Register      Login
Marine and Freshwater Research Marine and Freshwater Research Society
Advances in the aquatic sciences
RESEARCH ARTICLE

Novel multimarker comparisons address the genetic population structure of silvertip sharks (Carcharhinus albimarginatus)

M. E. Green https://orcid.org/0000-0002-5037-2043 A B C D , S. A. Appleyard A B , W. White A B , S. Tracey C , F. Devloo-Delva A C and J. R. Ovenden https://orcid.org/0000-0001-7538-1504 D
+ Author Affiliations
- Author Affiliations

A CSIRO Oceans and Atmosphere, Castray Esplanade, Battery Point, Hobart, Tas. 7001, Australia.

B CSIRO Australian National Fish Collection, National Research Collections Australia, Castray Esplanade, Hobart, Tas. 7001, Australia.

C Institute for Marine and Antarctic Studies, University of Tasmania, Private Bag 49, Hobart, Tas. 7001, Australia.

D Molecular Fisheries Laboratory, School of Biomedical Sciences, University of Queensland, Chancellors Place, Saint Lucia, Qld 4072, Australia.

E Corresponding author. Email: madeline.green@utas.edu.au

Marine and Freshwater Research 70(7) 1007-1019 https://doi.org/10.1071/MF18296
Submitted: 13 August 2018  Accepted: 1 February 2019   Published: 16 April 2019

Abstract

The silvertip shark (Carcharhinus albimarginatus) is a reef-associated shark, with an intermittent distribution across the Indo-Pacific Ocean. Owing to global declines, the species is listed as Vulnerable under the International Union of Conservation for Nature Red List. Samples from 152 C. albimarginatus were collected from three locations: Papua New Guinea (PNG), east Australia and Seychelles. Samples were analysed using mitochondrial, microsatellite and double-digest restriction-associated DNA (ddRAD) generated single nucleotide polymorphism markers. As expected across a vast oceanic expanse, no gene flow was identified between south-west Pacific locations and Seychelles for any marker (population differentiation measured using ΦST values 0.92–0.98, FST values 0.036–0.059). Mitochondrial DNA indicated significant population structuring between PNG and east Australia (ΦST = 0.102), but nuclear markers suggested connectivity between these geographically close regions (FST = 0.000–0.001). In combination with known telemetry movements for C. albimarginatus, our results suggest stepping-stone patterns of movement between regions is likely driven by reproductive requirements. The use of three distinct marker types in this study has facilitated a powerful genetic description of the population connectivity of C. albimarginatus between the three sampled regions. Importantly, the connectivity described between PNG and east Australia should be used as a guide for managing the south-west Pacific stock of C. albimarginatus.

Additional keywords: elasmobranch, fisheries management, microsatellite, mitochondrial DNA, reef shark, population genetics, single nucleotide polymorphisms.


References

Adamack, A. T., and Gruber, B. (2014). PopGenReport: Simplifying basic population genetic analyses in R. Methods in Ecology and Evolution 5, 384–387.
PopGenReport: Simplifying basic population genetic analyses in R.Crossref | GoogleScholarGoogle Scholar |

Alexander, D. H., and Lange, K. (2011). Enhancements to the ADMIXTURE algorithm for individual ancestry estimation. BMC Bioinformatics 12, 246.
Enhancements to the ADMIXTURE algorithm for individual ancestry estimation.Crossref | GoogleScholarGoogle Scholar | 21682921PubMed |

Allendorf, F. W., Hohenlohe, P. A., and Luikart, G. (2010). Genomics and the future of conservation genetics. Nature Reviews. Genetics 11, 697–709.
Genomics and the future of conservation genetics.Crossref | GoogleScholarGoogle Scholar | 20847747PubMed |

Appleyard, S. A., Ward, R. D., and Williams, R. (2002). Population structure of the Patagonian toothfish around Heard, McDonald and Macquarie islands. Antarctic Science 14, 364–373.
Population structure of the Patagonian toothfish around Heard, McDonald and Macquarie islands.Crossref | GoogleScholarGoogle Scholar |

Appleyard, S. A., White, W. T., Vieira, S., and Sabub, B. (2018). Artisanal shark fishing in Milne Bay Province, Papua New Guinea: biomass estimation from genetically identified shark and ray fins. Scientific Reports 8, 1–12.
Artisanal shark fishing in Milne Bay Province, Papua New Guinea: biomass estimation from genetically identified shark and ray fins.Crossref | GoogleScholarGoogle Scholar |

Attard, C. R. M., Beheregaray, L. B., and Möller, L. M. (2018). Genotyping-by-sequencing for estimating relatedness in nonmodel organisms: avoiding the trap of precise bias. Molecular Ecology Resources 18, 381–390.
Genotyping-by-sequencing for estimating relatedness in nonmodel organisms: avoiding the trap of precise bias.Crossref | GoogleScholarGoogle Scholar |

Avise, J. C. (2012). ‘Molecular Markers, Natural History and Evolution.’ (Springer Science and Business Media.)

Baird, N. A., Etter, P. D., Atwood, T. S., Currey, M. C., Shiver, A. L., Lewis, Z. A., Selker, E. U., Cresko, W. A., and Johnson, E. A. (2008). Rapid SNP discovery and genetic mapping using sequenced RAD markers. PLoS One 3, e3376.
Rapid SNP discovery and genetic mapping using sequenced RAD markers.Crossref | GoogleScholarGoogle Scholar | 18852878PubMed |

Bandelt, H. J., Forster, P., and Röhl, A. (1999). Median-joining networks for inferring intraspecific phylogenies. Molecular Biology and Evolution 16, 37–48.
Median-joining networks for inferring intraspecific phylogenies.Crossref | GoogleScholarGoogle Scholar | 10331250PubMed |

Bernard, A. M., Feldheim, K. A., Heithaus, M. R., Wintner, S. P., Wetherbee, B. M., and Shivji, M. S. (2016). Global population genetic dynamics of a highly migratory, apex predator shark. Molecular Ecology 25, 5312–5329.
Global population genetic dynamics of a highly migratory, apex predator shark.Crossref | GoogleScholarGoogle Scholar | 27662523PubMed |

Blaber, S. J. M., Dichmont, C. M., Buckworth, R. C., Sumiono, B., Nurhakim, S., Iskandar, B., Fegan, B., Ramm, D. C., and Salini, J. P. (2005). Shared stocks of snappers (Lutjanidae) in Australia and Indonesia: integrating biology, population dynamics and socio-economics to examine management scenarios. Reviews in Fish Biology and Fisheries 15, 111–127.
Shared stocks of snappers (Lutjanidae) in Australia and Indonesia: integrating biology, population dynamics and socio-economics to examine management scenarios.Crossref | GoogleScholarGoogle Scholar |

Blower, D. C., Pandolfi, J. M., Bruce, B. D., Gomez-Cabrera, M. D. C., and Ovenden, J. R. (2012). Population genetics of Australian white sharks reveals fine-scale spatial structure, transoceanic dispersal events and low effective population sizes. Marine Ecology Progress Series 455, 229–244.
Population genetics of Australian white sharks reveals fine-scale spatial structure, transoceanic dispersal events and low effective population sizes.Crossref | GoogleScholarGoogle Scholar |

Bond, M. E., Tolentino, E., Mangubhai, S., and Howey, L. A. (2015). Vertical and horizontal movements of a silvertip shark (Carcharhinus albimarginatus) in the Fijian archipelago. Animal Biotelemetry 3, 1–7.
Vertical and horizontal movements of a silvertip shark (Carcharhinus albimarginatus) in the Fijian archipelago.Crossref | GoogleScholarGoogle Scholar |

Catchen, J., Hohenlohe, P. A., Bassham, S., Amores, A., and Cresko, W. A. (2013). Stacks: an analysis tool set for population genomics. Molecular Ecology 22, 3124–3140.
Stacks: an analysis tool set for population genomics.Crossref | GoogleScholarGoogle Scholar | 23701397PubMed |

Chabot, C. L., and Allen, L. G. (2009). Global population structure of the tope (Galeorhinus galeus) inferred by mitochondrial control region sequence data. Molecular Ecology 18, 545–552.
Global population structure of the tope (Galeorhinus galeus) inferred by mitochondrial control region sequence data.Crossref | GoogleScholarGoogle Scholar | 19161473PubMed |

Chapman, D. D., Pikitch, E. K., Babcock, E., and Shivji, M. S. (2005). Marine reserve design and evaluation using automated acoustic telemetry: a case-study involving coral reef-associated sharks in the Mesoamerican Caribbean. Marine Technology Society Journal 39, 42–55.
Marine reserve design and evaluation using automated acoustic telemetry: a case-study involving coral reef-associated sharks in the Mesoamerican Caribbean.Crossref | GoogleScholarGoogle Scholar |

Chapman, D. D., Feldheim, K. A., Papastamatiou, Y. P., and Hueter, R. E. (2015). There and back again: a review of residency and return migrations in sharks, with implications for population structure and management. Annual Review of Marine Science 7, 547–570.
There and back again: a review of residency and return migrations in sharks, with implications for population structure and management.Crossref | GoogleScholarGoogle Scholar | 25251267PubMed |

Chin, A., Simpfendorfer, C. A., White, W. T., Johnson, G. J., McAuley, R. B., and Heupel, M. R. (2017). Crossing lines: a multidisciplinary framework for assessing connectivity of hammerhead sharks across jurisdictional boundaries. Scientific Reports 7, 1–14.
Crossing lines: a multidisciplinary framework for assessing connectivity of hammerhead sharks across jurisdictional boundaries.Crossref | GoogleScholarGoogle Scholar |

Coates, B. S., Sumerford, D. V., Miller, N. J., Kim, K. S., Sappington, T. W., Siegfried, B. D., and Lewis, L. C. (2009). Comparative performance of single nucleotide polymorphism and microsatellite markers for population genetic analysis. The Journal of Heredity 100, 556–564.
Comparative performance of single nucleotide polymorphism and microsatellite markers for population genetic analysis.Crossref | GoogleScholarGoogle Scholar | 19525239PubMed |

Corrigan, S., Huveneers, C., Stow, A., and Beheregaray, L. B. (2016). A multilocus comparative study of dispersal in three codistributed demersal sharks from eastern Australia. Canadian Journal of Fisheries and Aquatic Sciences 73, 406–415.
A multilocus comparative study of dispersal in three codistributed demersal sharks from eastern Australia.Crossref | GoogleScholarGoogle Scholar |

Cowen, R. K., Paris, C. B., and Srinivasan, A. (2006). Scaling of connectivity in marine populations. Science 311, 522–527.
Scaling of connectivity in marine populations.Crossref | GoogleScholarGoogle Scholar | 16357224PubMed |

Daly-Engel, T. S., Seraphin, K. D., Holland, K. N., Coffey, J. P., Nance, H. A., Toonen, R. J., and Bowen, B. W. (2012). Global phylogeography with mixed-marker analysis reveals male-mediated dispersal in the endangered scalloped hammerhead shark (Sphyrna lewini). PLoS One 7, e29986.
Global phylogeography with mixed-marker analysis reveals male-mediated dispersal in the endangered scalloped hammerhead shark (Sphyrna lewini).Crossref | GoogleScholarGoogle Scholar | 22253848PubMed |

Devloo-Delva, F., Maes, G. E., Hernández, S. I., Mcallister, J. D., Gunasekera, R. M., Grewe, P. M., Thomson, R. B., and Feutry, P. (2019). Accounting for kin sampling reveals genetic connectivity in Tasmanian and New Zealand school sharks, Galeorhinus galeus. Ecology and Evolution. [Published online early 1 April 2019]10.1002/ECE3.5012

Dudgeon, C. L., Broderick, D., and Ovenden, J. R. (2009). IUCN classification zones concord with, but underestimate, the population genetic structure of the zebra shark Stegostoma fasciatum in the Indo-West Pacific. Molecular Ecology 18, 248–261.
IUCN classification zones concord with, but underestimate, the population genetic structure of the zebra shark Stegostoma fasciatum in the Indo-West Pacific.Crossref | GoogleScholarGoogle Scholar | 19192179PubMed |

Dudgeon, C. L., Lanyon, J. M., and Semmens, J. M. (2013). Seasonality and site fidelity of the zebra shark, Stegostoma fasciatum, in southeast Queensland, Australia. Animal Behaviour 85, 471–481.
Seasonality and site fidelity of the zebra shark, Stegostoma fasciatum, in southeast Queensland, Australia.Crossref | GoogleScholarGoogle Scholar |

Elbers, J. P., Clostio, R. W., and Taylor, S. S. (2017). Population genetic inferences using immune gene SNPs mirror patterns inferred by microsatellites. Molecular Ecology Resources 17, 481–491.
Population genetic inferences using immune gene SNPs mirror patterns inferred by microsatellites.Crossref | GoogleScholarGoogle Scholar | 27488693PubMed |

Elshire, R. J., Glaubitz, J. C., Sun, Q., Poland, J. A., Kawamoto, K., Buckler, E. S., and Mitchell, S. E. (2011). A robust, simple genotyping-by-sequencing (GBS) approach for high diversity species. PLoS One 6, e19379.
A robust, simple genotyping-by-sequencing (GBS) approach for high diversity species.Crossref | GoogleScholarGoogle Scholar | 21573248PubMed |

Espinoza, M., Cappo, M., Heupel, M. R., Tobin, A. J., and Simpfendorfer, C. A. (2014). Quantifying shark distribution patterns and species-habitat associations: implications of marine park zoning. PLoS One 9, e106885.
Quantifying shark distribution patterns and species-habitat associations: implications of marine park zoning.Crossref | GoogleScholarGoogle Scholar | 25412469PubMed |

Espinoza, M., Heupel, M. R., Tobin, A. J., and Simpfendorfer, C. A. (2015a). Movement patterns of silvertip sharks (Carcharhinus albimarginatus) on coral reefs. Coral Reefs 34, 807–821.
Movement patterns of silvertip sharks (Carcharhinus albimarginatus) on coral reefs.Crossref | GoogleScholarGoogle Scholar |

Espinoza, M., Lédée, E. J. I., Simpfendorfer, C. A., Tobin, A. J., and Heupel, M. R. (2015b). Contrasting movements and connectivity of reef-associated sharks using acoustic telemetry: implications for management. Ecological Applications 25, 2101–2118.
Contrasting movements and connectivity of reef-associated sharks using acoustic telemetry: implications for management.Crossref | GoogleScholarGoogle Scholar | 26910942PubMed |

Espinoza, M., Gonzalez-Medina, E., Dulvy, N. K., and Pillans, R. D. (2016). Silvertip shark Carcharhinus albimarginatus. In ‘The IUCN Red List of Threatened Species 2016’, e.T161526A68611084. (International Union for Conservation of Nature and Natural Resources.) Available at https://www.iucnredlist.org/species/161526/68611084 [Verified 13 February 2019].

Excoffier, L., and Heckel, G. (2006). Computer programs for population genetics data analysis: a survival guide. Nature Reviews. Genetics 7, 745–758.
Computer programs for population genetics data analysis: a survival guide.Crossref | GoogleScholarGoogle Scholar | 16924258PubMed |

Excoffier, L., and Lischer, H. E. L. (2010). Arlequin suite ver 3.5: a new series of programs to perform population genetics analyses under Linux and Windows. Molecular Ecology Resources 10, 564–567.
Arlequin suite ver 3.5: a new series of programs to perform population genetics analyses under Linux and Windows.Crossref | GoogleScholarGoogle Scholar | 21565059PubMed |

Falush, D., Stephens, M., and Pritchard, J. K. (2003). Inference of population structure using multilocus genotype data: linked loci and correlated allele frequencies. Genetics Society of America 164, 1567–1587.
Inference of population structure using multilocus genotype data: linked loci and correlated allele frequencies.Crossref | GoogleScholarGoogle Scholar |

Feldheim, K. A., Stow, A. J., Ahonen, H., Chapman, D. D., Shivji, M. S., Peddemors, V., and Wintner, S. (2007). Polymorphic microsatellite markers for studies of the conservation and reproductive genetics of imperilled sand tiger sharks (Carcharias taurus). Molecular Ecology Notes 7, 1366–1368.
Polymorphic microsatellite markers for studies of the conservation and reproductive genetics of imperilled sand tiger sharks (Carcharias taurus).Crossref | GoogleScholarGoogle Scholar |

Feutry, P., Berry, O., Kyne, P. M., Pillans, R. D., Hillary, R. M., Grewe, P. M., Marthick, J. R., Johnson, G., Gunasekera, R. M., Bax, N. J., and Bravington, M. (2017). Inferring contemporary and historical genetic connectivity from juveniles. Molecular Ecology 26, 444–456.
Inferring contemporary and historical genetic connectivity from juveniles.Crossref | GoogleScholarGoogle Scholar | 27864912PubMed |

Geraghty, P. T., Williamson, J. E., Macbeth, W. G., Blower, D. C., Morgan, J. A., Johnson, G., Ovenden, J. R., and Gillings, M. R. (2014). Genetic structure and diversity of two highly vulnerable carcharhinids in Australian waters. Endangered Species Research 24, 45–60.
Genetic structure and diversity of two highly vulnerable carcharhinids in Australian waters.Crossref | GoogleScholarGoogle Scholar |

Gruber, B., Unmack, P. J., Berry, O. F., and Georges, A. (2018). dartR: an R package to facilitate analysis of SNP data generated from reduced representation genome sequencing. Molecular Ecology Resources 18, 691–699.
dartR: an R package to facilitate analysis of SNP data generated from reduced representation genome sequencing.Crossref | GoogleScholarGoogle Scholar | 29266847PubMed |

Hamblin, M. T., Warburton, M. L., and Buckler, E. S. (2007). Empirical comparison of simple sequence repeats and single nucleotide polymorphisms in assessment of maize diversity and relatedness. PLoS One 2, e1367.
Empirical comparison of simple sequence repeats and single nucleotide polymorphisms in assessment of maize diversity and relatedness.Crossref | GoogleScholarGoogle Scholar | 18159250PubMed |

Hays, G. C., Ferreira, L. C., Sequeira, A. M., Meekan, M. G., Duarte, C. M., Bailey, H., Bailleul, F., Bowen, W. D., Caley, M. J., Costa, D. P., and Eguíluz, V. M. (2016). Key questions in marine megafauna movement ecology. Trends in Ecology & Evolution 31, 463–475.
Key questions in marine megafauna movement ecology.Crossref | GoogleScholarGoogle Scholar |

Hellberg, M. E., Burton, R. S., Neigel, J. E., and Palumbi, S. R. (2002). Genetic assesment of connectivity among marine populations. Bulletin of Marine Science 70, 273–290.

Hellmann, J. K., Sovic, M. G., Gibbs, H. L., Reddon, A. R., O’Connor, C. M., Ligocki, I. Y., Marsh‐Rollo, S., Balshine, S., and Hamilton, I. M. (2016). Within-group relatedness is correlated with colony-level social structure and reproductive sharing in a social fish. Molecular Ecology 25, 4001–4013.
Within-group relatedness is correlated with colony-level social structure and reproductive sharing in a social fish.Crossref | GoogleScholarGoogle Scholar | 27297293PubMed |

Hess, J. E., Matala, A. P., and Narum, S. R. (2011). Comparison of SNPs and microsatellites for fine-scale application of genetic stock identification of Chinook salmon in the Columbia River Basin. Molecular Ecology Resources 11, 137–149.
Comparison of SNPs and microsatellites for fine-scale application of genetic stock identification of Chinook salmon in the Columbia River Basin.Crossref | GoogleScholarGoogle Scholar | 21429170PubMed |

Heupel, M. R., Williams, A. J., Welch, D. J., Ballagh, A., Mapstone, B. D., Carlos, G., Davies, C., and Simpfendorfer, C. A. (2009). Effects of fishing on tropical reef associated shark populations on the Great Barrier Reef. Fisheries Research 95, 350–361.
Effects of fishing on tropical reef associated shark populations on the Great Barrier Reef.Crossref | GoogleScholarGoogle Scholar |

Heupel, M. R., Simpfendorfer, C. A., and Fitzpatrick, R. (2010). Large-scale movement and reef fidelity of grey reef sharks. PLoS One 5, e9650.
Large-scale movement and reef fidelity of grey reef sharks.Crossref | GoogleScholarGoogle Scholar | 20224793PubMed |

Hillary, R. M., Bravington, M. V., Patterson, T. A., Grewe, P., Bradford, R., Feutry, P., Gunasekera, R., Peddemors, V., Werry, J., Francis, M. P., and Duffy, C. A. J. (2018). Genetic relatedness reveals total population size of white sharks in eastern Australia and New Zealand. Scientific Reports 8, 2661.
Genetic relatedness reveals total population size of white sharks in eastern Australia and New Zealand.Crossref | GoogleScholarGoogle Scholar | 29422513PubMed |

Holmes, B. J., Williams, S. M., Otway, N. M., Nielsen, E. E., Maher, S. L., Bennett, M. B., and Ovenden, J. R. (2017). Population structure and connectivity of tiger sharks (Galeocerdo cuvier) across the Indo-Pacific Ocean basin. Royal Society Open Science 4, 170309.
Population structure and connectivity of tiger sharks (Galeocerdo cuvier) across the Indo-Pacific Ocean basin.Crossref | GoogleScholarGoogle Scholar | 29291060PubMed |

Horne, J. B., Momigliano, P., Welch, D. J., Newman, S. J., and Van Herwerden, L. (2011). Limited ecological population connectivity suggests low demands on self-recruitment in a tropical inshore marine fish (Eleutheronema tetradactylum: Polynemidae). Molecular Ecology 20, 2291–2306.
Limited ecological population connectivity suggests low demands on self-recruitment in a tropical inshore marine fish (Eleutheronema tetradactylum: Polynemidae).Crossref | GoogleScholarGoogle Scholar | 21518062PubMed |

Jeffries, D. L., Copp, G. H., Lawson Handley, L., Olsén, K. H., Sayer, C. D., and Hänfling, B. (2016). Comparing RADseq and microsatellites to infer complex phylogeographic patterns, an empirical perspective in the Crucian carp, Carassius carassius. Molecular Ecology 25, 2997–3018.
Comparing RADseq and microsatellites to infer complex phylogeographic patterns, an empirical perspective in the Crucian carp, Carassius carassius.Crossref | GoogleScholarGoogle Scholar | 26971882PubMed |

Jombart, T. (2008). adegenet: a R package for the multivariate analysis of genetic markers. Bioinformatics 24, 1403–1405.
adegenet: a R package for the multivariate analysis of genetic markers.Crossref | GoogleScholarGoogle Scholar | 18397895PubMed |

Jombart, T., Devillard, S., and Balloux, F. (2010). Discriminant analysis of principal components: a new method for the analysis of genetically structured populations. BMC Genetics 11, 94.
Discriminant analysis of principal components: a new method for the analysis of genetically structured populations.Crossref | GoogleScholarGoogle Scholar | 20950446PubMed |

Karl, S. A., Castro, A. L. F., Lopez, J. A., Charvet, P., and Burgess, G. H. (2011). Phylogeography and conservation of the bull shark (Carcharhinus leucas) inferred from mitochondrial and microsatellite DNA. Conservation Genetics 12, 371–382.
Phylogeography and conservation of the bull shark (Carcharhinus leucas) inferred from mitochondrial and microsatellite DNA.Crossref | GoogleScholarGoogle Scholar |

Karl, S. A., Castro, A. L. F., and Garla, R. C. (2012). Population genetics of the nurse shark (Ginglymostoma cirratum) in the western Atlantic. Marine Biology 159, 489–498.
Population genetics of the nurse shark (Ginglymostoma cirratum) in the western Atlantic.Crossref | GoogleScholarGoogle Scholar |

Keenan, K., McGinnity, P., Cross, T. F., Crozier, W. W., and Prodöhl, P. A. (2013). diveRsity: an R package for the estimation and exploration of population genetics parameters and their associated errors. Methods in Ecology and Evolution 4, 782–788.
diveRsity: an R package for the estimation and exploration of population genetics parameters and their associated errors.Crossref | GoogleScholarGoogle Scholar |

Keeney, D. B., Heupel, M. R., Hueter, R. E., and Heist, E. J. (2003). Genetic heterogeneity among blacktip shark, Carcharhinus limbatus, continental nurseries along the US Atlantic and Gulf of Mexico. Marine Biology 143, 1039–1046.
Genetic heterogeneity among blacktip shark, Carcharhinus limbatus, continental nurseries along the US Atlantic and Gulf of Mexico.Crossref | GoogleScholarGoogle Scholar |

Knaus, B. J., and Grünwald, N. J. (2017). vcfr : a package to manipulate and visualize variant call format data in R. Molecular Ecology Resources 17, 44–53.
vcfr : a package to manipulate and visualize variant call format data in R.Crossref | GoogleScholarGoogle Scholar | 27401132PubMed |

Knutsen, H., Jorde, P. E., Andre, C., and Stenseth, N. C. (2003). Fine-scaled geographical population structuring in a highly mobile marine species: the Atlantic cod. Molecular Ecology 12, 385–394.
Fine-scaled geographical population structuring in a highly mobile marine species: the Atlantic cod.Crossref | GoogleScholarGoogle Scholar | 12535089PubMed |

Kumoru, L. (2003). The shark longline fishery in Papua New Guinea. In ‘Proceedings of the Billfish and By-catch Research Group, 176th Meeting of the Standing Committee on Tuna and Billfish’, 9–16 July 2003, Moloolaba, Qld, Australia. pp. 1–5. (National Fisheries Authority: Port Moresby, Papua New Guinea.)

Last, P. R., and Stevens, J. D. (2009). ‘Sharks and Rays of Australia’, 2nd edn. (CSIRO Publishing: Melbourne, Vic., Australia.)

Latch, E. K., Dharmarajan, G., Glaubitz, J. C., and Rhodes, O. E. (2006). Relative performance of Bayesian clustering software for inferring population substructure and individual assignment at low levels of population differentiation. Conservation Genetics 7, 295–302.
Relative performance of Bayesian clustering software for inferring population substructure and individual assignment at low levels of population differentiation.Crossref | GoogleScholarGoogle Scholar |

Liu, N., Chen, L., Wang, S., Oh, C., and Zhao, H. (2005). Comparison of single-nucleotide polymorphisms and microsatellites in inference of population structure. BMC Genetics 6, S26.
Comparison of single-nucleotide polymorphisms and microsatellites in inference of population structure.Crossref | GoogleScholarGoogle Scholar | 16451635PubMed |

Liu, S. Y. V., Chan, C. L. C., Lin, O., Hu, C. S., and Chen, C. A. (2013). DNA barcoding of shark meats identify species composition and CITES-listed species from the markets in Taiwan. PLoS One 8, e79373.
DNA barcoding of shark meats identify species composition and CITES-listed species from the markets in Taiwan.Crossref | GoogleScholarGoogle Scholar |

Lowe, C. G., Wetherbee, B. M., and Meyer, C. G. (2006). Using acoustic telemetry monitoring techniques to quantify movement patterns and site fidelity of sharks and giant trevally around French Frigate shoals and Midway Atoll. Research Bulletin (International Commission for the Northwest Atlantic Fisheries) 543, 281–303.

Marshall, L. (2011). The fin blue line, quantifying fishing mortality using shark fin morphology. Ph.D. Thesis, University of Tasmania, Australia.

McKibben, J. N., and Nelson, D. (1986). Patterns of movement and grouping of grey reef sharks, Carcharhinus amblyrhynchos, at Enewetak, Marshall Islands. Bulletin of Marine Science 38, 89–110.

Momigliano, P., Harcourt, R., Robbins, W. D., and Stow, A. (2015). Connectivity in grey reef sharks (Carcharhinus amblyrhynchos) determined using empirical and simulated genetic data. Scientific Reports 5, 13229.
Connectivity in grey reef sharks (Carcharhinus amblyrhynchos) determined using empirical and simulated genetic data.Crossref | GoogleScholarGoogle Scholar | 26314287PubMed |

Momigliano, P., Harcourt, R., Robbins, W. D., Jaiteh, V., Mahardika, G. N., Sembiring, A., and Stow, A. (2017). Genetic structure and signatures of selection in grey reef sharks (Carcharhinus amblyrhynchos). Heredity 119, 142–153.
Genetic structure and signatures of selection in grey reef sharks (Carcharhinus amblyrhynchos).Crossref | GoogleScholarGoogle Scholar | 28422134PubMed |

Morin, P. A., Luikart, G., and Wayne, R. K. (2004). SNPs in ecology, evolution and conservation. Trends in Ecology & Evolution 19, 208–216.
SNPs in ecology, evolution and conservation.Crossref | GoogleScholarGoogle Scholar |

Narum, S. R., Banks, M., Beacham, T. D., Bellinger, M. R., Campbell, M. R., Dekoning, J., Elz, A., Guthrie Iii, C. M., Kozfkay, C., Miller, K. M., and Moran, P. (2008). Differentiating salmon populations at broad and fine geographical scales with microsatellites and single nucleotide polymorphisms. Molecular Ecology 17, 3464–3477.
Differentiating salmon populations at broad and fine geographical scales with microsatellites and single nucleotide polymorphisms.Crossref | GoogleScholarGoogle Scholar | 19160476PubMed |

Nielsen, E. E., Hemmer-Hansen, J., Larsen, P. F., and Bekkevold, D. (2009). Population genomics of marine fishes: identifying adaptive variation in space and time. Molecular Ecology 18, 3128–3150.
Population genomics of marine fishes: identifying adaptive variation in space and time.Crossref | GoogleScholarGoogle Scholar | 19627488PubMed |

Osgood, G. J., and Baum, J. K. (2015). Reef sharks: recent advances in ecological understanding to inform conservation. Journal of Fish Biology 87, 1489–1523.
Reef sharks: recent advances in ecological understanding to inform conservation.Crossref | GoogleScholarGoogle Scholar | 26709218PubMed |

Ovenden, J. R., Kashiwagi, T., Broderick, D., Giles, J., and Salini, J. (2009). The extent of population genetic subdivision differs among four co-distributed shark species in the Indo-Australian archipelago. BMC Evolutionary Biology 9, 40.
The extent of population genetic subdivision differs among four co-distributed shark species in the Indo-Australian archipelago.Crossref | GoogleScholarGoogle Scholar | 19216767PubMed |

Ovenden, J. R., Berry, O., Welch, D. J., Buckworth, R. C., and Dichmont, C. M. (2015). Ocean’s eleven: a critical evaluation of the role of population, evolutionary and molecular genetics in the management of wild fisheries. Fish and Fisheries 16, 125–159.
Ocean’s eleven: a critical evaluation of the role of population, evolutionary and molecular genetics in the management of wild fisheries.Crossref | GoogleScholarGoogle Scholar |

Palumbi, S. R. (2003). Population genetics, demographic connectivity, and the design of marine reserves. Ecological Applications 13, 146–158.
Population genetics, demographic connectivity, and the design of marine reserves.Crossref | GoogleScholarGoogle Scholar |

Pardini, A. T., Jones, C. S., Noble, L. R., Kreiser, B., Malcolm, H., Bruce, B. D., Stevens, J. D., Cliff, G., Scholl, M. C., Francis, M., and Duffy, C. A. (2001). Sex-biased dispersal of great white sharks. Nature 412, 139–140.
Sex-biased dispersal of great white sharks.Crossref | GoogleScholarGoogle Scholar | 11449258PubMed |

Pazmiño, D. A., Maes, G. E., Simpfendorfer, C. A., Salinas-de-León, P., and van Herwerden, L. (2017). Genome-wide SNPs reveal low effective population size within confined management units of the highly vagile Galapagos shark (Carcharhinus galapagensis). Conservation Genetics 18, 1151–1163.
Genome-wide SNPs reveal low effective population size within confined management units of the highly vagile Galapagos shark (Carcharhinus galapagensis).Crossref | GoogleScholarGoogle Scholar |

Pazmiño, D. A., Maes, G. E., Green, M. E., Simpfendorfer, C. A., Hoyos-Padilla, E. M., Duffy, C. J., Meyer, C. G., Kerwath, S. E., Salinas-de-León, P., and van Herwerden, L. (2018). Strong trans-Pacific break and local conservation units in the Galapagos shark (Carcharhinus galapagensis) revealed by genome-wide cytonuclear markers. Heredity 120, 407–421.
Strong trans-Pacific break and local conservation units in the Galapagos shark (Carcharhinus galapagensis) revealed by genome-wide cytonuclear markers.Crossref | GoogleScholarGoogle Scholar | 29321624PubMed |

Pembleton, L. W., Cogan, N. O. I., and Forster, J. W. (2013). StAMPP: an R package for calculation of genetic differentiation and structure of mixed-ploidy level populations. Molecular Ecology Resources 13, 946–952.
StAMPP: an R package for calculation of genetic differentiation and structure of mixed-ploidy level populations.Crossref | GoogleScholarGoogle Scholar | 23738873PubMed |

Peterson, B. K., Weber, J. N., Kay, E. H., Fisher, H. S., and Hoekstra, H. E. (2012). Double digest RADseq: an inexpensive method for de novo SNP discovery and genotyping in model and non-model species. PLoS One 7, e37135.
Double digest RADseq: an inexpensive method for de novo SNP discovery and genotyping in model and non-model species.Crossref | GoogleScholarGoogle Scholar | 22675423PubMed |

Pritchard, J. K., Stephens, M., and Donnelly, P. (2000). Inference of population structure using multilocus genotype data. Genetics 155, 945–959.
| 10835412PubMed |

Rašić, G., Filipovic, I., Weeks, A. R., and Hoffmann, A. A. (2014). Genome-wide SNPs lead to strong signals of geographic structure and relatedness patterns in the major arbovirus vector, Aedes aegypti. BMC Genomics 15, –275.
Genome-wide SNPs lead to strong signals of geographic structure and relatedness patterns in the major arbovirus vector, Aedes aegypti.Crossref | GoogleScholarGoogle Scholar | 24726019PubMed |

Raymond, M., and Rousset, F. (1995). GENEPOP (version 1.2): population genetics software for exact tests and ecumenicism. The Journal of Heredity 86, 248–249.
GENEPOP (version 1.2): population genetics software for exact tests and ecumenicism.Crossref | GoogleScholarGoogle Scholar |

Rice, W. (1989). Analyzing tables of statistical tests. Evolution 43, 223–225.
Analyzing tables of statistical tests.Crossref | GoogleScholarGoogle Scholar | 28568501PubMed |

Rosenberg, N. A., Li, L. M., Ward, R., and Pritchard, J. K. (2003). Informativeness of genetic markers for inference of ancestry. American Journal of Human Genetics 73, 1402–1422.
Informativeness of genetic markers for inference of ancestry.Crossref | GoogleScholarGoogle Scholar | 14631557PubMed |

Ryman, N., and Palm, S. (2006). POWSIM: a computer program for assessing statistical power when testing for genetic differentiation. Molecular Ecology 6, 600–602.
POWSIM: a computer program for assessing statistical power when testing for genetic differentiation.Crossref | GoogleScholarGoogle Scholar |

Salini, J. P., Ovenden, J. R., Street, R., Pendrey, R., Haryanti, A., and Ngurah, A. (2006). Genetic population structure of red snappers (Lutjanus malabaricus Bloch & Schneider, 1801 and Lutjanus erythropterus Bloch, 1790) in central and eastern Indonesia and northern Australia. Journal of Fish Biology 68, 217–234.
Genetic population structure of red snappers (Lutjanus malabaricus Bloch & Schneider, 1801 and Lutjanus erythropterus Bloch, 1790) in central and eastern Indonesia and northern Australia.Crossref | GoogleScholarGoogle Scholar |

Sansaloni, C., Petroli, C., Jaccoud, D., Carling, J., Detering, F., Grattapaglia, D., and Kilian, A. (2011). Diversity arrays technology (DArT) and next-generation sequencing combined: genome-wide, high throughput, highly informative genotyping for molecular breeding of Eucalyptus. BMC Proceedings 5, P54.
Diversity arrays technology (DArT) and next-generation sequencing combined: genome-wide, high throughput, highly informative genotyping for molecular breeding of Eucalyptus.Crossref | GoogleScholarGoogle Scholar |

Schwartz, M. K., and McKelvey, K. S. (2009). Why sampling scheme matters: The effect of sampling scheme on landscape genetic results. Conservation Genetics 10, 441–452.
Why sampling scheme matters: The effect of sampling scheme on landscape genetic results.Crossref | GoogleScholarGoogle Scholar |

Selkoe, K. A., and Toonen, R. J. (2006). Microsatellites for ecologists: a practical guide to using and evaluating microsatellite markers. Ecology Letters 9, 615–629.
Microsatellites for ecologists: a practical guide to using and evaluating microsatellite markers.Crossref | GoogleScholarGoogle Scholar | 16643306PubMed |

Smart, J. J., Chin, A., Baje, L., Tobin, A. J., Simpfendorfer, C. A., and White, W. T. (2017a). Life history of the silvertip shark Carcharhinus albimarginatus from Papua New Guinea. Coral Reefs 36, 577–588.
Life history of the silvertip shark Carcharhinus albimarginatus from Papua New Guinea.Crossref | GoogleScholarGoogle Scholar |

Smart, J. J., Chin, A., Tobin, A. J., White, W. T., Kumasi, B., and Simpfendorfer, C. A. (2017b). Stochastic demographic analyses of the silvertip shark (Carcharhinus albimarginatus) and the common blacktip shark (Carcharhinus limbatus) from the Indo-Pacific. Fisheries Research 191, 95–107.
Stochastic demographic analyses of the silvertip shark (Carcharhinus albimarginatus) and the common blacktip shark (Carcharhinus limbatus) from the Indo-Pacific.Crossref | GoogleScholarGoogle Scholar |

Thompson, E. A. (2013). Identity by descent: variation in meiosis, across genomes, and in populations. Genetics 194, 301–326.
Identity by descent: variation in meiosis, across genomes, and in populations.Crossref | GoogleScholarGoogle Scholar | 23733848PubMed |

Van Oosterhout, C., Hutchinson, W. F., Wills, D. P. M., and Shipley, P. (2004). MICRO-CHECKER: software for identifying and correcting genotyping errors in microsatellite data. Molecular Ecology Notes 4, 535–538.
MICRO-CHECKER: software for identifying and correcting genotyping errors in microsatellite data.Crossref | GoogleScholarGoogle Scholar |

Vendrami, D. L., Telesca, L., Weigand, H., Weiss, M., Fawcett, K., Lehman, K., Clark, M. S., Leese, F., McMinn, C., Moore, H., and Hoffman, J. I. (2017). RAD sequencing resolves fine-scale population structure in a benthic invertebrate: implications for understanding phenotypic plasticity. Royal Society Open Science 4, 160548.
RAD sequencing resolves fine-scale population structure in a benthic invertebrate: implications for understanding phenotypic plasticity.Crossref | GoogleScholarGoogle Scholar | 28386419PubMed |

Veríssimo, A., McDowell, J. R., and Graves, J. E. (2010). Global population structure of the spiny dogfish Squalus acanthias, a temperate shark with an antitropical distribution. Molecular Ecology 19, 1651–1662.
Global population structure of the spiny dogfish Squalus acanthias, a temperate shark with an antitropical distribution.Crossref | GoogleScholarGoogle Scholar | 20345677PubMed |

Verissimo, A., Grubbs, D., McDowell, J., Musick, J., and Portnoy, D. (2011). Frequency of multiple paternity in the spiny dogfish Squalus acanthias in the western North Atlantic. The Journal of Heredity 102, 88–93.
Frequency of multiple paternity in the spiny dogfish Squalus acanthias in the western North Atlantic.Crossref | GoogleScholarGoogle Scholar | 20650933PubMed |

Vignaud, T. M., Maynard, J. A., Leblois, R., Meekan, M. G., Vázquez‐Juárez, R., Ramírez‐Macías, D., Pierce, S. J., Rowat, D., Berumen, M. L., Beeravolu, C., and Baksay, S. (2014). Genetic structure of populations of whale sharks among ocean basins and evidence for their historic rise and recent decline. Molecular Ecology 23, 2590–2601.
Genetic structure of populations of whale sharks among ocean basins and evidence for their historic rise and recent decline.Crossref | GoogleScholarGoogle Scholar | 24750370PubMed |

Wang, J. (2017). The computer program structure for assigning individuals to populations: easy to use but easier to misuse. Molecular Ecology Resources 17, 981–990.
The computer program structure for assigning individuals to populations: easy to use but easier to misuse.Crossref | GoogleScholarGoogle Scholar | 28028941PubMed |

Waples, R. S. (1998). Separating the wheat from the chaff patterns of genetic differentiation in high gene flow species. The Journal of Heredity 89, 438–450.
Separating the wheat from the chaff patterns of genetic differentiation in high gene flow species.Crossref | GoogleScholarGoogle Scholar |

Waples, R. S., and Anderson, E. C. (2017). Purging putative siblings from population genetic data sets: A cautionary view. Molecular Ecology 26, 1211–1224.
Purging putative siblings from population genetic data sets: A cautionary view.Crossref | GoogleScholarGoogle Scholar | 28099771PubMed |

White, W. T. (2007). Catch composition and reproductive biology of whaler sharks (Carcharhiniformes: Carcharhinidae) caught by fisheries in Indonesia. Journal of Fish Biology 71, 1512–1540.
Catch composition and reproductive biology of whaler sharks (Carcharhiniformes: Carcharhinidae) caught by fisheries in Indonesia.Crossref | GoogleScholarGoogle Scholar |

Whitney, N. M., Pyle, R. L., Holland, K. N., and Barcz, J. T. (2012). Movements, reproductive seasonality, and fisheries interactions in the whitetip reef shark (Triaenodon obesus) from community-contributed photographs. Environmental Biology of Fishes 93, 121–136.
Movements, reproductive seasonality, and fisheries interactions in the whitetip reef shark (Triaenodon obesus) from community-contributed photographs.Crossref | GoogleScholarGoogle Scholar |