Register      Login
Marine and Freshwater Research Marine and Freshwater Research Society
Advances in the aquatic sciences
RESEARCH ARTICLE

In situ short-term growth rates of a cold-water coral

C. Jantzen A D , J. Laudien A , S. Sokol A , G. Försterra B C , V. Häussermann B C , F. Kupprat A and C. Richter A
+ Author Affiliations
- Author Affiliations

A Alfred-Wegener-Institut Helmholtz-Zentrum Für Polar- und Meeresforschung, Am Alten Hafen 26, 27568 Bremerhaven, Germany.

B Facultad de Recursos Naturales, Escuela de Ciencias del Mar, Pontificia Universidad Catolica de Valparaıso, Arda. Brasil 2950, Valparaıso, Chile.

C Huinay Scientific Field Station, Chile.

D Corresponding author. Email: carin.jantzen@awi.de

Marine and Freshwater Research 64(7) 631-641 https://doi.org/10.1071/MF12200
Submitted: 26 July 2012  Accepted: 8 February 2013   Published: 31 May 2013

Abstract

Cold-water corals are known to grow much slower than their tropical counterparts. However, this assumption is mainly based on laboratory measurements exposing specimens to conditions that differ from their natural environments. The cosmopolitan scleractinian Desmophyllum dianthus forms dense banks below 18 m in northern Patagonia, Chile. So as to measure in situ growth rates of this cold-water coral, specimens were collected from two sites, weighed and deployed on holders in their natural headlong orientation at the respective collecting site. Corals exhibited a calcium carbonate (CaCO3) mass increase of 5.44 ± 3.45 (mg (cm2 projected calyx area)–1 day–1) after 2 weeks, equivalent to a mass gain of 0.25 ± 0.18 s.d. % day–1. In comparison, D. dianthus specimens from the same collection sites maintained in an on-site flow-through aquarium system showed lower growth rates that were third of the in situ rates. In situ CaCO3 precipitation of D. dianthus extrapolated for 1 year (kg m2 year–1) displays the same order of magnitude as reported for massive growing tropical scleractinians, e.g. Porites sp.

Additional keywords: buoyant-weight technique, Desmophyllum dianthus, fjords, in situ CaCO3 precipitation, mass increase, Patagonia, Scleractinia.


References

Adkins, J. F., Henderson, G. M., Wanga, S. L., O’Shea, S., and Mokadembet, F. (2004). Growth rates of the deep-sea scleractinia Desmophyllum cristagalli and Enallopsammia rostrata. Earth and Planetary Science Letters 227, 481–490.
Growth rates of the deep-sea scleractinia Desmophyllum cristagalli and Enallopsammia rostrata.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2cXpt1Wnurw%3D&md5=b262fdddf70c823df4b46c94cdd2418cCAS |

Allemand, D., Tambutté, E., Zoccola, D., and Tambutté, S. (2010). Coral calcification, cells to reefs. In ‘Coral Reefs’. (Ed Z. Dubinsky.) pp. 1–51. (Elsevier: Amsterdam.)

Bak, R. P. M. (1990). Patterns of echinoid bioerosion in two Pacific coral reef lagoons. Marine Ecology Progress Series 66, 267–272.
Patterns of echinoid bioerosion in two Pacific coral reef lagoons.Crossref | GoogleScholarGoogle Scholar |

Bak, R. P. M., and Laane, R. W. P. M. (1987). Annual black bands in skeletons of reef corals (Scleractinia). Marine Ecology Progress Series 38, 169–175.
Annual black bands in skeletons of reef corals (Scleractinia).Crossref | GoogleScholarGoogle Scholar |

Barnes, D. J., and Lough, J. M. (1993). On the nature and causes of density banding in massive coral skeletons. Journal of Experimental Marine Biology and Ecology 167, 91–108.
On the nature and causes of density banding in massive coral skeletons.Crossref | GoogleScholarGoogle Scholar |

Bell, N., and Smith, J. (1999). Coral growing on North Sea oil rigs. Nature 402, 601.
Coral growing on North Sea oil rigs.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3cXjsVCn&md5=fe08f354b3948cad7748a8c98a1daba7CAS |

Bessat, F., and Buigues, D. (2001). Two centuries of variation in coral growth in a massive Porites colony from Moorea (French Polynesia): a response of ocean-atmosphere variability from south central Pacific. Palaeogeography, Palaeoclimatology, Palaeoecology 175, 381–392.
Two centuries of variation in coral growth in a massive Porites colony from Moorea (French Polynesia): a response of ocean-atmosphere variability from south central Pacific.Crossref | GoogleScholarGoogle Scholar |

Brahmi, C., Meibom, A., Smith, D. C., Stolarski, J., Auzoux-Bordenave, S., Nouet, J., Doumenc, D., Djediat, C., and Domart-Coulon, I. (2010). Skeletal growth, ultrastructure and composition of the azooxanthellate scleractinian coral Balanophyllia regia. Coral Reefs 29, 175–189.
Skeletal growth, ultrastructure and composition of the azooxanthellate scleractinian coral Balanophyllia regia.Crossref | GoogleScholarGoogle Scholar |

Brooke, S., and Young, C. M. (2009). In situ measurements of survival and growth of Lophelia pertusa in the northern Gulf of Mexico. Marine Ecology Progress Series 397, 153–161.
In situ measurements of survival and growth of Lophelia pertusa in the northern Gulf of Mexico.Crossref | GoogleScholarGoogle Scholar |

Brooke, S., Ross, S. W., and Young, C. M. (2012). Temperature tolerance of the deep-sea coral Lophelia pertusa from the southeastern United States. Deep-sea Research. Part II, Topical Studies in Oceanography , .
Temperature tolerance of the deep-sea coral Lophelia pertusa from the southeastern United States.Crossref | GoogleScholarGoogle Scholar |

Bruno, J. F., and Edmunds, P. J. (1998). Metabolic consequences of phenotypic plasticity in the coral Madracis mirabilis (Duchassaing and Michelotti): the effect of morphology and water flow on aggregate respiration. Journal of Experimental Marine Biology and Ecology 229, 187–195.
Metabolic consequences of phenotypic plasticity in the coral Madracis mirabilis (Duchassaing and Michelotti): the effect of morphology and water flow on aggregate respiration.Crossref | GoogleScholarGoogle Scholar |

Buddemeier, R. W., and Kinzie, R. A. (1976). Coral growth. Oceanography and Marine Biology – an Annual Review 14, 183–225.

Cairns, S. (1994). Scleractinia of the temperate North Pacific. Smithsonian Contributions to Zoology 557, 1–150.

Cairns, S. D., and Zibrowius, H. (1997). Cnidaria Anthozoa: azooxanthellate Scleractinia from the Philippine and Indonesian regions. Memoirs du Museum National d'Histoire Naturelle (France) 172, 27–243.

Cairns, S. D., Häusserman, V., and Försterra, G. (2005). A review of the Scleractinia (Cnidaria: Anthozoa) of Chile, with the description of two new species. Zootaxa 1018, 15–46.

Cheng, H., Adkins, J., Edwards, R. L., and Boyle, E. A. (2000). U-Th dating of deep-sea corals. Geochimica et Cosmochimica Acta 64, 2401–2416.
U-Th dating of deep-sea corals.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3cXksV2mt7w%3D&md5=29d4e803c0f57f2992340d0434b07222CAS |

Clausen, C. D. (1971). Effects of temperature on the rate of 45Ca uptake by Pocillopora damicornis. In ‘Experimental Coelenterate Biology’. (Eds H. M. Lenhoff, L. Muscatine and L. V. Davis.) pp. 246–259. (University of Hawaii Press: Honolulu, HI.)

Clausen, C. D., and Roth, A. A. (1975). Effect of temperature and temperature adaptation on calcification rate in the hermatypic coral Pocillopora damicornis. Marine Biology 33, 93–100.
Effect of temperature and temperature adaptation on calcification rate in the hermatypic coral Pocillopora damicornis.Crossref | GoogleScholarGoogle Scholar |

Cogswell, A. T., Kenchington, E. L. R., Lirette, C. G., MacIsaac, K., Best, M. M., Beazley, L. I., and Vickers, J. (2009). The current state of knowledge concerning the distribution of coral in the maritime provinces. Canadian Technical Report of Fisheries and Aquatic Sciences 2855, 66.

Coma, R., Gili, J.-M., and Zabala, M. (1994). Feeding and prey capture cycles in the aposymbiotic gorgonian Paramuricea clavata. Marine Ecology Progress Series 115, 257–270.
Feeding and prey capture cycles in the aposymbiotic gorgonian Paramuricea clavata.Crossref | GoogleScholarGoogle Scholar |

Davies, P. S. (1989). Short-term growth measurements of corals using an accurate buoyant weighing technique. Marine Biology 101, 389–395.
Short-term growth measurements of corals using an accurate buoyant weighing technique.Crossref | GoogleScholarGoogle Scholar |

Davies, A. J., Duineveld, G. C. A., Lavaleye, M. S. S., Bergman, M. J. N., van Haren, H., and Roberts, J. M. (2009). Downwelling and deep-water bottom currents as food supply mechanisms to the cold-water coral Lophelia pertusa (Scleractinia) at the Mingulay Reef complex. Limnology and Oceanography 54, 620–629.
Downwelling and deep-water bottom currents as food supply mechanisms to the cold-water coral Lophelia pertusa (Scleractinia) at the Mingulay Reef complex.Crossref | GoogleScholarGoogle Scholar |

Duineveld, G. C. A., Lavaleye, M. S. S., and Berghuis, E. M. (2004). Particle flux and food supply to a seamount cold-water coral community (Galicia Bank, NW Spain). Marine Ecology Progress Series 277, 13–23.
Particle flux and food supply to a seamount cold-water coral community (Galicia Bank, NW Spain).Crossref | GoogleScholarGoogle Scholar |

Edmunds, P. J. (2008). The effects of temperature on the growth of juvenile scleractinian corals. Marine Biology 154, 153–162.
The effects of temperature on the growth of juvenile scleractinian corals.Crossref | GoogleScholarGoogle Scholar |

Ferrier-Pagès, C., Gattuso, J.-P., Dallot, S., and Jaubert, J. (2000). Effect of nutrient enrichment on growth and photosynthesis of the zooxanthellate coral Stylophora pistillata. Coral Reefs 19, 103–113.
Effect of nutrient enrichment on growth and photosynthesis of the zooxanthellate coral Stylophora pistillata.Crossref | GoogleScholarGoogle Scholar |

Försterra, G., and Häussermann, V. (2001). Large assemblages of azooxanthellate Scleractinia (Cnidaria: Anthozoa) in shallow waters of South Chilean fjords. In ‘4th Annual Meeting Gesellschaft für Biologische Systematik, GfBS’, Oldenburg, Germany. p. 155.

Försterra, G., and Häussermann, V. (2003). First report on large scleractinian (Cnidaria: Anthozoa) accumulations in cold-temperate shallow water of south Chilean fjord. Zoologische verhandelingen Leiden 345, 117–128.

Försterra, G., Beuck, L., Häussermann, V., and Freiwald, A. (2005). Shallow water Desmophyllum dianthus (Scleractinia) from Chile: characteristics of the biocenoses, the bioeroding community, heterotrophic interactions and (palaeo)-bathymetrical implications. In ‘Cold-water Corals and Ecosystems’. (Eds A. Freiwald, J. M. Roberts.) pp. 937–977. (Springer-Verlag: Berlin.)

Freiwald, A. J. H., Fosså, S. J. H., Grehan, A., Koslow, A., and Roberts, J. M. (2004). ‘Cold-water Coral Reefs: Out of Sight – No Longer Out of Mind.’ (World Conservation Monitoring Centre of the United Nations Environment Programme, UNEP–WCMC: Cambridge, United Kingdom.)

Gage, J. D., and Tyler, P. A. (1992). ‘Deep-sea Biology: a Natural History of Organisms at the Deep-Sea Floor.’ (Cambridge University Press, Cambridge, United Kingdom.)

Galea, H., Häussermann, V., and Försterra, G. (2007). Hydrozoa, fjord Comau. Check list 3, 159–167.

Gass, S. E., and Roberts, J. M. (2006). The occurrence of the cold-water coral Lophelia pertusa (Scleractinia) on oil and gas platforms in the North Sea: colony growth, recruitment and environmental controls on distribution. Marine Pollution Bulletin 52, 549–559.
The occurrence of the cold-water coral Lophelia pertusa (Scleractinia) on oil and gas platforms in the North Sea: colony growth, recruitment and environmental controls on distribution.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD28XltFGit7c%3D&md5=73e8c59bf3048bfbf569442733edf1ceCAS | 16300800PubMed |

Gattuso, J.-P., Pichon, M., Delesalle, B., and Frankignoulle, M. (1993). Community metabolism and air-sea CO2 fluxes in a coral reef ecosystem (Moorea, French Polinesia). Marine Ecology Progress Series 96, 259–267.
Community metabolism and air-sea CO2 fluxes in a coral reef ecosystem (Moorea, French Polinesia).Crossref | GoogleScholarGoogle Scholar |

González, H. E., Calderón, M. J., Castro, L., Clement, A., Cuevas, L. A., Daneri, G., Iriarte, J. L., Lizárraga, L., Martínez, R., Menschel, E., Silva, N., Carrasco, C., Valenzuela, C., Vargas, C. A., and Molinet, C. (2010). Primary production and plankton dynamics in the Reloncaví Fjord and the Interior Sea of Chiloé, northern Patagonia, Chile. Marine Ecology Progress Series 402, 13–30.
Primary production and plankton dynamics in the Reloncaví Fjord and the Interior Sea of Chiloé, northern Patagonia, Chile.Crossref | GoogleScholarGoogle Scholar |

Goreau, T. F., and Goreau, N. I. (1959). The physiology of skeleton formation in corals. II. Calcium deposition by hermatypic corals under various conditions in the reef. The Biological Bulletin 117, 239–250.
The physiology of skeleton formation in corals. II. Calcium deposition by hermatypic corals under various conditions in the reef.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaF3cXlvVSmtw%3D%3D&md5=c40bcebf41cb4ac5eb7c69be1f87bec8CAS |

Grange, K. R., Singleton, R. J., Richardson, J. R., Hill, P. J., and Main, W. D. (1981). Shallow rock wall biological associations of some southern fiords of New Zealand. New Zealand Journal of Zoology 8, 209–227.
Shallow rock wall biological associations of some southern fiords of New Zealand.Crossref | GoogleScholarGoogle Scholar |

Grover, R., Maguer, J. F., Allemand, D., and Ferrier-Pagès, C. (2008). Uptake of dissolved free amino acids by the scleractinian coral Stylophora pistillata. The Journal of Experimental Biology 211, 860–865.
Uptake of dissolved free amino acids by the scleractinian coral Stylophora pistillata.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1cXmvVSiu7w%3D&md5=db088d48f03281b5b858d6634e29a8b7CAS | 18310111PubMed |

Hart, A. M., Lasi, F. E., and Glenn, E. P. (2002). SLODS: slow dissolving standards for water flow measurements. Aquacultural Engineering 25, 239–252.
SLODS: slow dissolving standards for water flow measurements.Crossref | GoogleScholarGoogle Scholar |

Häussermann, V., and Försterra, G. (2007). Large assemblages of cold-water corals in Chile – a summary of recent findings and their implications. In ‘Conservation and Adaptive Management of Seamount and Deep-sea Coral Ecosystems’. (Eds R. Y. George and S. D. Cairns.) pp. 195–207. (Rosenstiel School of Marine and Atmospheric Science, University of Miami: Miami, FL)

Häussermann, V., and Försterra, G. (2009). ‘Marine Benthic Fauna of Chilean Patagonia.’ (Nature in Focus: Puerto Montt, Chile.)

Häussermann, V., Försterra, G., and Plotnek, E. (2012). Sightings of marine mammals and birds in the Comau Fjord, Northern Patagonia, between 2003 and mid 2012. Spixiana 35, 161–288.

Houlbrèque, F., Tambutté, E., Richard, C., and Ferrier-Pagès, C. (2004a). Importance of a micro-diet for scleractinian corals. Marine Ecology Progress Series 282, 151–160.
Importance of a micro-diet for scleractinian corals.Crossref | GoogleScholarGoogle Scholar |

Houlbrèque, F., Tambutté, E., Allemand, D., and Ferrier-Pagès, C. (2004b). Interactions between zooplankton feeding, photosynthesis and skeletal growth in the scleractinian coral Stylophora pistillata. The Journal of Experimental Biology 207, 1461–1469.
Interactions between zooplankton feeding, photosynthesis and skeletal growth in the scleractinian coral Stylophora pistillata.Crossref | GoogleScholarGoogle Scholar | 15037640PubMed |

Hovland, M., and Risk, M. (2003). Do Norwegian deep-water coral reefs rely on seeping fluids? Marine Geology 198, 83–96.
Do Norwegian deep-water coral reefs rely on seeping fluids?Crossref | GoogleScholarGoogle Scholar |

Howe, S. A., and Marshall, A. T. (2002). Temperature effects on calcification rate and skeletal deposition in the temperate coral, Plesiastrea versipora (Lamarck). Journal of Experimental Marine Biology and Ecology 275, 63–81.
Temperature effects on calcification rate and skeletal deposition in the temperate coral, Plesiastrea versipora (Lamarck).Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD38XmvVGmt70%3D&md5=f82131af6f27f7815d68d9a776bb1a05CAS |

Iriarte, J. L., González, H. E., Liu, K. K., Rivas, C., and Valenzuela, C. (2007). Spatial and temporal variability of chlorophyll and primary productivity in surface waters of southern Chile (41.5–43°S). Estuarine, Coastal and Shelf Science 74, 471–480.
Spatial and temporal variability of chlorophyll and primary productivity in surface waters of southern Chile (41.5–43°S).Crossref | GoogleScholarGoogle Scholar |

Iriarte, J. L., González, H. E., and Nahuelhual, L. (2010). Patagonian fjord ecosystems in southern Chile as a highly vulnerable region: problems and needs. Ambio 39, 463–466.
Patagonian fjord ecosystems in southern Chile as a highly vulnerable region: problems and needs.Crossref | GoogleScholarGoogle Scholar | 21090000PubMed |

Isla, E., Rossi, S., Palanques, A., Gili, J.-M., Gerdes, D., and Arntz, W. E. (2006). Biochemical composition of marine sediment from the eastern Wedell Sea (Antarctica): high nutritive value in a high benthic-biomass environment. Journal of Marine Systems 60, 255–267.

Jokiel, P. L., Maragos, J. E., and Franzisket, L. (1978). Coral growth: buoyant weighing technique. In ‘Coral Reefs: Research Methods’. (Eds D. R. Stoddart and R. E. Johannes.) pp. 529–541. (UNESCO: Paris.)

Jury, C. P., Whitehead, R. F., and Szmant, A. (2010). Effects of variations in carbonate chemistry on the calcification rates of Madracis auretenra (Madracis mirabilis sensu Wells, 1973): bicarbonate concentrations best predict calcification rates. Global Change Biology 16, 1632–1644.
Effects of variations in carbonate chemistry on the calcification rates of Madracis auretenra (Madracis mirabilis sensu Wells, 1973): bicarbonate concentrations best predict calcification rates.Crossref | GoogleScholarGoogle Scholar |

Kaandorp, J. A. (1999). Morphological analysis of growth forms of branching marine sessile organisms along environmental gradients. Marine Biology 134, 295–306.
Morphological analysis of growth forms of branching marine sessile organisms along environmental gradients.Crossref | GoogleScholarGoogle Scholar |

Kiriakoulakis, K., Bett, B. J., White, M., and Wolff, G. A. (2004). Organic biogeochemistry of the Darwin Mounds, a deep-water coral ecosystem, of the NE Atlantic. Deep Sea Reearch I 51, 1937–1954.
Organic biogeochemistry of the Darwin Mounds, a deep-water coral ecosystem, of the NE Atlantic.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2cXhtVWgtL%2FE&md5=f6122c5cac2e27cefc037813a31fcc55CAS |

Kiriakoulakis, K., Fisher, L., Freiwald, A., Grehan, A., Roberts, M., and Wolff, G. A. (2005). Lipids and nitrogen isotopes of two deep-water corals from the North-East Atlantic: initial results and implications for their nutrition. In ‘Cold-water Corals and Ecosystems’. (Eds A. Freiwald and J. M. Roberts.) pp. 715–729. (Springer-Verlag: Berlin.)

Kiriakoulakis, K., Freiwald, A., Fisher, E., and Wolff, G. A. (2007). Organic matter quality and supply to deep-water coral/mound systems of the NW European Continental Margin. International Journal of Earth Sciences 96, 159–170.
Organic matter quality and supply to deep-water coral/mound systems of the NW European Continental Margin.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2sXivFOhsA%3D%3D&md5=d6d3cbce2daf3e6156edfbf26811758cCAS |

Lough, J. M., and Barnes, D. J. (1997). Several centuries of variation in skeletal extension, density and calcification in massive Porites colonies from the Great Barrier Reef: a proxy for seawater temperature and a background of variability against which to identify unnatural change. Journal of Experimental Marine Biology and Ecology 211, 29–67.
Several centuries of variation in skeletal extension, density and calcification in massive Porites colonies from the Great Barrier Reef: a proxy for seawater temperature and a background of variability against which to identify unnatural change.Crossref | GoogleScholarGoogle Scholar |

Lough, J. M., and Barnes, D. J. (2000). Environmental controls on growth of the massive coral Porites. Journal of Experimental Marine Biology and Ecology 245, 225–243.
Environmental controls on growth of the massive coral Porites.Crossref | GoogleScholarGoogle Scholar | 10699212PubMed |

Maier, C., Hegeman, J., Weinbauer, M. G., and Gattuso, J.-P. (2009). Calcification of the cold-water coral Lophelia pertusa under ambient and reduced pH. Biogeosciences Discussions 6, 1875–1901.
Calcification of the cold-water coral Lophelia pertusa under ambient and reduced pH.Crossref | GoogleScholarGoogle Scholar |

Maier, C., Watremez, P., Taviani, M., Weinbauer, M. G., and Gattuso, J.-P. (2012). Calcification rates and the effect of ocean acidification on Mediterranean cold-water corals. Proceedings. Biological Sciences 279, 1716–1723.
Calcification rates and the effect of ocean acidification on Mediterranean cold-water corals.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC38XntlygsLg%3D&md5=8321abee7dd9380acca3d9b3b88789f3CAS |

Matsumoto, A. K. (2007). Effects of low water temperature on growth and magnesium carbonate concentrations in the cold-water gorgonian Primnoa pacifica. Bulletin of Marine Science 81, 423–435.

McNeil, B., Matear, R. J., and Barnes, D. J. (2004). Coral reef calcification and climate change: the effect of ocean warming. Geophysical Research Letters 31, L22309.
Coral reef calcification and climate change: the effect of ocean warming.Crossref | GoogleScholarGoogle Scholar |

Miller, K. J., Rowden, A. A., Williams, A., and Häussermann, V. (2011). Out of their depth? Isolated deep populations of the cosmopolitan coral Desmophyllum dianthus may be highly vulnerable to environmental change. PLoS ONE 6, e19004.
Out of their depth? Isolated deep populations of the cosmopolitan coral Desmophyllum dianthus may be highly vulnerable to environmental change.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3MXms1Kgtb0%3D&md5=96dfe97c4683381268ba7c02ca862f13CAS | 21611159PubMed |

Milne Edwards, H., and Haime, J. (1848). Recherches sur les Polypiers, deuxième mémoire, Monographie des Turbinolides. Annales des Sciences Naturelles. Zoologie 9, 211–244.

Mincks, S., Smith, C. R., and Demaster, D. J. (2005). Persistence of labile organic matter and microbial biomass in Antarctic shelf sediments: evidence of a sediment ‘food bank’. Marine Ecology Progress Series 300, 3–19.
Persistence of labile organic matter and microbial biomass in Antarctic shelf sediments: evidence of a sediment ‘food bank’.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2MXht1ylt7jL&md5=8c062e9f17fc40f22b1bab18eaa14e68CAS |

Montero, P., Daneri, G., Gonzales, H. E., Iriarte, J. L., Tapia, F. J., Lizarraga, L., Sanchez, N., and Pizarro, O. (2011). Seasonal variability of primary production in a fjord ecosystem of the Chilean Patagonia: implications for the transfer of carbon within the pelagic food web. Continental Shelf Research 31, 202–215.
Seasonal variability of primary production in a fjord ecosystem of the Chilean Patagonia: implications for the transfer of carbon within the pelagic food web.Crossref | GoogleScholarGoogle Scholar |

Mortensen, P. B. (2001). Aquarium observations on the deep-water coral Lophelia pertusa (L., 1758) (Scleractinia) and selected associated invertebrates. Ophelia 54, 83–104.
Aquarium observations on the deep-water coral Lophelia pertusa (L., 1758) (Scleractinia) and selected associated invertebrates.Crossref | GoogleScholarGoogle Scholar |

Moseley, H. N. (1881). Report on certain hydroid, alcyonanan and madreporarian corals procured during the Voyage of H. M. S. Challenger, in the Years 1873–1876. Report on the scientific results of the Voyage of H. M. S. Challenger during the Years 1873–76. Zoology 2, 0–248.

Naumann, M. S., Orejas, C., Wild, C., and Ferrier-Pages, C. (2011). First evidence for zooplankton feeding sustaining key physiological processes in a scleractinian cold-water coral. The Journal of Experimental Biology 214, 3570–3576.
First evidence for zooplankton feeding sustaining key physiological processes in a scleractinian cold-water coral.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC38Xht1Srsbk%3D&md5=d041c57e7654baad88d227cd4539eae0CAS | 21993785PubMed |

Olariaga, A., Gori, A., Orejas, C., and Gili, J.-M. (2009). Spotlight on technology: development of an autonomous aquarium system for maintaining deep corals. Oceanography (Washington, D.C.) 22, 44–45.
Spotlight on technology: development of an autonomous aquarium system for maintaining deep corals.Crossref | GoogleScholarGoogle Scholar |

Orejas, C., Gili, J.-M., and Arntz, W. E. (2003). Role of small-plankton communities in the diet of two Antarctic octocorals (Primnoisis antarctica and Primnoella sp.). Marine Ecology Progress Series 250, 105–116.
Role of small-plankton communities in the diet of two Antarctic octocorals (Primnoisis antarctica and Primnoella sp.).Crossref | GoogleScholarGoogle Scholar |

Orejas, C., Gori, A., and Gili, J.-M. (2008). Growth rates of live Lophelia pertusa and Madrepora oculata from the Mediterranean Sea maintained in aquaria. Coral Reefs 27, 255.
Growth rates of live Lophelia pertusa and Madrepora oculata from the Mediterranean Sea maintained in aquaria.Crossref | GoogleScholarGoogle Scholar |

Orejas, C., Ferrier-Pagès, C., Reynaud, S., Tsounis, G., Allemand, D., and Gili, J.-M. (2011a). Experimental comparison of skeletal growth rates in the cold-water coral Madrepora oculata Linnaeus, 1758 and three tropical scleractinian corals. Journal of Experimental Marine Biology and Ecology 405, 1–5.
Experimental comparison of skeletal growth rates in the cold-water coral Madrepora oculata Linnaeus, 1758 and three tropical scleractinian corals.Crossref | GoogleScholarGoogle Scholar |

Orejas, C., Ferrier-Pagès, C., Reynaud, S., Gori, A., Beraud, E., Tsounis, G., Allemand, D., and Gili, J.-M. (2011b). Long-term growth rates of four Mediterranean cold-water coral species maintained in aquaria. Marine Ecology Progress Series 429, 57–65.
Long-term growth rates of four Mediterranean cold-water coral species maintained in aquaria.Crossref | GoogleScholarGoogle Scholar |

Palardy, J. E., Grottoli, A. G., and Matthews, K. A. (2006). Effect of naturally changing zooplankton concentrations on feeding rates of two coral species in the eastern Pacific. Journal of Experimental Marine Biology and Ecology 331, 99–107.
Effect of naturally changing zooplankton concentrations on feeding rates of two coral species in the eastern Pacific.Crossref | GoogleScholarGoogle Scholar |

Pantoja, S., Iriarte, J. L., and Daneri, G. (2011). Oceanography of the Chilean Patagonia. Continental Shelf Research 31, 149–153.
Oceanography of the Chilean Patagonia.Crossref | GoogleScholarGoogle Scholar |

Patterson, M. R., Olson, R. R., and Sebens, K. P. (1991). In situ measurements of forced convection on primary production and dark respiration in reef corals. Limnology and Oceanography 36, 936–948.
In situ measurements of forced convection on primary production and dark respiration in reef corals.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK38XhvVKnsg%3D%3D&md5=84c04b79e95d9fd64085c99dcd1ae4bfCAS |

Purser, A., Larsson, A. I., Thomsen, L., and von Oevelen, D. (2010). The influence of flow velocity and food concentration on Lophelia pertusa (Scleractinia) zooplankton capture rates. Journal of Experimental Marine Biology and Ecology 395, 55–62.
The influence of flow velocity and food concentration on Lophelia pertusa (Scleractinia) zooplankton capture rates.Crossref | GoogleScholarGoogle Scholar |

Reichel, L., Laudien, J., and Försterra, G. (2012). Succession of benthic hard-bottom communities in the shallow sublittoral of Comau Fjord, Chile. Dataset. Dataset available at doi.pangaea.de/10.1594/PANGAEA.803979

Reynaud, S., Ferrier-Pagès, C., Meibom, A., Mostefaoui, S., Mortlock, R., Fairbanks, R., and Allemand, D. (2007). Light and temperature effects on Sr/Ca and Mg/Ca ratios in the scleractinian coral Acropora sp. Geochimica et Cosmochimica Acta 71, 354–362.
Light and temperature effects on Sr/Ca and Mg/Ca ratios in the scleractinian coral Acropora sp.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2sXhtFyi&md5=01cb0b3f9a79a0a0d8a74883b1e743c2CAS |

Ribes, M., Coma, R., and Gili, J.-M. (1998). Heterotrophic feeding by gorgonian corals with symbiotic zooxanthella. Limnology and Oceanography 43, 1170–1179.
Heterotrophic feeding by gorgonian corals with symbiotic zooxanthella.Crossref | GoogleScholarGoogle Scholar |

Risk, M. J., Heikoop, J. M., Snow, M. G., and Beukens, R. (2002). Lifespans and growth patterns of two deep-sea corals: Primnoa resedaeformis and Desmophyllum cristagalli. Hydrobiologia 471, 125–131.
Lifespans and growth patterns of two deep-sea corals: Primnoa resedaeformis and Desmophyllum cristagalli.Crossref | GoogleScholarGoogle Scholar |

Roberts, J. M., and Anderson, R. M. (2002). A new laboratory method of monitoring deep-sea coral polyp behaviour. Hydrobiologia 471, 143–148.
A new laboratory method of monitoring deep-sea coral polyp behaviour.Crossref | GoogleScholarGoogle Scholar |

Roberts, J. M., Wilson, J. B., Mortensen, P. B., and Gage, J. D. (2003). The cold water coral Lophelia pertusa. Scleractinia and enigmatic seabed mounds along the north-east Atlantic margin: are they related? Marine Pollution Bulletin 46, 7–20.
The cold water coral Lophelia pertusa. Scleractinia and enigmatic seabed mounds along the north-east Atlantic margin: are they related?Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3sXltVKhtw%3D%3D&md5=5aeb0061359d99af9779d26ca9e6b848CAS | 12535964PubMed |

Roberts, J. M., Wheeler, A. J., and Freiwald, A. (2006). Reefs of the deep: the biology and geology of cold-water coral ecosystems. Science 312, 543–547.
Reefs of the deep: the biology and geology of cold-water coral ecosystems.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD28XjvVGktbc%3D&md5=7c5c612e7df3e4ec3cbe7508bed3dcf5CAS | 16645087PubMed |

Roberts, J., Wheeler, A. J., Freiwald, A., and Cairns, S. (2009). ‘Cold-water Corals.’ (Cambridge University Press: Cambridge, UK.)

Rodolfo-Metalpa, R., Peirano, A., Morri, C., and Bianchi, C. N. (1999). Coral calcification rates in the Mediterranean scleractinian coral Cladocora caespitosa (L., 1767). Proceedings of the Italian Association for Oceanography and Limnology 13, 291–299.

Rodolfo-Metalpa, R., Peirano, A., Houlbrèque, F., Abbate, M., and Ferrier-Pagès, C. (2008). Effects of temperature, light and heterotrophy on the growth rate and budding of the temperate coral Cladocora caespitosa. Coral Reefs 27, 17–25.
Effects of temperature, light and heterotrophy on the growth rate and budding of the temperate coral Cladocora caespitosa.Crossref | GoogleScholarGoogle Scholar |

Rodolfo-Metalpa, R., Martin, S., Ferrier-Pagès, C., and Gattuso, J.-P. (2010). Response of the temperate coral Cladocora caespitosa to mid- and long-term exposure to pCO2 and temperature levels projected for the year 2100 AD. Biogeosciences 7, 289–300.
Response of the temperate coral Cladocora caespitosa to mid- and long-term exposure to pCO2 and temperature levels projected for the year 2100 AD.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3cXktVOiur4%3D&md5=30ff438d4187f077b4e21415a3c45ee3CAS |

Rogers, A. D., Baco, A., Griffiths, H., Hart, T., and Hall-Spencer, J. M. (2007). Corals on seamounts. In ‘Seamounts: Ecology, Conservation and Management’. (Eds T. J. Pitcher, T. Morato, P. J. B. Hart, M. R. Clark, N. Haggan and R. S. Santos.) pp. 141–169. Fish and Aquatic Resources Series. (Blackwell, Oxford, UK.)

Schlöder, C., and D'Croz, L. (2004). Responses of massive and branching coral species to the combined effects of water temperature and nitrate enrichment. Journal of Experimental Marine Biology and Ecology 313, 255–268.
Responses of massive and branching coral species to the combined effects of water temperature and nitrate enrichment.Crossref | GoogleScholarGoogle Scholar |

Schröder-Ritzrau, A., Freiwald, A., and Mangini, A. (2005). U/Th-dating of deep-water corals from the eastern North Atlantic and the Western Mediterranean Sea. In ‘Cold-water Corals and Ecosystems’. pp. 157–172. (Springer: Heidelberg.)

Schwabe, E., Försterra, G., Häussermann, V., Melzer, R. R., and Schrödl, M. (2006). Chitons (Mollusca: Polyplacophora) from the southern Chilean Comau Fjord, with reinstatement of Tonicia calbucensis Plate, 1897. Zootaxa 1341, 1–27.

Scoffin, T. P., Tudhope, A. W., Brown, B. E., Chansang, H., and Cheeny, R. F. (1992). Patterns and possible environmental controls of skeletogenesis of Porites lutea, South Thailand. Coral Reefs 11, 1–11.
Patterns and possible environmental controls of skeletogenesis of Porites lutea, South Thailand.Crossref | GoogleScholarGoogle Scholar |

Sebens, K. P., Vandersall, K. S., Savina, L. A., and Graham, K. R. (1996). Zooplankton capture by two scleractinian corals, Madracis mirabilis and Montastrea cavernosa, in a field enclosure. Marine Biology 127, 303–317.
Zooplankton capture by two scleractinian corals, Madracis mirabilis and Montastrea cavernosa, in a field enclosure.Crossref | GoogleScholarGoogle Scholar |

Shashar, N., Kinane, S., Jokiel, P. L., and Patterson, M. R. (1996). Hydrome-chanical boundary layers over a coral reef. Journal of Experimental Marine Biology and Ecology 199, 17–28.
Hydrome-chanical boundary layers over a coral reef.Crossref | GoogleScholarGoogle Scholar |

Sievers, H., and Silva, N. (2008). Water masses and circulation in austral Chilean channels and fjords. In ‘Progress in the Oceanographic Knowledge of Chilean Inner Waters, from Puerto Montt to Cape Horn’. (Eds N. Silva and S. Palma.), pp. 53–58. (Comité Oceanográfico Nacional–Pontificia Universidad Católica de Valparaíso: Valparaíso, Chile.)

Silva, N. (2008). Dissolved oxygen, pH, and nutrients in the austral Chilean channels and fjords. In ‘Progress in the Oceanographic Knowledge of Chilean Inner Waters, from Puerto Montt to Cape Horn’. (Eds N. Silva and S. Palma.), pp. 37–43. (Comité Oceanográfico Nacional–Pontificia Universidad Católica de Valparaíso: Valparaíso, Chile.)

Smith, C. R., Mincks, S., and DeMaster, D. J. (2006). A synthesis of bentho-pelagic coupling on the Antarctic shelf: food banks, ecosystem inertia and global climate change. Deep-sea Research. Part II, Topical Studies in Oceanography 53, 875–894.
A synthesis of bentho-pelagic coupling on the Antarctic shelf: food banks, ecosystem inertia and global climate change.Crossref | GoogleScholarGoogle Scholar |

Sorauf, J. E., and Jell, J. S. (1977). Structure and incremental growth in the ahermatic coral Desmophyllum cristagalli from the North Atlantic. Paleontology 20, 1–19.

Squires, D. F. (1965). Deep-water coral structure on the Campbell Plateau, New Zealand. Deep-Sea Research 12, 785–788.

Stearn, C. W., Scoffin, T. P., and Martindale, W. (1977). Calcium carbonate budget of a fringing reef on the west coast of Barbados. Part I. Zonation and productivity. Bulletin of Marine Science 27, 479–510.
| 1:CAS:528:DyaE2sXls1Cmt7o%3D&md5=4f859ff76847b812e85f731c06b94abbCAS |

Taviani, M., Freiwald, A., and Zibrowius, H. (2005). Deep coral growth in the Mediterranean Sea: an overview. In ‘Cold-water Corals and Ecosystems’. (Eds A. Freiwald and J. M. Roberts.) pp. 137–156. (Springer-Verlag: Berlin.)

Tsounis, G., Orejas, C., Reynaud, S., Gili, J.-M., Allemand, D., and Ferrier-Pagès, C. (2010). Prey-capture rates in four Mediterranean cold water corals. Marine Ecology Progress Series 398, 149–155.
Prey-capture rates in four Mediterranean cold water corals.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3cXitlSltLk%3D&md5=99dea5101472049191a4ee2d8b947148CAS |

Wagner, H., Purser, A., Thomsen, L., César Jesus, C., and Lundälv, T. (2011). Particulate organic matter fluxes and hydrodynamics at the Tisler cold-water coral reef. Journal of Marine Systems 85, 19–29.
Particulate organic matter fluxes and hydrodynamics at the Tisler cold-water coral reef.Crossref | GoogleScholarGoogle Scholar |

Wienberg, C., Hebbeln, D., Fink, H. G., Mienis, F., Dorschel, B., Vertino, A., López Correa, M., and Freiwald, A. (2009). Scleractinian cold-water corals in the Gulf of Cádiz – first clues about their spatial and temporal distribution. Deep-sea Research. Part I, Oceanographic Research Papers 56, 1873–1893.
Scleractinian cold-water corals in the Gulf of Cádiz – first clues about their spatial and temporal distribution.Crossref | GoogleScholarGoogle Scholar |

Zibrowius, H. (1980). Les Scléractiniares de la Méditerranée et de l’Antique Nord-oriental. Mémoires de Institut Océanographique, Monaco 11, 284.