Free Standard AU & NZ Shipping For All Book Orders Over $80!
Register      Login
Marine and Freshwater Research Marine and Freshwater Research Society
Advances in the aquatic sciences
RESEARCH ARTICLE

Macroinvertebrates on coarse woody debris in the littoral zone of a boreal lake

Patricia N. Glaz A B , Christian Nozais A and Dominique Arseneault A
+ Author Affiliations
- Author Affiliations

A Département de Biologie et Centre d′études nordiques, Université du Québec à Rimouski, 300 allée des Ursulines, Rimouski, QC, G5 L 3A1, Canada.

B Corresponding author. Email: patricia.glaz@uqar.qc.ca

Marine and Freshwater Research 60(9) 960-970 https://doi.org/10.1071/MF08260
Submitted: 11 September 2008  Accepted: 17 March 2009   Published: 22 September 2009

Abstract

Logging activity was a regular practice in the boreal forest of Quebec during the 19th century and may have had an impact on the temporal dynamics of aquatic coarse woody debris (CWD) and associated organisms. The dynamics of white cedar (Thuja occidentalis) CWD inputs from the riparian environment in a boreal lake in Eastern Quebec, Canada, over the past 350 years were reconstructed and differences in the macroinvertebate communities according to CWD age, season of sampling (spring, summer and autumn), depth and site were investigated. It was hypothesised that CWD macroinvertebrate community structure would change with CWD age, season and depth, but not among sites. No significant correlation was found between CWD age and macroinvertebrate densities and taxa number. The macroinvertebrate community was highly variable in space and time. Season was the main factor influencing taxa composition and the relative densities of individuals. The mean density was more than twofold greater in autumn than in spring and summer (1046, 1049 and 2335 individuals m–2 in spring, summer and autumn respectively). Density and taxa number decreased with depth, but site did not appear to influence the community. As CWD inputs increased during the log-driving period, impacts on macroinvertebrate communities were likely to be important and should be documented across the boreal zone.

Additional keywords: dendrochronology, forest–lake coupling, lake ecosystems, riparian forest, spatio-temporal dynamics.


Acknowledgements

This research project was supported by grants from the Natural Sciences and Engineering Research Council (NSERC) of Canada to C. Nozais and D. Arseneault. P. N. Glaz was supported by a Masters fellowship from NSERC. We are grateful to Vincent Couture for his invaluable assistance in the field and to Claude Normand for providing maps. We thank Alain Caron and Philippe Archambault for assistance with data analysis. We also thank Andrew Boulton, Hervé Piegay and one anonymous referee for insightful comments and suggestions. This is a contribution to the BioNord and Centre d’études nordiques research programs.


References

Andrus, C. W. , Long, B. A. , and Froelich, H. A. (1988). Woody debris and its contribution to pool formation in a coastal stream 50 years after logging. Canadian Journal of Fisheries and Aquatic Sciences 45, 2080–2086.
Crossref | GoogleScholarGoogle Scholar | Bilby R. E., and Bisson P. A. (1998). Function and distribution of large woody debris. In ‘River Ecology and Management’. (Eds R. J. Naiman and R. E. Bilby.) pp. 324–346. (Springer-Verlag: New York.)

Bilby, R. E. , and Likens, G. E. (1980). Importance of organic debris dams in the structure and function of stream ecosystems. Ecology 61, 1107–1113.
Crossref | GoogleScholarGoogle Scholar | Boucher Y. (2002). Reconstitution de développement de deux forets du Bas-Saint-Laurent (Québec) en réponse aux perturbations du 20e siècle. M.Sc. Thesis, Université du Québec à Rimouski, Québec.

Bowen, K. L. , Kaushik, N. K. , and Gordon, A. M. (1998). Macroinvertebrate communities and biofilm chlorophyll on woody debris in two Canadian oligotrophic lakes. Archiv für Hydrobiologie 141, 257–281.
Fortin J.-C., Lechasseur A., Morin Y., Harvey F., Lemay J., et al. (1993). ‘Histoire du Bas-Saint-Laurent.’ (Institut québécois de recherche sur la culture: Québec.)

Francis T. B., Schindler D. E., Fox J. M., and Seminet-Reneau E. (2007). Effects of urbanization on the dynamics of organic sediments in temperate lakes. Ecosystems. doi:10.1007/S10021-007-9077-0 [Online FirstTM]

Gurnell, A. M. , Piégay, H. , Swanson, F. J. , and Gregory, S. V. (2002). Large wood and fluvial processes. Freshwater Biology 47, 601–619.
Crossref | GoogleScholarGoogle Scholar | Higgins M. J., and Merritt R. W. (1999). Temporary woodland ponds in Michigan: invertebrate seasonal patterns and trophic relationships. In ‘Invertebrates in Freshwater Wetlands of North America: Ecology and Management’. (Eds D. P. Batzer, R. B. Rader and S. A. Wissinger.) pp. 279–297. (John Wiley and Sons: New York.)

Hilderbrand, R. H. , Lemly, A. D. , Dolloff, C. A. , and Harpster, K. L. (2002). Control of the microbenthic communities by grazing and nutrient supply. Ecology 83, 2205–2219.
Maser C., and Sedell J. R. (1994). ‘From the Forest to the Sea: The Ecology of Wood in Streams, Rivers, Estuaries, and Oceans.’ (St. Lucies Press: Delray Beach.)

McCafferty W. P. (1998). ‘Aquatic Entomology.’ (Jones and Barlett Publishers: Sudbury.)

McKie, B. , and Cranston, P. S. (2001). Colonisation of experimentally immersed wood in south eastern Australia: responses of feeding groups to changes in riparian vegetation. Hydrobiologia 452, 1–14.
Crossref | GoogleScholarGoogle Scholar | Merrit R. W., and Cummins K. W. (1998). ‘An Introduction to the Aquatic Insects of North America.’ (Kendall–Hunt Publishing: Iowa.)

Nakano, S. , and Murakami, M. (2001). Reciprocal subsidies: dynamic interdependence between terrestrial and aquatic food webs. Proceedings of the National Academy of Sciences of the United States of America 98, 166–170.
Crossref | GoogleScholarGoogle Scholar | CAS | PubMed | Pieczyñska E. (1990). Lentic aquatic–terrestrial ecotones: their structure, functions and importance. In ‘The Ecology and Management of Aquatic–Terrestrial Ecotones’. (Eds R. J. Naiman and H. Décamps.) pp. 103–140. (Man and the Biosphere Series Vol. 4. UNESCO and the Parthenon Publishing Group: Park Ridge.)

Rayner A. D. M., and Boddy L. (1988). ‘Fungal Decomposition of Wood.’ (John Wiley and Sons: New York.)

Riaux-Gobin C., and Klein B. (1993). ‘Microphytobenthic Biomass Measurement Using HPLC and Conventional Pigment Analysis. Handbook of Methods in Aquatic Microbial Ecology.’ (Lewis Publishers: Boca Raton.)

Rinella, D. J. , and Feminella, J. W. (2005). Comparison of benthic macro invertebrates colonizing sand, wood, and artificial substrates in a low-gradient stream. Journal of Freshwater Ecology 20, 209–220.
Robitaille A., and Saucier J. P. (1998). ‘Paysages Régionaux du Québec Méridional.’ (Publications du Québec: Sainte-Foy.)

Sabo, J. L. , and Power, M. E. (2002). River–watershed exchange: effects of riverine subsidies on riparian lizards and their terrestrial prey. Ecology 83, 1860–1869.
Shannon C. E., and Weaver W. (1949). ‘The Mathematical Theory of Communication.’ (University of Illinois Press: Urbana.)

Smokorowski, K. E. , Pratt, T. C. , Cole, W. G. , McEacherm, L. J. , and Mallory, E. C. (2006). Effects on periphyton and macroinvertebrates from removal of submerged wood in three Ontario lakes. Canadian Journal of Fisheries and Aquatic Sciences 63, 2038–2049.
Crossref | GoogleScholarGoogle Scholar | Sorel C. (2004). Impacts des perturbations anthropiques du XXe siècle sur deux forêts du Bas-Saint-Laurent (Québec). M.Sc. Thesis, Université du Québec à Rimouski, Québec.

Spänhoff, B. , Alecke, C. , and Meyer, E. I. (2000). Colonization of submerged twigs and branches of different wood genera by aquatic macroinvertebrates. International Review of Hydrobiology 85, 49–66.
Crossref | GoogleScholarGoogle Scholar | Thorp J. H., and Covich A. P. (2001). ‘Ecology and Classification of North American Freshwater Invertebrates.’ (Academic Press: London.)

Vadeboncoeur, Y. , and Lodge, D. M. (2000). Periphyton production on wood and sediment: substratum-specific response to laboratory and whole-lake nutrient manipulations. Journal of the North American Benthological Society 19, 68–81.
Crossref | GoogleScholarGoogle Scholar |

Vander Zanden, M. J. , and Vadeboncoeur, Y. (2002). Fishes as integrators of benthic and pelagic food webs in lakes. Ecology 83, 2152–2161.
Crossref | GoogleScholarGoogle Scholar |

Vander Zanden, M. J. , Chandra, S. , Park, S. K. , Vadeboncoeur, Y. , and Goldman, C. R. (2006). Efficiencies of benthic and pelagic trophic pathways in a subalpine lake. Canadian Journal of Fisheries and Aquatic Sciences 63, 2608–2620.
Crossref | GoogleScholarGoogle Scholar |

Wallace, J. B. , and Benke, A. C. (1984). Quantification of wood habitat in subtropical Coastal Plain streams. Canadian Journal of Fisheries and Aquatic Sciences 41, 1643–1652.
Crossref | GoogleScholarGoogle Scholar |

Warmke, S. , and Hering, D. (2000). Composition, microdistribution and food of the macroinvertebrate fauna inhabiting wood in low-order mountain streams in central Europe. International Review of Hydrobiology 85, 67–78.
Crossref | GoogleScholarGoogle Scholar |

Webb, A. A. , and Erskine, W. D. (2003). Distribution, recruitment and geomorphic significance of large woody debris in an alluvial forest stream: Tonghi Creek, southeastern Australia. Geomorphology 51, 109–126.
Crossref | GoogleScholarGoogle Scholar |

Winterbourn, M. J. (1982). The invertebrate fauna of a forest stream and its association with fine particulate organic matter. New Zealand Journal of Marine and Freshwater Research 16, 271–281.


Wong, A. H. K. , Williams, D. D. , McQueen, D. J. , Demers, E. , and Ramcharan, C. W. (1998). Macroinvertebrate abundance in two lakes with contrasting fish communities. Archiv für Hydrobiologie 141(3), 283–302.