, Woorim, Qld 4507, Australia.

D Research Institute for the Environment and Livelihoods, Charles Darwin University, Darwin, NT 0909, Australia.

E Corresponding author. Email: paul.hamer@depi.vic.gov.au

Marine and Freshwater Research 66(5) 411-419 https://doi.org/10.1071/MF14001
Submitted: 6 January 2014  Accepted: 9 August 2014   Published: 6 January 2015

Abstract

Variation in strontium (Sr) and barium (Ba) within otoliths is invaluable to studies of fish diadromy. Typically, otolith Sr : Ca is positively related to salinity, and the ratios of Ba and Sr to calcium (Ca) vary in opposite directions in relation to salinity. In this study of jungle perch, Kuhlia rupestris, otolith Sr : Ca and Ba : Ca, however, showed the same rapid increase as late-larval stages transitioned directly from a marine to freshwater environment. This transition was indicated by a microstructural check mark on otoliths at 35–45 days age. As expected ambient Sr was lower in the fresh than the marine water, however, low Ca levels (0.4 mg L–1) of the freshwater resulted in the Sr : Ca being substantially higher than the marine water. Importantly, the otolith Sr : Ba ratio showed the expected pattern of a decrease from the marine to freshwater stage, illustrating that Sr : Ba provided a more reliable inference of diadromous behaviour based on prior expectations of their relationship to salinity, than did Sr : Ca. The results demonstrate that Ca variation in freshwaters can potentially be an important influence on otolith element : Ca ratios and that inferences of marine–freshwater habitat use from otolith Sr : Ca alone can be problematic without an understanding of water chemistry.

Additional keywords: catadromy, jungle perch, Kuhlia rupestris, larval dispersal, laser ablation.


References

Arthington, A. H., Kennard, M., and Benn, S. (1990). Water quality and the trophic status of Fraser Island lakes. Final Report to the Division of Environment, Department of Environment and Heritage. Griffith University, Brisbane, Qld.

Bath, G. E., Thorrold, S. R., Jones, C. M., Campana, S. E., McLaren, J. W., and Lam, J. W. H. (2000). Strontium and barium uptake in aragonitic otoliths of marine fish. Geochimica et Cosmochimica Acta 64, 1705–1714.
Strontium and barium uptake in aragonitic otoliths of marine fish.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3cXjt1Sisrw%3D&md5=9957866924d02dc330bc36257da71a2bCAS |

Bayly, I. A. E. (1964). Chemical and biological studies on some acidic lakes of east Australian sandy coastal lowlands. Marine and Freshwater Research 15, 56–72.
Chemical and biological studies on some acidic lakes of east Australian sandy coastal lowlands.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaF2cXkvVaksrk%3D&md5=d854dbf3aea92c4158fbe5a001c4ad61CAS |

Bernat, M., Church, T., and Allegre, C. J. (1972). Barium and strontium concentrations in Pacific and Mediterranean sea water profiles by direct isotope dilution mass spectrometry. Earth and Planetary Science Letters 16, 75–80.
Barium and strontium concentrations in Pacific and Mediterranean sea water profiles by direct isotope dilution mass spectrometry.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaE38XlsFKhsrk%3D&md5=28fd87e2760b80fe18de5d58cf31763aCAS |

Brown, R. J., and Severin, K. P. (2009). Otolith chemistry analyses indicate that water Sr : Ca is the primary factor influencing otolith Sr : Ca for freshwater and diadromous fish but not for marine fish. Canadian Journal of Fisheries and Aquatic Sciences 66, 1790–1808.
Otolith chemistry analyses indicate that water Sr : Ca is the primary factor influencing otolith Sr : Ca for freshwater and diadromous fish but not for marine fish.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1MXhtlWktrbN&md5=12bd3538bde124f17387e67fbdc90811CAS |

Bruland, K. W. (1983). Trace elements in seawater. Chemical Oceanography 8, 157–220.
Trace elements in seawater.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaL2cXltFKgtr4%3D&md5=a196019c47ed2075a198a534f3d117a7CAS |

Bury, N. R., Walker, P. A., and Glover, C. N. (2003). Nutritive metal uptake in teleost fish. The Journal of Experimental Biology 206, 11–23.
Nutritive metal uptake in teleost fish.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3sXhtVWgsrk%3D&md5=06fca8728dababb0831137d1c6aba0a1CAS | 12456693PubMed |

Campana, S. E. (1999). Chemistry and composition of fish otoliths: pathways, mechanisms and applications. Marine Ecology Progress Series 188, 263–297.
Chemistry and composition of fish otoliths: pathways, mechanisms and applications.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3cXjtFKmtA%3D%3D&md5=6aa6bd7f37d02a8ee60835938650a0bdCAS |

Campana, S. E., and Neilson, J. D. (1985). Microstructure of fish otoliths. Canadian Journal of Fisheries and Aquatic Sciences 42, 1014–1032.
Microstructure of fish otoliths.Crossref | GoogleScholarGoogle Scholar |

Campana, S. E., and Thorrold, S. R. (2001). Otoliths, increments, and elements: keys to a comprehensive understanding of fish populations? Canadian Journal of Fisheries and Aquatic Sciences 58, 30–38.
Otoliths, increments, and elements: keys to a comprehensive understanding of fish populations?Crossref | GoogleScholarGoogle Scholar |

Chesney, E. J., McKee, B. M., Blanchard, T., and Chan, L. (1998). Chemistry of otoliths from juvenile menhaden Brevoortia patronus: evaluating strontium, strontium : calcium and strontium isotope ratios as environmental indicators. Marine Ecology Progress Series 171, 261–273.
Chemistry of otoliths from juvenile menhaden Brevoortia patronus: evaluating strontium, strontium : calcium and strontium isotope ratios as environmental indicators.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK1cXntV2gu78%3D&md5=e4e251139226f52e1dc0f12867c6ff69CAS |

Chittaro, P. M., Hogan, J. D., Gagnon, J., Fryer, B. J., and Sale, P. F. (2006). In situ experiment of ontogentic variability in the otolith chemistry of Stegastes partitus. Marine Biology 149, 1227–1235.
In situ experiment of ontogentic variability in the otolith chemistry of Stegastes partitus.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD28XptVGqur0%3D&md5=03355d6faaf7a8e00257b85e51778fb1CAS |

Clarke, D. D., Telmer, K. H., and Shrimpton, M. J. (2007). Habitat use and movement patterns for a fluvial species, the Arctic grayling, in a watershed impacted by a large reservoir: evidence from otolith microchemistry. Journal of Applied Ecology 44, 1156–1165.
Habitat use and movement patterns for a fluvial species, the Arctic grayling, in a watershed impacted by a large reservoir: evidence from otolith microchemistry.Crossref | GoogleScholarGoogle Scholar |

Crook, D. A., Macdonald, J. I., O’Connor, J. P., and Barry, B. (2006). Use of otolith chemistry to examine patterns of diadromy in the threatened Australian grayling Prototroctes maraena. Journal of Fish Biology 69, 1330–1344.
Use of otolith chemistry to examine patterns of diadromy in the threatened Australian grayling Prototroctes maraena.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD28XhtlWhtbbK&md5=a3d15405874e7feadad130fb67820ab4CAS |

Dalesman, S., and Lukowiak, K. (2010). Effect of acute exposure to low environmental calcium on respiration and locomotion in Lymnaea stagnalis (L.). The Journal of Experimental Biology 213, 1471–1476.
Effect of acute exposure to low environmental calcium on respiration and locomotion in Lymnaea stagnalis (L.).Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3cXot1Gnur0%3D&md5=66f404a08183f228bba9518b2c019848CAS | 20400631PubMed |

Degens, E. T., Deuser, W. G., and Haedrich, R. L. (1969). Molecular structure and composition of fish otoliths. Marine Biology 2, 105–113.
Molecular structure and composition of fish otoliths.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaF1MXktFSksrc%3D&md5=feba986176c64aea9dd9e154a0183649CAS |

DiMaria, R. A., Miller, J. A., and Hurst, T. P. (2010). Temperature and growth effects on otolith elemental chemistry of larval Pacific cod, Gadus macrocephalus. Environmental Biology of Fishes 89, 453–462.
Temperature and growth effects on otolith elemental chemistry of larval Pacific cod, Gadus macrocephalus.Crossref | GoogleScholarGoogle Scholar |

Dorval, E., Jones, C. M., Hannigan, R., and van Montfrans, J. (2007). Relating otolith chemistry to surface water chemistry in a coastal plain estuary. Canadian Journal of Fisheries and Aquatic Sciences 64, 411–424.
Relating otolith chemistry to surface water chemistry in a coastal plain estuary.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2sXmsVGmtbY%3D&md5=5eb9dd5735a35d085c044327cfbbe4caCAS |

Drever, J. I. (1997). ‘The Geochemistry of Natural Waters: Surface and Groundwater Environments’, 3rd edn. (Prentice Hall: Upper Saddle River, NJ.)

Elsdon, T. S., and Gillanders, B. M. (2003). Relationship between water and otolith elemental concentrations in juvenile black bream Acanthopagrus butcheri. Marine Ecology Progress Series 260, 263–272.
Relationship between water and otolith elemental concentrations in juvenile black bream Acanthopagrus butcheri.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2cXht1aktw%3D%3D&md5=5f1f4c9542b56e6216ceacbf7d61252cCAS |

Elsdon, T. S., and Gillanders, B. M. (2004). Fish otolith chemistry influenced by exposure to multiple environmental variables. Journal of Experimental Marine Biology and Ecology 313, 269–284.
Fish otolith chemistry influenced by exposure to multiple environmental variables.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2cXpslGmur4%3D&md5=2b66028ed8957fbd54c4596c32d36793CAS |

Elsdon, T. S., and Gillanders, B. M. (2005a). Alternative life-history patterns of estuarine fish: barium in otoliths elucidates freshwater residency. Canadian Journal of Fisheries and Aquatic Sciences 62, 1143–1152.
Alternative life-history patterns of estuarine fish: barium in otoliths elucidates freshwater residency.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2MXoslGqs7o%3D&md5=d55a3520332f2f3d54dc95d3157f88b2CAS |

Elsdon, T. S., and Gillanders, B. M. (2005b). Strontium incorporation into calcified structures: separating the effects of ambient water concentration and exposure time. Marine Ecology Progress Series 285, 233–243.
Strontium incorporation into calcified structures: separating the effects of ambient water concentration and exposure time.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2MXjsV2ltr4%3D&md5=be5b121ba501f0f133700200d2691d03CAS |

Elsdon, T. S., Wells, B. K., Campana, S. E., Gillanders, B. M., Jones, C. M., Limburg, K. E., Secor, D. H., Thorrold, S. R., and Walther, B. D. (2008). Otolith chemistry to describe movements and life-history parameters of fishes: hypotheses, assumptions, limitations and inferences. In ‘Oceanography and Marine Biology – an Annual Review’. (Eds R. N. Gibson, R. J. A. Atkinson and J. D. M. Gordon.) Volume 46, pp. 297–330. (CRC Press: London.)

Feutry, P., Keith, P., Pe’cheyran, C., Claverie, F., and Robinet, T. (2011). Evidence of diadromy in the French Polynesian Kuhlia malo (Teleostei: Percoidei) inferred from otolith microchemistry analysis. Ecology Freshwater Fish 20, 636–645.
Evidence of diadromy in the French Polynesian Kuhlia malo (Teleostei: Percoidei) inferred from otolith microchemistry analysis.Crossref | GoogleScholarGoogle Scholar |

Feutry, P., Tabouret, H., Maeda, K., Pécheyran, C., and Keith, P. (2012a). Diadromous life cycle and behavioural plasticity in freshwater and estuarine Kuhliidae species (Teleostei) revealed by otolith microchemistry. Aquatic Biology 15, 195–204.
Diadromous life cycle and behavioural plasticity in freshwater and estuarine Kuhliidae species (Teleostei) revealed by otolith microchemistry.Crossref | GoogleScholarGoogle Scholar |

Feutry, P., Valade, P., Ovenden, J. R., Jean Lopez, P., and Keith, P. (2012b). Pelagic larval duration of two diadromous species of Kuhliidae (Teleostei: Percoidei) from Indo-Pacific insular systems. Marine and Freshwater Research 63, 397–402.
Pelagic larval duration of two diadromous species of Kuhliidae (Teleostei: Percoidei) from Indo-Pacific insular systems.Crossref | GoogleScholarGoogle Scholar |

Feutry, P., Vergnes, A., Broderick, D., Lambourdière, J., Keith, P., and Ovenden, J. R. (2013). Stretched to the limit; can a short pelagic larval duration connect adult populations of an Indo-Pacific diadromous fish (Kuhlia rupestris)? Molecular Ecology 22, 1518–1530.
Stretched to the limit; can a short pelagic larval duration connect adult populations of an Indo-Pacific diadromous fish (Kuhlia rupestris)?Crossref | GoogleScholarGoogle Scholar | 1:STN:280:DC%2BC3s3nt1Knug%3D%3D&md5=1aa6063d6f1ab952d6a8e4162edc92c9CAS | 23294379PubMed |

Gianguzza, A., Pelizzetti, Z., and Sammartano, S. (Eds) (2002). ‘Chemistry of Marine Water and Sediments.’ (Springer-Verlag: New York.)

Gillanders, B. M. (2005). Otolith chemistry to determine movements of diadromous and freshwater fish. Aquatic Living Resources 18, 291–300.
Otolith chemistry to determine movements of diadromous and freshwater fish.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2MXhtlCktb7P&md5=73601d14f5498afdb47450543a39ef2bCAS |

Guay, C. K., and Falkner, K. K. (1998). A survey of dissolved barium in the estuaries of major Arctic rivers and adjacent seas. Continental Shelf Research 18, 859–882.
A survey of dissolved barium in the estuaries of major Arctic rivers and adjacent seas.Crossref | GoogleScholarGoogle Scholar |

Hamer, P. A., and Jenkins, G. P. (2007). Comparison of spatial variation in otolith chemistry of two fish species and relationships with water chemistry and otolith growth. Journal of Fish Biology 71, 1035–1055.
Comparison of spatial variation in otolith chemistry of two fish species and relationships with water chemistry and otolith growth.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2sXhtlOlsLzK&md5=4ab6bd711f6127a903ac9cc9cde85489CAS |

Hamer, P. A., Jenkins, G. P., and Coutin, P. (2006). Barium variation in Pagrus auratus (Sparidae) otoliths: a potential indicatior of migration between an embayment and ocean waters in south-eastern Australia. Estuarine, Coastal and Shelf Science 68, 686–702.
Barium variation in Pagrus auratus (Sparidae) otoliths: a potential indicatior of migration between an embayment and ocean waters in south-eastern Australia.Crossref | GoogleScholarGoogle Scholar |

Hawkins, P. R., Taplin, L. E., Duivenvoorden, L. J., and Scott, F. (1988). Limnology of oligotrophic dune lakes at Cape Flattery, North Queensland. Marine and Freshwater Research 39, 535–553.
Limnology of oligotrophic dune lakes at Cape Flattery, North Queensland.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaL1MXmtlaktw%3D%3D&md5=a12d538b363f88c3020338d2816e7602CAS |

Hem, J. D. (1985). ‘Study and Interpretation of the Chemical Characteristics of Natural Water’, 3rd edn. (Department of the Interior, US Geological Survey: Alexandria, VA.)

Herbert, B., and Peeters, J. (1995). Freshwater fishes of far North Queensland. Information series QI95018. (Department of Primary Industries: Brisbane, Qld.)

Hogan, A. E., and Nicholson, J. C. (1987). Sperm motility of Sooty Grunter, Hephaestus fulignosus (Macleay), and Jungle Perch Kuhlia rupestris (Lacepede), in different salinities. Marine and Freshwater Research 38, 523–528.
Sperm motility of Sooty Grunter, Hephaestus fulignosus (Macleay), and Jungle Perch Kuhlia rupestris (Lacepede), in different salinities.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaL2sXmtFGisbg%3D&md5=f74f4018cafbd7118dfeb9f48825846dCAS |

Hutchison, M., Simpson, R., Elizur, A., Willet, D., and Collins, A. (2002). ‘Restoring jungle perch Kuhlia rupestris recreational fisheries to south east Queensland. A pilot study.’ (Department of Primary Industries: Qld.)

Jezierska, B., and Witeska, M. (2006). The metal uptake and accumulation in fish living in polluted waters. In ‘Soil and Water Pollution Monitoring, Protection and Remediation’. (Eds I. Twardowska, H. E. Allen, M. M. Häggblom, and S. Stefaniak.) Volume 69, pp. 107–114. (Springer: the Netherlands.)

Kalish, J. M. (1990). Use of otolith microchemistry to distinguish the progeny of sympatric anadromous and non-anadromous Salmonids. Fish Bulletin 88, 657–666.

Kraus, R. T., and Secor, D. H. (2004). Incorporation of strontium into otoliths of an estuarine fish. Journal of Experimental Marine Biology and Ecology 302, 85–106.
Incorporation of strontium into otoliths of an estuarine fish.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2cXjtVWntbw%3D&md5=5c23d5e7d26ba56fecae2d97bd2b1bb6CAS |

Lahaye, Y., Lambert, D., and Walters, S. (1997). Ultraviolet laser sampling and high resolution inductively coupled plasma-mass spectrometry of NIST and BCR-2G glass reference materials. Geostandards Newsletter 21, 205–214.
Ultraviolet laser sampling and high resolution inductively coupled plasma-mass spectrometry of NIST and BCR-2G glass reference materials.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK1cXivFWmsbk%3D&md5=af0fd89908c2ae42653aaf7d463c8b93CAS |

Larsen, G. R., and Cox, M. E. (2011). Hydrochemical and isotopic characterisation of groundwaters to define aquifer type and connectivity in a subtropical coastal setting, Fraser Coast, Queensland. Environmental Earth Sciences 64, 1885–1909.
Hydrochemical and isotopic characterisation of groundwaters to define aquifer type and connectivity in a subtropical coastal setting, Fraser Coast, Queensland.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3MXhsValsrvE&md5=3509480470ddf2c2172721d6cbf5f035CAS |

Limburg, K. E. (2001). Through the gauntlet again: demographic restructuring of American shad by migration. Ecology 82, 1584–1596.
Through the gauntlet again: demographic restructuring of American shad by migration.Crossref | GoogleScholarGoogle Scholar |

Macdonald, J. I., and Crook, D. A. (2010). Variability in Sr : Ca and Ba : Ca ratios in water and fish otoliths across an estuarine salinity gradient. Marine Ecology Progress Series 413, 147–161.
Variability in Sr : Ca and Ba : Ca ratios in water and fish otoliths across an estuarine salinity gradient.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3cXht12msLzM&md5=4440d98c6a57b4e5e40b1849ef80bb2aCAS |

McCulloch, M., Cappo, M., Aumend, J., and Muller, W. (2005). Tracing the life history of individual barramundi using laser ablation MC-ICP-MS Sr-isotopic and Sr/Ba ratios in otoliths. Marine and Freshwater Research 56, 637–644.
Tracing the life history of individual barramundi using laser ablation MC-ICP-MS Sr-isotopic and Sr/Ba ratios in otoliths.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2MXmsVyqsLg%3D&md5=5c11aea7ec60b15528debf3ea0f7289dCAS |

Merrick, J. R., and Schmida, G. E. (1984). ‘Australian Freshwater Fishes: Biology and Management.’ (Griffin Press Ltd.: Netley, SA.)

Miller, J. A. (2009). The effects of temperature and water concentration on the otolith incorporation of barium and manganese in black rockfish Sebastes melanops. Journal of Fish Biology 75, 39–60.
The effects of temperature and water concentration on the otolith incorporation of barium and manganese in black rockfish Sebastes melanops.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1MXhtV2ju73M&md5=10beff0022648fbd0b72174e3d68cf3aCAS | 20738481PubMed |

Miller, J. A. (2011). Effects of water temperature and barium concentration on otolith composition along a salinity gradient: implications for migratory reconstructions. Journal of Experimental Marine Biology and Ecology 405, 42–52.
Effects of water temperature and barium concentration on otolith composition along a salinity gradient: implications for migratory reconstructions.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3MXotVyjtrk%3D&md5=fd7776d5c14c53625cc1fe344325ed1bCAS |

Morse, J. W., and Bender, M. L. (1990). Partition coefficients in calcite: examination of factors influencing the validity of experimental results and their application to natural systems. Chemical Geology 82, 265–277.
Partition coefficients in calcite: examination of factors influencing the validity of experimental results and their application to natural systems.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK3cXmtFGns7g%3D&md5=98d0204bab1616a4f418535e2ca8a4f7CAS |

Munday, P. L., Hernaman, V., Dixson, D. L., and Thorrold, S. R. (2011). Effect of ocean acidification on otolith development in larvae of a tropical marine fish. Biogeosciences 8, 1631–1641.
Effect of ocean acidification on otolith development in larvae of a tropical marine fish.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3MXht12rt7fM&md5=a610e9e5cee87f9944892e394b965d30CAS |

Pearce, N. J. G., Perkins, W. T., Westgate, J. A., Gorton, M. P., Jackson, S. E., Neal, C. R., and Chenery, S. P. (1997). A compilation of new and published major and trace element data for NIST SRM 610 and NIST SRM 612 glass reference materials. Geostandards Newsletter 21, 115–144.
A compilation of new and published major and trace element data for NIST SRM 610 and NIST SRM 612 glass reference materials.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK2sXmtFans7c%3D&md5=9ccd929e0c62ce2a5e562f4dcc896ba8CAS |

Pusey, B., Kennard, M., and Arthington, A. (2004). ‘Freshwater Fishes of North-Eastern Australia.’ pp. 401–408. (CSIRO Publishing: Melbourne.)

Secor, D. H. (1992). Application of otolith microchemistry analysis to investigate anadromy in Chesapeake Bay striped bass, Morone saxatilis. Fish Bulletin 90, 798–806.

Secor, D. H., and Rooker, J. R. (2000). Is otolith strontium a useful scalar of life cycles in estuarine fishes? Fisheries Research 46, 359–371.
Is otolith strontium a useful scalar of life cycles in estuarine fishes?Crossref | GoogleScholarGoogle Scholar |

Secor, D. H., Henderson-Arzapalo, A., and Piccoli, P. M. (1995). Can otolith microchemistry chart patterns of migration and habitat utilization in anadromous fish? Journal of Experimental Marine Biology and Ecology 192, 15–33.
Can otolith microchemistry chart patterns of migration and habitat utilization in anadromous fish?Crossref | GoogleScholarGoogle Scholar |

Secor, D. H., Rooker, J. R., Zlokovitz, E., and Zdanowicz, V. S. (2001). Identification of riverine, estuarine, and coastal contingents of Hudson River striped bass based upon otolith elemental fingerprints. Marine Ecology Progress Series 211, 245–253.
Identification of riverine, estuarine, and coastal contingents of Hudson River striped bass based upon otolith elemental fingerprints.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3MXjs12nsrk%3D&md5=25ae3c00ff7989f4a6fc860cf3500949CAS |

Tabouret, H., Bareille, G., Claverie, F., Pecheyran, C., Prouzet, P., and Donard, O. F. (2010). Simultaneous use of strontium : calcium and barium : calcium ratios in otoliths as markers of habitat: application to the European eel (Anguilla anguilla) in the Adour basin, South West France. Marine Environmental Research 70, 35–45.
Simultaneous use of strontium : calcium and barium : calcium ratios in otoliths as markers of habitat: application to the European eel (Anguilla anguilla) in the Adour basin, South West France.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3cXntVOntbk%3D&md5=0355a64ff1324221a6018a67fb10f097CAS | 20338633PubMed |

Tims, B. V. (1986). The coastal dune lakes of eastern Australia. In ‘Limnology of Australia’. (Eds P. DeDeckker, and W. D. Williams.) pp. 421–432. (CSIRO: Melbourne; and Dr W. Junk: Dordrecht.)

Tzeng, W. N., Severin, K. P., and Wickstroem, H. (1997). Use of otolith microchemistry to investigate the environmental history of European eel, Anguilla anguilla. Marine Ecology Progress Series 149, 73–81.
Use of otolith microchemistry to investigate the environmental history of European eel, Anguilla anguilla.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK2sXjslWgu78%3D&md5=c37dc5bcb791d6aedce4cb1d632d0b73CAS |

Uchida, K., Hasegawa, S., and Keneko, T. (2002). Effects of low-Ca2+ environment on branchial chloride cell morphology in chum salmon fry and immunolocalization Ca2+-ATPase in chloride cells. Canadian Journal of Zoology 80, 1100–1108.
Effects of low-Ca2+ environment on branchial chloride cell morphology in chum salmon fry and immunolocalization Ca2+-ATPase in chloride cells.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD38XmsVOqtLg%3D&md5=f13dbd828d6d073f993b2ee5c7004b49CAS |

UNESCO (2001). The World Heritage List. Available at http://whc.unesco.org/en/list/630. [Verified 3 May 2014].

Walther, B. D., and Limburg, K. E. (2012). The use of otolith chemistry to characterize diadromous migrations. Journal of Fish Biology 81, 796–825.
The use of otolith chemistry to characterize diadromous migrations.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC38Xhtl2ltLvP&md5=db0b8aa17b9af5a6e1c3fefa0dbc110aCAS | 22803736PubMed |

Walther, B. D., and Thorrold, S. R. (2006). Water, not food, contributes the majority of strontium and barium deposited in the otoliths of marine fish. Marine Ecology Progress Series 311, 125–130.
Water, not food, contributes the majority of strontium and barium deposited in the otoliths of marine fish.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD28XntFaltrw%3D&md5=4cc4adf1af883d642592f5ac2ce8d24eCAS |

Walther, B., Kingsford, M., O’Callaghan, M., and McCulloch, M. (2010). Interactive effects of ontogeny, food ration and temperature on elemental incorporation in otoliths of a coral reef fish. Environmental Biology of Fishes 89, 441–451.
Interactive effects of ontogeny, food ration and temperature on elemental incorporation in otoliths of a coral reef fish.Crossref | GoogleScholarGoogle Scholar |

Walther, B. D., Dempster, T., Letnic, M., and McCulloch, M. T. (2011). Movements of diadromous fish in large unregulated tropical rivers inferred from geochemical tracers. PLoS ONE 6, e18351.
Movements of diadromous fish in large unregulated tropical rivers inferred from geochemical tracers.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3MXltVWlsrc%3D&md5=6769d678f1881cc62de96dd2028b6e90CAS | 21494693PubMed |

Webb, S. D., Woodcock, S. H., and Gillanders, B. M. (2012). Sources of otolith barium and strontium in estuarine fish and the influence of salinity and temperature. Marine Ecology Progress Series 453, 189–199.
Sources of otolith barium and strontium in estuarine fish and the influence of salinity and temperature.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC38XhtVOmtrrN&md5=0f01627cba3c7e2f3ca8988f136086a9CAS |

Wells, B. K., Rieman, B. E., Clayton, J. L., Horan, D. L., and Jones, C. M. (2003). Relationships between water, otolith, and scale chemistries of Westslope cutthroat trout from the Coeur d’Alene River, Idaho: the potential application of hard-part chemistry to describe movements in freshwater. Transactions of the American Fisheries Society 132, 409–424.
Relationships between water, otolith, and scale chemistries of Westslope cutthroat trout from the Coeur d’Alene River, Idaho: the potential application of hard-part chemistry to describe movements in freshwater.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3sXksVGktLk%3D&md5=77f7f12f8ca1dcf941ac9aabd862e1a6CAS |

Yokouchi, K., Fukuda, N., Shirai, K., Aoyama, J., Daverat, F., and Tsukamoto, K. (2011). Time lag of the response on the otolith strontium/calcium ratios of the Japanese eel, Anguilla japonica, to changes in strontium/calcium ratios of ambient water. Environmental Biology of Fishes 92, 469–478.
Time lag of the response on the otolith strontium/calcium ratios of the Japanese eel, Anguilla japonica, to changes in strontium/calcium ratios of ambient water.Crossref | GoogleScholarGoogle Scholar |

Yoshinaga, J., Atsuko, N., Masatoshi, M., and Edmonds, J. S. (2000). Fish otolith reference material for quality assurance of chemical analysis. Marine Chemistry 69, 91–97.
Fish otolith reference material for quality assurance of chemical analysis.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3cXhvVCktbc%3D&md5=6605401e5ffb40ac238053d9e163b54fCAS |

Zimmerman, C. E. (2005). Relationship of otolith strontium-to-calcium ratios and salinity: experimental validation for juvenile salmonids. Canadian Journal of Fisheries and Aquatic Sciences 62, 88–97.
Relationship of otolith strontium-to-calcium ratios and salinity: experimental validation for juvenile salmonids.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2MXktlegt70%3D&md5=4fe0855948bf1b75dc131b6eafa2384eCAS |