Free Standard AU & NZ Shipping For All Book Orders Over $80!
Register      Login
Marine and Freshwater Research Marine and Freshwater Research Society
Advances in the aquatic sciences
RESEARCH ARTICLE

Regional patterns of mtDNA diversity in Styela plicata, an invasive ascidian, from Australian and New Zealand marinas

Janne Torkkola A B , Cynthia Riginos A and Libby Liggins A
+ Author Affiliations
- Author Affiliations

A School of Biological Sciences, The University of Queensland, St Lucia, Qld 4072, Australia.

B Corresponding author. Email: janne.torkkola@uqconnect.edu.au

Marine and Freshwater Research 64(2) 139-145 https://doi.org/10.1071/MF12289
Submitted: 12 October 2012  Accepted: 16 January 2013   Published: 25 February 2013

Abstract

The ascidian Styela plicata is abundant in harbours and marinas worldwide and has likely reached this distribution via human-mediated dispersal. Previous worldwide surveys based on mitochondrial cytochrome oxidase one (COI) sequences have described two divergent clades, showing overlapping distributions and geographically widespread haplotypes. These patterns are consistent with recent mixing among genetically differentiated groups arising from multiple introductions from historically distinct sources. In contrast, a study of Australian S. plicata using nuclear markers found that population differentiation along the eastern coast related to geographic distance and no evidence for admixture between previously isolated genetic groups. We re-examined the genetic patterns of Australian S. plicata populations using mtDNA (CO1) to place their genetic patterns within a global context, and we examined New Zealand populations for the first time. We found that the haplotypic compositions of Australian and New Zealand populations are largely representative of other worldwide populations. The New Zealand populations, however, exhibited reduced diversity, being potentially indicative of a severely bottlenecked colonisation event. In contrast to results from nuclear markers, population differentiation of mtDNA among Australian S. plicata was unrelated to geographic distance. The discrepancy between markers is likely to be a consequence of non-equilibrium population genetic processes that typify non-indigenous species.

Additional keywords: cosmopolitan, human-mediated dispersal, invasive, mitochondrial DNA, non-indigenous species, phylogeography.


References

Barros, R. C., Rocha, R. M., and Pie, M. R. (2009). Human-mediated global dispersion of Styela plicata (Tunicata, Ascidiacea). Aquatic Invasions 4, 45–57.
Human-mediated global dispersion of Styela plicata (Tunicata, Ascidiacea).Crossref | GoogleScholarGoogle Scholar |

Bulleri, F., and Airoldi, L. (2005). Artificial marine structures facilitate the spread of a non-indigenous green alga, Codium fragile ssp. tomentosoides, in the north Adriatic Sea. Journal of Applied Ecology 42, 1063–1072.
Artificial marine structures facilitate the spread of a non-indigenous green alga, Codium fragile ssp. tomentosoides, in the north Adriatic Sea.Crossref | GoogleScholarGoogle Scholar |

Carlton, J. T. (1999). Molluscan invasions in marine and estuarine communities. Malacologia 41, 439–454.

Clement, M., Posada, D., and Crandall, K. A. (2000). TCS: a computer program to estimate gene genealogies. Molecular Ecology 9, 1657–1659.
TCS: a computer program to estimate gene genealogies.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3cXnvV2gtbw%3D&md5=c73130a339a4621a6df085b611bcf2eeCAS |

David, G. K., Marshall, D. J., and Riginos, C. (2010). Latitudinal variability in spatial genetic structure in the invasive ascidian, Styela plicata. Marine Biology 157, 1955–1965.
Latitudinal variability in spatial genetic structure in the invasive ascidian, Styela plicata.Crossref | GoogleScholarGoogle Scholar |

Dlugosch, K. M., and Parker, I. M. (2008). Founding events in species invasions: genetic variation, adaptive evolution, and the role of multiple introductions. Molecular Ecology 17, 431–449.
Founding events in species invasions: genetic variation, adaptive evolution, and the role of multiple introductions.Crossref | GoogleScholarGoogle Scholar | 1:STN:280:DC%2BD1c%2Fgs1yjtA%3D%3D&md5=64e0bc95de43abd7f93c173170b8187cCAS |

Dupont, L., Viard, F., Dowell, M. J., Wood, C., and Bishop, J. D. D. (2009). Fine- and regional-scale genetic structure of the exotic ascidian Styela clava (Tunicata) in southwest England, 50 years after its introduction. Molecular Ecology 18, 442–453.
Fine- and regional-scale genetic structure of the exotic ascidian Styela clava (Tunicata) in southwest England, 50 years after its introduction.Crossref | GoogleScholarGoogle Scholar | 1:STN:280:DC%2BD1M%2FovV2rtQ%3D%3D&md5=95e5a637948df85e83f8db5a8dc1c674CAS |

Dupont, L., Viard, F., Davis, M., Nishikawa, T., and Bishop, J. D. D. (2010). Pathways of spread of the introduced ascidian Styela clava (Tunicata) in northern Europe, as revealed by microsatellite markers. Biological Invasions 12, 2707–2721.
Pathways of spread of the introduced ascidian Styela clava (Tunicata) in northern Europe, as revealed by microsatellite markers.Crossref | GoogleScholarGoogle Scholar |

Excoffier, L., Smouse, P. E., and Quattro, J. M. (1992). Analysis of molecular variance inferred from metric distances among DNA haplotypes: application to human mitochondrial DNA restriction data. Genetics 131, 479–491.
| 1:CAS:528:DyaK38XlsVCntro%3D&md5=7fe3c3ecd798d1d90d34bddb6113584fCAS |

Floerl, O., Inglis, G. J., Dey, K., and Smith, A. (2009). The importance of transport hubs in stepping-stone invasions. Journal of Applied Ecology 46, 37–45.
The importance of transport hubs in stepping-stone invasions.Crossref | GoogleScholarGoogle Scholar |

Folmer, O., Black, M., Hoeh, W., Lutz, R., and Vrijenhoek, R. (1994). DNA primers for amplification of mitochondrial Cytochrome c oxidase Subunit I from diverse metazoan invertebrates. Molecular Marine Biology and Biotechnology 3, 294–299.
| 1:CAS:528:DyaK2MXjt12gtLs%3D&md5=0b1ac07b325bba0e3d8d3405393cf5dfCAS |

Fu, Y.-X. (1997). Statistical tests of neutrality of mutations against population growth, hitchiking and background selection. Genetics 147, 915–925.
| 1:STN:280:DyaK2svns1egtQ%3D%3D&md5=6ac6772257390f76d3baecac5ab69118CAS |

Geller, J. B., Carlton, J. T., and Powers, D. A. (1993). Interspecific and intrapopulation variation in mitochondrial ribosomal DNA sequences of Mytilus spp. (Bivalvia: Mollusca). Molecular Marine Biology and Biotechnology 2, 44–50.
| 1:CAS:528:DyaK3sXkvFWksLo%3D&md5=3c7707bd79162613ad1b7ad5d5521fbcCAS |

Geller, J. B., Darling, J. A., and Carlton, J. T. (2010). Genetic perspectives on marine biological invasions. Annual Review of Marine Science 2, 367–393.
Genetic perspectives on marine biological invasions.Crossref | GoogleScholarGoogle Scholar |

Glasby, T. M., Connell, S. D., Holloway, M. G., and Hewitt, C. L. (2007). Nonindigenous biota on artificial structures: could habitat creation facilitate biological invasions? Marine Biology 151, 887–895.
Nonindigenous biota on artificial structures: could habitat creation facilitate biological invasions?Crossref | GoogleScholarGoogle Scholar |

Goldstien, S. J., Dupont, L., Viard, F., Hallas, P. J., Nishikawa, T., Sschiel, D. R., Gemmell, N. J., and Bishop, B. D. D. (2011). Global phylogeography of the widely introduced North West Pacific ascidian Styela clava. PLoS ONE 6, e16755.
| 1:CAS:528:DC%2BC3MXivVymu7c%3D&md5=d21d334c9b64b9e65ba2606fe5e16c9fCAS |

Hänfling, B., Carvalho, G. R., and Brandl, R. (2002). mt-DNA sequences and possible invasion pathways of the Chinese mitten crab. Marine Ecology Progress Series 238, 307–310.
mt-DNA sequences and possible invasion pathways of the Chinese mitten crab.Crossref | GoogleScholarGoogle Scholar |

Heller, C. (1878). Beitrage zur nahern Kenntnis der Tunicaten. Sitzungsberichte der Akademie der Wissenschaften, Wien 77, 2–28.

Herborg, L.-M., Weetman, D., van Oosterhout, C., and Hänfling, B. (2007). Genetic population structure and contemporary dispersal patterns of a recent European invader, the Chinese mitten crab, Eriocheir sinensis. Molecular Ecology 16, 231–242.
Genetic population structure and contemporary dispersal patterns of a recent European invader, the Chinese mitten crab, Eriocheir sinensis.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2sXks1yrurY%3D&md5=345061e655885d09ac966a4108fe9155CAS |

Lambert, G. (2007). Invasive sea squirts: a growing global problem. Journal of Experimental Marine Biology and Ecology 342, 3–4.
Invasive sea squirts: a growing global problem.Crossref | GoogleScholarGoogle Scholar |

Lambert, C. C., and Lambert, G. (1998). Non-indigenous ascidians in southern California harbors and marinas. Marine Biology 130, 675–688.
Non-indigenous ascidians in southern California harbors and marinas.Crossref | GoogleScholarGoogle Scholar |

Lejeusne, C., Bock, D., Therriault, T., Macisaac, H. J., and Cristescu, M. (2011). Comparative phylogeography of two colonial ascidians reveals contrasting invasion histories in North America. Biological Invasions 13, 635–650.
Comparative phylogeography of two colonial ascidians reveals contrasting invasion histories in North America.Crossref | GoogleScholarGoogle Scholar |

Lesueur, C. (1823). Ascidia plicata. Descriptions of several new species of Ascidia. Journal of the Academy of Natural Sciences of Philadelphia 3, 2–8.

Liggins, L., Treml, E. A., and Riginos, C. (2013). Taking the plunge: an introduction to undertaking seascape genetic studies and using biophysical models. Geography Compass , .

Meirmans, P. G. (2006). Using the AMOVA framework to estimate a standardized genetic differentiation measure. Evolution 60, 2399–2402.

Meirmans, P. G., and Van Tienderen, P. H. (2004). GENOTYPE and GENODIVE: two programs for the analysis of genetic diversity of asexual organisms. Molecular Ecology Notes 4, 792–794.
GENOTYPE and GENODIVE: two programs for the analysis of genetic diversity of asexual organisms.Crossref | GoogleScholarGoogle Scholar |

Minchin, D., and Gollasch, S. (2003). Fouling and ships’ hulls: how changing circumstances and spawning events may result in the spread of exotic species. Biofouling 19, 111–122.
Fouling and ships’ hulls: how changing circumstances and spawning events may result in the spread of exotic species.Crossref | GoogleScholarGoogle Scholar |

Miura, O. (2007). Molecular genetic approaches to elucidate the ecological and evolutionary issues associated with biological invasions. Ecological Research 22, 876–883.
Molecular genetic approaches to elucidate the ecological and evolutionary issues associated with biological invasions.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2sXht1yitLfK&md5=f3a7802d2b2e3dc927213977b8961a95CAS |

Nei, M. (1987). ‘Molecular Evolutionary Genetics.’ (Columbia University Press: New York.)

Peakall, R., and Smouse, P. E. (2006). GENALEX 6: genetic analysis in Excel. Population genetic software for teaching and research. Molecular Ecology Notes 6, 288–295.
GENALEX 6: genetic analysis in Excel. Population genetic software for teaching and research.Crossref | GoogleScholarGoogle Scholar |

Pineda, M. C., López-Legentil, S., and Turon, X. (2011). The whereabouts of an ancient wanderer: global phylogeography of the solitary ascidian Styela plicata. PLoS ONE 6, e25495.
The whereabouts of an ancient wanderer: global phylogeography of the solitary ascidian Styela plicata.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3MXhtlajs7fP&md5=9ef6a0f850da06f309b583fa3b2179feCAS |

Rambaut, A. E. (1996). ‘Se-Al: Sequence Alignment Editor v2.0a11.’ Available at http://evolve.zoo.ox.ac.uk/ [Accessed 8 August 2002]

Rand, D. M. (2001). The units of selection on mitochondrial DNA. Annual Review of Ecology and Systematics 32, 415–448.
The units of selection on mitochondrial DNA.Crossref | GoogleScholarGoogle Scholar |

Rius, M., Pascual, M., and Turon, X. (2008). Phylogeography of the widespread marine invader Microcosmus squamiger (Ascidiacea) reveals high genetic diversity of introduced populations and non-independent colonizations. Diversity & Distributions 14, 818–828.
Phylogeography of the widespread marine invader Microcosmus squamiger (Ascidiacea) reveals high genetic diversity of introduced populations and non-independent colonizations.Crossref | GoogleScholarGoogle Scholar |

Rius, M., Turon, X., Ordóñez, V., and Pascual, M. (2012). Tracking invasion histories in the sea: facing complex scenarios using multilocus data. PLoS ONE 7, e35815.
Tracking invasion histories in the sea: facing complex scenarios using multilocus data.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC38Xmslant78%3D&md5=5c31db2fb33f18ed1f3584c48a390dd1CAS |

Roman, J. (2006). Diluting the founder effect: cryptic invasions expand a marine invader’s range. Proceedings. Biological Sciences 273, 2453–2459.
Diluting the founder effect: cryptic invasions expand a marine invader’s range.Crossref | GoogleScholarGoogle Scholar |

Ronquist, F., and Huelsenbeck, J. P. (2003). MRBAYES 3: bayesian phylogenetic inference under mixed models. Bioinformatics 19, 1572–1574.
MRBAYES 3: bayesian phylogenetic inference under mixed models.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3sXntlKms7k%3D&md5=d63a6bc85811356f5c339dfa030c8a19CAS |

Rozas, J., Sánchez-Delbarrio, J. C., Messeguer, X., and Rozas, R. (2003). DnaSP, DNA polymorphism analysis by the coalescent and other methods. Bioinformatics 19, 2496–2497.
DnaSP, DNA polymorphism analysis by the coalescent and other methods.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3sXpvVSisLo%3D&md5=ef709ccadee5ea25e7186339a4c9fb22CAS |

Ruiz, G. M., Carlton, J. T., Grosholz, E. D., and Hines, A. H. (1997). Global invasions of marine and estuarine habitats by non-indigenous species: mechanisms, extent, and consequences. American Zoologist 37, 621–632.

Stefaniak, L., Zhang, H., Gittenberger, A., Smith, K., Holsinger, K., Lin, S., and Whitlatch, R. (2012). Determining the native region of the putatively invasive ascidian Didemnum vexillum Kott, 2002. Journal of Experimental Marine Biology and Ecology 422–423, 64–71.

Stoner, D., Ben-Shlomo, R., Rinkevich, B., and Weissman, I. (2002). Genetic variability of Botryllus schlosseri invasions to the east and west coasts of the USA. Marine Ecology Progress Series 243, 93–100.
Genetic variability of Botryllus schlosseri invasions to the east and west coasts of the USA.Crossref | GoogleScholarGoogle Scholar |

Swofford, D. L. (1998). ‘PAUP*, Phylogenetic Analysis Using Parsimony (*and Other Methods). Version 4.’ (Sinauer Associates: Sunderland, MA.)

Tajima, F. (1989). Statistical method for testing the neutral mutation hypothesis by DNA polymorphism. Genetics 123, 585–595.
| 1:CAS:528:DyaK3cXhslentA%3D%3D&md5=3195a8d501393c0ff6c382d33172974cCAS |

Tyrrell, M., and Byers, J. E. (2007). Do artificial substrates favor nonindigenous fouling species over native species? Journal of Experimental Marine Biology and Ecology 342, 54–60.
Do artificial substrates favor nonindigenous fouling species over native species?Crossref | GoogleScholarGoogle Scholar |

Wang, C. H., Li, S. F., Fu, C. Z., Gong, X. L., Huang, L., Song, X., and Zhao, Y. (2009). Molecular genetic structure and evolution in native and colonized populations of the Chinese mitten crab, Eriocheir sinensis. Biological Invasions 11, 389–399.
Molecular genetic structure and evolution in native and colonized populations of the Chinese mitten crab, Eriocheir sinensis.Crossref | GoogleScholarGoogle Scholar |

Wares, J.P. (2010). Natural distributions of mitochondrial sequence diversity support new null hypotheses. Evolution 64, 136–1142.

Wonham, M. J., and Carlton, J. T. (2005). Trends in marine biological invasions at local and regional scales: the Northeast Pacific Ocean as a model system. Biological Invasions 7, 369–392.
Trends in marine biological invasions at local and regional scales: the Northeast Pacific Ocean as a model system.Crossref | GoogleScholarGoogle Scholar |