Free Standard AU & NZ Shipping For All Book Orders Over $80!
Register      Login
Marine and Freshwater Research Marine and Freshwater Research Society
Advances in the aquatic sciences
RESEARCH ARTICLE

Microinvertebrate and plant beta diversity in dry soils of a semiarid agricultural wetland complex

David G. Angeler A D , Olga Viedma A , Santos Cirujano B , Miguel Alvarez-Cobelas C and Salvador Sánchez-Carrillo C
+ Author Affiliations
- Author Affiliations

A Institute of Environmental Sciences, University of Castilla-La Mancha, Avda Carlos III s/n, E-45071 Toledo, Spain.

B Royal Botanical Garden, Madrid (CSIC), Plaza de Murillo 2, E-28014 Madrid, Spain.

C Institute of Natural Resources (CSIC), Serrano 115 dpdo, E-28006 Madrid, Spain.

D Corresponding author. Email: david.angeler@uclm.es

Marine and Freshwater Research 59(5) 418-428 https://doi.org/10.1071/MF07206
Submitted: 31 October 2007  Accepted: 5 April 2008   Published: 6 June 2008

Abstract

The relationship between environmental features and the β diversity of the propagule bank of dry soils of temporary wetlands has relevance to ecological theories of community structure and to the conservation of wetland biodiversity. The correlation of β diversity of microinvertebrates and macrophytes derived from propagules in dry soils with wetland habitat characteristics, catchment land-use, and the distance between wetlands in a remnant pond complex in central Spain was assessed. Redundancy analyses showed that β diversity of both groups correlated with habitat characteristics, whereas associations with catchment agricultural practices were weaker. Nestedness analyses showed that species-poor communities from degraded sites tended to form nested subsets of less degraded ponds with higher species richness. Distance between the ponds had no significant association with community similarity, suggesting that fragmentation did not shape β diversity at the scale of our study area. To maintain high β diversity in this area, ponds with species-rich propagule banks should receive conservation priority. Given the functional dependence by much wildlife on these propagule banks once these wetlands rewet, conservation of this hidden biodiversity is crucial for providing ecosystem services to humans and wildlife.

Additional keywords: agricultural landscape, anthropogenic stress, conservation ecology, macrophytes, propagule banks, spatial species turnover.


Acknowledgements

We acknowledge the land holders for permitting access to their properties, and B. Sánchez and M. Gutiérrez for help with field and laboratory work. Andrew Boulton and two anonymous referees provided constructive criticisms that helped improve the final paper. The present study was funded jointly by Junta de Comunidades de Castilla – La Mancha and European Community funds for regional development (FEDER) through the HUMACRO (PAI-05–020) project.


References

Alonso M. (1996). ‘Fauna Ibérica-Crustacea, Branchiopoda, vol. 7.’ (Museo Nacional de Ciencias Naturales: Consejo Superior de Investigaciones Científicas, Madrid.)

Alvarez-Cobelas, M. , Rojo, C. , and Angeler, D. G. (2005). Mediteranean limnology: current status, gaps and the future. Journal of Limnology 64, 13–29.
Colburn E. A. (2004). ‘Vernal pools: Natural History and Conservation.’ (The McDonald and Woodward Publishing Company: Blacksburg, VI.)

Condit, R. , Pitman, N. , Leigh, E. G. , Chave, J. , and Terborgh, J. , et al. (2002). Beta-diversity in tropical forest trees. Science 295, 666–669.
Crossref | GoogleScholarGoogle Scholar | PubMed | Cronk J. K., and Fennessy M. S. (2001). ‘Wetland Plants: Biology and Ecology.’ (Lewis Publishers: Boca Raton, FL.)

Dauber, J. , Purtauf, T. , Allspach, A. , Frisch, J. , Voigtländer, K. , and Wolters, V. (2005). Local vs. landscape controls on diversity: a test using surface-dwelling soil macroinvertebrates of differing mobility. Global Ecology and Biogeography 14, 213–221.
Crossref | GoogleScholarGoogle Scholar | EEA (2000). ‘CORINE land cover 2000 project.’ (European Environment Agency: Copenhagen.)

ESRI (1999). ‘Environmental Systems Research Institute Inc. ArcView GIS 3.2 Software.’ (Environmental Systems Research Institute: Redlands, CA.)

Fahrig, L. (2003). Effects of habitat fragmentation on biodiversity. Annual Reviews of Ecology, Evolution and Systematics 34, 487–515.
Crossref | GoogleScholarGoogle Scholar | García-Canseco V. (2000). ‘Humedales de Ciudad Real.’ (Ediciones Esfangos S.L.: Talavera de la Reina, Spain.)

Guadagnin, D. L. , Peter, A. S. , Perello, P. F. C. , and Maltchik, L. (2005). Spatial and temporal patterns of waterbird assemblages in fragmented wetlands of southern Brazil. Waterbirds 28, 261–272.
Crossref | GoogleScholarGoogle Scholar | Jensen J. L., Bohonak A. J., and Skelley S. T. (2005). Isolation by Distance, web service. BMC Genetics, 6, 13.v.3.09 (http://ibws.sdsu.edu).

Koleff, P. , and Gaston, K. J. (2002). The relationships between local and regional species richness and spatial turnover. Global Ecology and Biogeography 11, 363–375.
Crossref | GoogleScholarGoogle Scholar | Legendre P., and Legendre L. (1998). ‘Numerical Ecology: Developments in Environmental Modelling 20, 2nd edn.’ (Elsevier Science Ltd.: New York.)

Legendre, P. , Borcard, D. , and Peres-Neto, P. R. (2005). Analyzing beta-diversity: partitioning the spatial variation of community composition data. Ecological Monographs 75, 435–450.
Crossref | GoogleScholarGoogle Scholar | Mitsch W. J., and Gosselink J. G. (2000). ‘Wetlands.’ 3rd edn. (Wiley & Sons: New York.)

Nekola, J. C. , and White, P. S. (1999). The distance decay of similarity in biogeography and ecology. Journal of Biogeography 26, 867–878.
Crossref | GoogleScholarGoogle Scholar | Rosenzweig M. L. (1995). ‘Species Diversity in Space and Time.’ (Cambridge University Press: Cambridge, UK.)

Sánchez, B. , and Angeler, D. G. (2007). Can fairy shrimps (Crustacea: Anostraca) structure zooplankton communities in temporary ponds? Marine and Freshwater Research 58, 827–834.
Crossref | GoogleScholarGoogle Scholar | Southwood R., and Henderson P. A. (2000). ‘Ecological Methods.’ (Blackwell Science: Oxford.)

ter Braak C. J. F. (1988). Partial canonical correspondence analysis. In ‘Classification and Related Methods of Data Analysis’. (Ed. H. H. Bock.) pp. 551–558. (Elsevier: Amsterdam.)

ter Braak C. J. F., and Šmilauer P. (1998). CANOCO Reference Manual and User’s Guide to CANOCO for Windows, Software for Canonical Community Ordination (Version 4.5). (Microcomputer Power: Ithaca, NY.)

Vandekerkhove J., Declerck S., Brendonck L., Conde-Porcuna J. M., Jeppesen E., Johansson L. S., et al. (2005). Uncovering hidden species: hatching diapausing eggs for the analysis of cladoceran species richness. Limnology and Oceanography, Methods 3, 399–407.

Velayos, M. , Carrasco, M. A. , and Cirujano, S. (1989). Las lagunas del Campo de Calatrava. Botanica Complutensis 14, 9–50.
Wissinger S. A. (1999). Ecology of wetland invertebrates: synthesis and application for conservation and management. In ‘Invertebrates in Freshwater Wetlands of North America: Ecology and Management’. (Eds D. R. Batzer, R. B. Rader and S. A. Wissinger.) pp. 1043–1086. (John Wiley and Sons: New York.)