Register      Login
Marine and Freshwater Research Marine and Freshwater Research Society
Advances in the aquatic sciences
RESEARCH ARTICLE

Effect of climate change on crustose coralline algae at a temperate vent site, White Island, New Zealand

T. J. Brinkman A and A. M. Smith A B
+ Author Affiliations
- Author Affiliations

A Department of Marine Science, University of Otago, PO Box 56, Dunedin 9054, New Zealand.

B Corresponding author. Email: abby.smith@otago.ac.nz

Marine and Freshwater Research 66(4) 360-370 https://doi.org/10.1071/MF14077
Submitted: 18 March 2014  Accepted: 22 September 2014   Published: 9 December 2014

Abstract

Natural CO2 vents allow study of the effects of climate change on marine organisms on a different scale from laboratory-based studies. This study outlines a preliminary investigation into the suitability of natural CO2 vents near White Island, Bay of Plenty, New Zealand (37°31.19′S, 117°10.85′E) for climate change research by characterising water chemistry from two vent and three control locations on a seasonal basis, as well as examining their effects on skeletons of the local calcifying crustose coralline algae. pH measurements at vent sites, calculated from dissolved inorganic carbon and alkalinity, showed reduced mean pH levels (7.49 and 7.85) relative to background levels of 8.06, whereas mean temperatures were between 0.0 and 0.4°C above control. Increases in sulfur and mercury at sites near White Island were probably a result of volcanic unrest. Crustose coralline algae did not show significant variability in skeletal Mg-calcite geochemistry, but qualitative comparisons of calcite skeletons under scanning electron microscopy saw greater deformation and dissolution in coralline algae calcite crystals from vent sites compared to controls. Although additional monitoring of pH fluctuations and hydrogen sulphides is still needed, the low pH and increased temperatures indicate potential for studying multistressor effects of projected climate changes in a natural environment.

Additional keywords: CO2 vents, mineralogy, ocean acidification.


References

Adey, W. H., and Macintyre, I. G. (1973). Crustose coralline algae: a re-evaluation in the geological sciences. Geological Society of America Bulletin 84, 883–904.
Crustose coralline algae: a re-evaluation in the geological sciences.Crossref | GoogleScholarGoogle Scholar |

Andersson, A., Mackenzie, F., and Bates, N. (2008). Life on the margin: implications of ocean acidification on Mg-calcite, high latitude and cold-water marine calcifiers. Marine Ecology Progress Series 373, 265–273.
Life on the margin: implications of ocean acidification on Mg-calcite, high latitude and cold-water marine calcifiers.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1MXisVCrs7Y%3D&md5=2de53e66febf27dbca5283b7b28dd8bfCAS |

Borowitzka, M. A. (1981). Photosynthesis and calcification in the articulated coralline red algae Amphiroa anceps and A. foliacea. Marine Biology 62, 17–23.
Photosynthesis and calcification in the articulated coralline red algae Amphiroa anceps and A. foliacea.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaL3MXhvVyrsLw%3D&md5=e7f7bc44cd9c53a38231dad3a48b0eb7CAS |

Caldeira, K., and Wickett, M. E. (2005). Ocean model predictions of chemistry changes from carbon dioxide emissions to the atmosphere and ocean. Journal of Geophysical Research 110, C09S04.
Ocean model predictions of chemistry changes from carbon dioxide emissions to the atmosphere and ocean.Crossref | GoogleScholarGoogle Scholar |

Cao, L., and Caldeira, K. (2008). Atmospheric CO2 stabilization and ocean acidification. Geophysical Research Letters 35, L19609.
Atmospheric CO2 stabilization and ocean acidification.Crossref | GoogleScholarGoogle Scholar |

Chave, K. E. (1952). A solid solution between calcite and dolomite. The Journal of Geology 60, 190–192.
A solid solution between calcite and dolomite.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaG38XitlSguw%3D%3D&md5=d7417b713fe8ce2d53175d94cb4efbe7CAS |

Chave, K. E. (1954). Aspects of the biogeochemistry of magnesium. 1. Calcareous marine organisms. The Journal of Geology 62, 266–283.
Aspects of the biogeochemistry of magnesium. 1. Calcareous marine organisms.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaG2cXksF2kuw%3D%3D&md5=e9c7a36e8cbaeae6d8d1f02ea5de7931CAS |

Cigliano, M., Gambi, M. C., Rodolfo-Metalpa, R., Patti, F. P., and Hall-Spencer, J. M. (2010). Effects of ocean acidification on invertebrate settlement at volcanic CO2 vents. Marine Biology 157, 2489–2502.
Effects of ocean acidification on invertebrate settlement at volcanic CO2 vents.Crossref | GoogleScholarGoogle Scholar |

De, A. K., Sen, A. K., Modak, D. P., and Jana, S. (1985). Studies of toxic effects of Hg(II) on Pistia stratiotes. Water, Air, and Soil Pollution 24, 351–360.
Studies of toxic effects of Hg(II) on Pistia stratiotes.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaL2MXhvF2itr4%3D&md5=b57f8ba62dbe74f7b9ffcbe2728524e2CAS |

de Ronde, C. E. J., Baker, E. T., Massoth, G. J., Lupton, J. E., Wright, I. C., Feely, R. A., and Greene, R. R. (2001). Intra-oceanic subduction-related hydrothermal venting, Kermadec volcanic arc, New Zealand. Earth and Planetary Science Letters 193, 359–369.
Intra-oceanic subduction-related hydrothermal venting, Kermadec volcanic arc, New Zealand.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3MXovFymtro%3D&md5=4912e7559e4092a58ed33993fd51daaeCAS |

Donachie, S. P., Christenson, B. W., Kunkel, D. D., Malahoff, A., and Alam, M. (2002). Microbial community in acidic hydrothermal waters of volcanically active White Island, New Zealand. Extremophiles 6, 419–425.
Microbial community in acidic hydrothermal waters of volcanically active White Island, New Zealand.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD38XnvVCisbc%3D&md5=aba44882282be64a570e1fdbac5482ceCAS | 12382119PubMed |

Doney, S. C., Fabry, V. J., Feely, R. A., and Kleypas, J. A. (2009). Ocean acidification: the other CO2 problem. Annual Review of Marine Science 1, 169–192.
Ocean acidification: the other CO2 problem.Crossref | GoogleScholarGoogle Scholar | 21141034PubMed |

Doropoulos, C., Ward, S., Diaz-Pulido, G., Hoegh-Guldberg, O., and Mumby, P. J. (2012). Ocean acidification reduces coral recruitment by disrupting intimate larval–algal settlement interactions. Ecology Letters 15, 338–346.
Ocean acidification reduces coral recruitment by disrupting intimate larval–algal settlement interactions.Crossref | GoogleScholarGoogle Scholar |

Eaton, A. D., Clesceri, L. S., Rice, E. W., and Greenberg, A. E. (Eds) (2005). ‘Standard Methods for the Examination of Water & Wastewater’, Centennial edn. (American Public Health Association: Baltimore, MD.)

Egilsdottir, H., Noisette, F., Noël, L. M.-L. J., Olafsson, J., and Martin, S. (2013). Effects of pCO2 on physiology and skeletal mineralogy in a tidal pool coralline alga Corallina elongata. Marine Biology 160, 2103–2112.
Effects of pCO2 on physiology and skeletal mineralogy in a tidal pool coralline alga Corallina elongata.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3sXht1GgtbbE&md5=9423b41e36003e5458e17c30dfd2d090CAS |

Fabricius, K. E., Langdon, C., Uthicke, S., Humphrey, C., Noonan, S., De’ath, G., Okazaki, R., Muehllehner, N., Glas, M. S., and Lough, J. M. (2011). Losers and winners in coral reefs acclimatized to elevated carbon dioxide concentrations. Nature Climate Change 1, 165–169.
Losers and winners in coral reefs acclimatized to elevated carbon dioxide concentrations.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3MXmvFOktrg%3D&md5=6258951e56dcabcb8485e18165603bf5CAS |

Fabry, V. J., Seibel, B. A., Feely, R. A., and Orr, J. C. (2008). Impacts of ocean acidification on marine fauna and ecosystem processes. ICES Journal of Marine Science 65, 414–432.
Impacts of ocean acidification on marine fauna and ecosystem processes.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1cXntFegtL4%3D&md5=9ac7c26cfc1b0e4494225a5d4a2ae7d6CAS |

Feely, R. A., Sabine, C. L., Lee, K., Berelson, W., Kleypas, J., Fabry, V. J., and Millero, F. J. (2004). Impact of anthropogenic CO2 on the CaCO3 system in the oceans. Science 305, 362–366.
Impact of anthropogenic CO2 on the CaCO3 system in the oceans.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2cXls1egsbY%3D&md5=ee00bffcdb2dd10db65d66a1196f9b3dCAS | 15256664PubMed |

Frankignoulle, M., Canon, C., Gattuso, J., Limnology, S., and Mar, N. (1994). Marine calcification as a source of carbon dioxide: positive feedback of increasing atmospheric CO2. Limnology and Oceanography 39, 458–462.
Marine calcification as a source of carbon dioxide: positive feedback of increasing atmospheric CO2.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK2cXls1egsLk%3D&md5=43b5a291874ead863de97ab002080296CAS |

Frieder, C. A., Nam, S. H., Martz, T. R., and Levin, L. A. (2012). High temporal and spatial variability of dissolved oxygen and pH in a nearshore California kelp forest. Biogeosciences 9, 3917–3930.
High temporal and spatial variability of dissolved oxygen and pH in a nearshore California kelp forest.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3sXit1Gku74%3D&md5=4ff21a627712e728ed75a09a8a21256eCAS |

Gaffey, S. J., and Bronnimann, C. E. (1993). Effects of bleaching on organic and mineral phases in biogenic carbonates. Journal of Sedimentary Petrology 63, 752–754.
Effects of bleaching on organic and mineral phases in biogenic carbonates.Crossref | GoogleScholarGoogle Scholar |

Gao, K., Aruga, Y., Asada, K., Ishihara, T., Akano, T., and Kiyohara, M. (1993). Calcification in the articulated coralline alga Corallina pilulifera, with special reference to the effect of elevated CO2 concentration. Marine Biology 117, 129–132.
Calcification in the articulated coralline alga Corallina pilulifera, with special reference to the effect of elevated CO2 concentration.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK2cXkt1yi&md5=5fec2472dfb6a2b1a53a702454462e10CAS |

Goreau, T. F. (1963). Calcium carbonate deposition by coralline algae and corals in relation to their roles as reef-builders. Annals of the New York Academy of Sciences 109, 127–167.
Calcium carbonate deposition by coralline algae and corals in relation to their roles as reef-builders.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaF2cXks1Ok&md5=9b0e1c418dce3c9a4bdf453727f10c4cCAS | 13949254PubMed |

Grace, R. V. (1975). White Island notes. TANE 21, 91–100.

Gray, B. E., and Smith, A. M. (2004). Mineralogical variation in shells of the blackfoot abalone, Haliotis iris (Mollusca: Gastropoda: Haliotidae), in southern New Zealand. Pacific Science 58, 47–64.
Mineralogical variation in shells of the blackfoot abalone, Haliotis iris (Mollusca: Gastropoda: Haliotidae), in southern New Zealand.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2cXhvFSjtrg%3D&md5=a019d9a61b50a665d4f7eb45bfd6ca68CAS |

Hall-Spencer, J. M., Rodolfo-Metalpa, R., Martin, S., Ransome, E., Fine, M., Turner, S. M., Rowley, S. J., Tedesco, D., and Buia, M.-C. (2008). Volcanic carbon dioxide vents show ecosystem effects of ocean acidification. Nature 454, 96–99.
Volcanic carbon dioxide vents show ecosystem effects of ocean acidification.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1cXotVertLc%3D&md5=f7dd57366e7d9e81868a0dd3fcba52ffCAS | 18536730PubMed |

Henrich, R., and Wefer, G. (1986). Dissolution of biogenic carbonates: effects of skeletal structure. Marine Geology 71, 341–362.
Dissolution of biogenic carbonates: effects of skeletal structure.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaL28XksVymtrs%3D&md5=5daa6a3fc46a46e3aac087b564594eb8CAS |

Himmelman, J. H., Lavergne, Y., Axelsen, F., Cardinal, A., and Bourget, E. (1983). Sea urchins in the Saint Lawrence Estuary: their abundance, size-structure, and suitability for commercial exploitation. Canadian Journal of Fisheries and Aquatic Sciences 40, 474–486.
Sea urchins in the Saint Lawrence Estuary: their abundance, size-structure, and suitability for commercial exploitation.Crossref | GoogleScholarGoogle Scholar |

Hofmann, G. E., Smith, J. E., Johnson, K. S., Send, U., Levin, L. A., Micheli, F., Paytan, A., Price, N. N., Peterson, B., Takeshita, Y., Matson, P. G., Crook, E. D., Kroeker, K. J., Gambi, M. C., Rivest, E. B., Frieder, C. A., Yu, P. C., and Martz, T. R. (2011). High-frequency dynamics of ocean pH: a multi-ecosystem comparison. PLoS ONE 6, e28983.
High-frequency dynamics of ocean pH: a multi-ecosystem comparison.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC38XjvFSnuw%3D%3D&md5=1d301f042345ab2d1395b4b88a0615feCAS | 22205986PubMed |

Hurd, C. L., Hepburn, C. D., Currie, K. I., Raven, J. A., and Hunter, K. A. (2009). Testing the effects of ocean acidification on algal metabolism: considerations for experimental designs. Journal of Phycology 45, 1236–1251.
Testing the effects of ocean acidification on algal metabolism: considerations for experimental designs.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3cXhsVSisb8%3D&md5=e784fbc944ace40845e21a3fdd4459a3CAS |

Hurd, C. L., Cornwall, C. E., Currie, K., Hepburn, C. D., McGraw, C. M., Hunter, K. A., and Boyd, P. W. (2011). Metabolically induced pH fluctuations by some coastal calcifiers exceed projected 22nd century ocean acidification: a mechanism for differential susceptibility? Global Change Biology 17, 3254–3262.
Metabolically induced pH fluctuations by some coastal calcifiers exceed projected 22nd century ocean acidification: a mechanism for differential susceptibility?Crossref | GoogleScholarGoogle Scholar |

IPCC (2014). ‘Climate Change 2014: The Physical Science Basis. Contribution of Working Group I to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change.’ (Cambridge University Press: New York.)

Kalnay, E., and Cai, M. (2003). Impact of urbanization and land-use change on climate. Nature 423, 528–531.
Impact of urbanization and land-use change on climate.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3sXktVygtbg%3D&md5=676903ebb1789b65751a7341dc641a7bCAS | 12774119PubMed |

Kamenos, N. A., Burdett, H. L., Aloisio, E., Findlay, H. S., Martin, S., Longbone, C., Dunn, J., Widdicombe, S., and Calosi, P. (2013). Coralline algal structure is more sensitive to rate, rather than the magnitude, of ocean acidification. Global Change Biology 19, 3621–3628.
Coralline algal structure is more sensitive to rate, rather than the magnitude, of ocean acidification.Crossref | GoogleScholarGoogle Scholar | 23943376PubMed |

Kerfahi, D., Hall-Spencer, J. M., Tripathi, B. M., Milazzo, M., Lee, J., and Adams, J. M. (2014). Shallow water marine sediment bacterial community shifts along a natural CO2 gradient in the Mediterranean Sea off Vulcano, Italy. Environmental Microbiology 67, 819–828.
| 1:CAS:528:DC%2BC2cXmsFantLk%3D&md5=ef24f51717d43a9bb84b0dd1246a275fCAS |

Kleypas, J. A., Feely, R. A., Fabry, V. J., Langdon, C., Sabine, C. L., and Robbins, L. L. (2006). Impacts of ocean acidification on coral reefs and other marine calcifiers: a guide for future research. NOAA/Pacific Marine Environmental Laboratory, Contribution 2897. (NSF, NOAA and the US Geological Survey.) Available at http://www.ucar.edu/communications/Final_acidification.pdf [Verified 14 October 2014].

Koch, M., Bowes, G., Ross, C., and Zhang, X.-H. (2013). Climate change and ocean acidification effects on seagrasses and marine macroalgae. Global Change Biology 19, 103–132.
Climate change and ocean acidification effects on seagrasses and marine macroalgae.Crossref | GoogleScholarGoogle Scholar | 23504724PubMed |

Kuffner, I. B., Andersson, A. J., Jokiel, P. L., Rodgers, K. S., and Mackenzie, F. T. (2008). Decreased abundance of crustose coralline algae due to ocean acidification. Nature Geoscience 1, 114–117.
Decreased abundance of crustose coralline algae due to ocean acidification.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1cXjsVGjs7g%3D&md5=abf0d9b467fc951696f8efa0f49c7f47CAS |

Lombardi, C., Rodolfo-Metalpa, R., Cocito, S., Gambi, M. C., and Taylor, P. D. (2011). Structural and geochemical alterations in the Mg calcite bryozoan Myriapora truncata under elevated seawater pCO2 simulating ocean acidification. Marine Ecology (Berlin) 32, 211–221.
Structural and geochemical alterations in the Mg calcite bryozoan Myriapora truncata under elevated seawater pCO2 simulating ocean acidification.Crossref | GoogleScholarGoogle Scholar |

Mehrbach, C., Culberson, C. H., Hawley, J. E., and Pytkowicz, R. M. (1973). Measurement of the apparent dissociation constants of carbonic acid in seawater at atmospheric pressure. Limnology and Oceanography 18, 897–907.
Measurement of the apparent dissociation constants of carbonic acid in seawater at atmospheric pressure.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaE2cXhtFansLk%3D&md5=cb278ac31ff7f58b9cf77017dfd10f89CAS |

Morris, S., and Taylor, A. C. (1983). Diurnal and seasonal variation in physico-chemical conditions within intertidal rock pools. Estuarine, Coastal and Shelf Science 17, 339–355.
Diurnal and seasonal variation in physico-chemical conditions within intertidal rock pools.Crossref | GoogleScholarGoogle Scholar |

Mosharraf, M., and Nyström, C. (1995). The effect of particle size and shape on the surface specific dissolution rate of microsized practically insoluble drugs. International Journal of Pharmaceutics 122, 35–47.
The effect of particle size and shape on the surface specific dissolution rate of microsized practically insoluble drugs.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK2MXmvVaiu7c%3D&md5=3572b65dae3f28e87e4a944f0f239b2fCAS |

Moulin, L., Catarino, A. I., Claessens, T., and Dubois, P. (2011). Effects of seawater acidification on early development of the intertidal sea urchin Paracentrotus lividus (Lamarck 1816). Marine Pollution Bulletin 62, 48–54.
Effects of seawater acidification on early development of the intertidal sea urchin Paracentrotus lividus (Lamarck 1816).Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3MXhtVSqtr0%3D&md5=76c2ff1383347d9ed6f37a0be9f8de99CAS | 20950830PubMed |

Nelson, W. A. (2009). Calcified macroalgae – critical to coastal ecosystems and vulnerable to change: a review. Marine and Freshwater Research 60, 787–801.
Calcified macroalgae – critical to coastal ecosystems and vulnerable to change: a review.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1MXhtVGju7jL&md5=1c189402f636564133cf62dd887b5998CAS |

Nriagu, J., and Becker, C. (2003). Volcanic emissions of mercury to the atmosphere: global and regional inventories. The Science of the Total Environment 304, 3–12.
Volcanic emissions of mercury to the atmosphere: global and regional inventories.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3sXit12isLo%3D&md5=560b1e2c3788ca518a749e0b966ede27CAS | 12663167PubMed |

Orr, J. C., Fabry, V. J., Aumont, O., Bopp, L., Doney, S. C., Feely, R. A., Gnanadesikan, A., Gruber, N., Ishida, A., Joos, F., Key, R. M., Lindsay, K., Maier-Reimer, E., Matear, R., Monfray, P., Mouchet, A., Najjar, R. G., Plattner, G.-K., Rodgers, K. B., Sabine, C. L., Sarmiento, J. L., Schlitzer, R., Slater, R. D., Totterdell, I. J., Weirig, M.-F., Yamanaka, Y., and Yool, A. (2005). Anthropogenic ocean acidification over the twenty-first century and its impact on calcifying organisms. Nature 437, 681–686.
Anthropogenic ocean acidification over the twenty-first century and its impact on calcifying organisms.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2MXhtVCjsL%2FE&md5=fae3a7be53482219a65ed00a92d1902dCAS | 16193043PubMed |

Porzio, L., Buia, M. C., and Hall-Spencer, J. M. (2011). Effects of ocean acidification on macroalgal communities. Journal of Experimental Marine Biology and Ecology 400, 278–287.
Effects of ocean acidification on macroalgal communities.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3MXltFymu70%3D&md5=eefb9215df01554c7cae9eb4c46590faCAS |

Porzio, L., Garrard, S. L., and Buia, M. C. (2013). The effect of ocean acidification on early algal colonization stages at natural CO2 vents. Marine Biology 160, 2247–2259.
The effect of ocean acidification on early algal colonization stages at natural CO2 vents.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3sXht1Ggur3L&md5=af9ed9e0ae3726524c03a29eff281d28CAS |

Price, N. N., Martz, T. R., Brainard, R. E., and Smith, J. E. (2012). Diel variability in seawater pH relates to calcification and benthic community structure on coral reefs. PLoS ONE 7, e43843.
Diel variability in seawater pH relates to calcification and benthic community structure on coral reefs.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC38Xht1yktLbJ&md5=b043d38b51c6c502cd28462032511631CAS | 22952785PubMed |

Ragazzola, F., Foster, L. C., Form, A., Anderson, P. S. L., Hansteen, T. H., and Fietzke, J. (2012). Ocean acidification weakens the structural integrity of coralline algae. Global Change Biology 18, 2804–2812.
Ocean acidification weakens the structural integrity of coralline algae.Crossref | GoogleScholarGoogle Scholar | 24501058PubMed |

Ricevuto, E., Lorenti, M., Patti, F. P., Scipione, M. B., and Gambi, M. C. (2012). Temporal trends of benthic invertebrate settlement along a gradient of ocean acidification at natural CO2 vents (Tyrrhenian Sea). Biologia Marina Mediterranea 19, 49–52.

Ridgway, N. M., and Greig, M. J. N. (1986). Water movements in Bay of Plenty, New Zealand. New Zealand Journal of Marine and Freshwater Research 20, 447–453.
Water movements in Bay of Plenty, New Zealand.Crossref | GoogleScholarGoogle Scholar |

Rodolfo-Metalpa, R., Houlbrèque, F., Tambutté, É., Boisson, F., Baggini, C., Patti, F. P., Jeffree, R., Fine, M., Foggo, A., Gattuso, J.-P., and Hall-Spencer, J. M. (2011). Coral and mollusc resistance to ocean acidification adversely affected by warming. Nature Climate Change 1, 308–312.
Coral and mollusc resistance to ocean acidification adversely affected by warming.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3MXhtVyltb3J&md5=c168e64ed4a3d9c501b6b2b2474572bbCAS |

Semesi, I. S., Kangwe, J., and Björk, M. (2009). Alterations in seawater pH and CO2 affect calcification and photosynthesis in the tropical coralline alga, Hydrolithon sp. (Rhodophyta). Estuarine, Coastal and Shelf Science 84, 337–341.
Alterations in seawater pH and CO2 affect calcification and photosynthesis in the tropical coralline alga, Hydrolithon sp. (Rhodophyta).Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1MXhtVeqs7vO&md5=1bdd7950bb392ed47bf48cd5101f9461CAS |

Shaffer, G., Olsen, S. M., and Pedersen, J. O. P. (2009). Long-term ocean oxygen depletion in response to carbon dioxide emissions from fossil fuels. Nature Geoscience 2, 105–109.
Long-term ocean oxygen depletion in response to carbon dioxide emissions from fossil fuels.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1MXht1amt74%3D&md5=a476bec3c23a29f751597aa482625b32CAS |

Smith, A. M., Sutherland, J. E., Kregting, L., Farr, T. J., and Winter, D. J. (2012). Phylomineralogy of the Coralline red algae: correlation of skeletal mineralogy with molecular phylogeny. Phytochemistry 81, 97–108.
Phylomineralogy of the Coralline red algae: correlation of skeletal mineralogy with molecular phylogeny.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC38XhtFGlur7F&md5=0320fb2bf6d5046732fb9a996f5f79adCAS | 22795764PubMed |

Smithsonian Institution (2013). White Island. Global Volcanism Program. National Museum of Natural History. Available at http://www.volcano.si.edu/volcano.cfm?vn= 241040 [Verified 10 January 2014].

Tait, P., and Tait, J. (2001). ‘White Island New Zealand’s Most Active Volcano.’ (Random House: Auckland, New Zealand.)

Webster, N. S., Uthicke, S., Botté, E. S., Flores, F., and Negri, A. P. (2013). Ocean acidification reduces induction of coral settlement by crustose coralline algae. Global Change Biology 19, 303–315.
Ocean acidification reduces induction of coral settlement by crustose coralline algae.Crossref | GoogleScholarGoogle Scholar | 23504741PubMed |

Wilson, S. H. (1959). Physical and chemical investigations. In ‘White Island’. (Eds W. H. Hamilton and I. L. Baumgart.) New Zealand Department of Scientific and Industrial Research Bulletin 127, pp. 32–50. (DSIR Dominion Laboratory: Lower Hutt, New Zealand.)

Yu, P. C., Matson, P. G., Martz, T. R., and Hofmann, G. E. (2011). The ocean acidification seascape and its relationship to the performance of calcifying marine invertebrates: laboratory experiments on the development of urchin larvae framed by environmentally-relevant pCO2/pH. Journal of Experimental Marine Biology and Ecology 400, 288–295.
The ocean acidification seascape and its relationship to the performance of calcifying marine invertebrates: laboratory experiments on the development of urchin larvae framed by environmentally-relevant pCO2/pH.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3MXltFymu7o%3D&md5=a16ab4e04baf55566f6fb4b6fae7afe6CAS |