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Quantification of uncertainty using remote sensing images 

In the present investigation, an extensive evaluation of errors and uncertainties was performed to ascertain the 

validity of the sediment yield estimations obtained from remote sensing data. Comprehending and quantifying 

errors and uncertainties are paramount in remote sensing research, primarily when the acquired data is employed 

to guide environmental management and policy formulation. Since remote sensing imagery is influenced by 

multiple sources of error, including sensor inaccuracies, atmospheric variables, and constraints related to spatial 

resolution, it is imperative to systematically assess these elements to ascertain the robustness of the study's 

conclusions. To quantify the errors and uncertainties inherent in the data derived from remote sensing 

methodologies, we utilised a variety of statistical and analytical approaches. The principal method entailed 

juxtaposing the river widths derived from remote sensing techniques with the in situ measurements collected 

during field surveys. This comparative analysis was conducted across various cross-sectional evaluations of the 

LIRB to evaluate the precision of the remote sensing data. The root mean square error (RMSE) was computed to 

assess the mean deviation between the empirically observed (in situ) and the forecasted (remote sensing derived) 

values. The RMSE indicates the standard deviation of the residuals, thereby elucidating the degree to which the 

remote sensing data aligns with the actual empirical measurements. This investigation determined the RMSE to 

be 115.4 m, a value within an acceptable threshold for extensive sediment yield research endeavours. 

Furthermore, the coefficient of determination (R²) was utilised to assess the robustness of the correlation between 

the empirical and forecasted values. The derived value of R² was ~0.8665, which signifies a robust association 

between the remote-sensing datasets and the in situ observational metrics. This substantial correlation degree 

implies that the remote sensing data can be deemed dependable for estimating sediment yield within the LIRB 

(Peña-Arancibia et al. 2013). 
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where Pi is the predicted value for the ith observation in the dataset, Oi is the observed value for the ith observation 

in the dataset, and N is the sample size. To enhance the rigor of the analysis, we employed various statistical 

techniques to address non-detections (NoDs) and incomplete datasets, which frequently pose significant 

challenges in remote sensing research. Maximum Likelihood Estimation (MLE) (Pan et al. 2002) was 

employed to derive parameter estimates in NoDs by optimising the likelihood function (Eqn S2). This 

approach is especially advantageous when addressing datasets with a substantial fraction of absent or 

censored observations. In our analytical framework, MLE yielded the most favourable results when confronted 

with elevated proportions (19–39%) of NoDs (White et al. 2023). 
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where L (ϑ) is the likelihood for a continuous variable, ϑ is a vector with two values, with detail description is 

provided in United States Environmental Protection Agency (2009). The Kaplan–Meier method addressed right-

censored data (Tehrany et al. 2015), yielding robust distribution and central tendency estimates (Eqn S3). KM 

demonstrated optimal efficacy with lower NoD proportions (10–20%), reliably estimating the median across 

varying sample sizes. 
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where pej denotes the proportion of the sample exceeding the ith RL, once the exceedance probabilities 

are computed, plotting positions for detections i.e. cumulative probabilities on a probability plot can be 

calculated with equation pdy. 
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where the final Kaplan–Meier estimate (FKM) for each i = 1 (each distinct detected value) is given by a product 

of these conditional probabilities, and a detailed discussion is provided in United States Environmental Protection 

Agency (2009). The modelled migration rate is followed by log-normal distribution with means drawn for 

different empirical distributions. The deviance scale is directly related to the average migration rates and predicted 

(Donovan and Belmont 2019) by using Eqn S5 as: 

0.25 1.09 = + (S5) 

We computed the probability of significance for each migration rate using a relationship (R2 = 0.88) 

between migration rate and probability of relevance, and this technique has 9 to 52% of NoD for every iteration.  

Validation of error and uncertainty estimates 

To substantiate the error and uncertainty assessments, we conducted a comparative analysis between the outcomes 

derived from remote sensing data and the independent field measurements acquired from various segments of the 

LIRB. This validation procedure entailed the meticulous cross-referencing of river widths derived from remote 

sensing techniques with empirical cross-sectional surveys executed on or near the identical dates of the satellite 

image acquisitions. The validation showed that despite the uncertainties in remote sensing data, the methods used 

to estimate and correct these errors effectively produced reliable sediment yield estimates. The systematic patterns 

in the proportion of retained measurements were further examined to ascertain whether variables such as the year 

of acquisition, image resolution, or the distance of channel migration significantly influenced the measurements' 

precision. The investigation demonstrated that the natural logarithm of the mean migratory distance constituted 



the most pivotal variable (P < 0.001, R² = 0.8901), suggesting that the remote sensing data exhibited a notable 

responsiveness to alterations in channel morphology over temporal scales. Understanding and addressing error 

and uncertainty in remote sensing images is critical for sediment yield studies, especially in large and dynamic 

river systems like the LIRB. Remote sensing constitutes a robust methodology for assessing environmental 

transformations across extensive spatial regions and protracted temporal spans. Nevertheless, without 

comprehensive error and uncertainty evaluations, the information obtained through remote sensing may result in 

erroneous inferences, jeopardising the efficacy of soil conservation and watershed management initiatives. In this 

research endeavor, the comprehensive examination of errors and uncertainties bolstered the validity of the 

sediment yield estimates derived from remote sensing techniques. It elucidated the constraints and possible origins 

of inaccuracies in the data. By systematically quantifying these uncertainties, one can enhance the comprehension 

of the confidence intervals associated with the results, facilitating more informed decision-making regarding land 

management strategies and erosion mitigation techniques. In summation, the comprehensive examination of error 

and uncertainty undertaken in this research was pivotal in substantiating the remote sensing data, affirming that 

the results are dependable and pertinent to practical environmental management. The methodologies employed 

for estimating error and uncertainty, in conjunction with thorough validation against empirical field data, establish 

a comprehensive framework for applying remote sensing in the analysis of sediment yield. 

Sensitivity analysis 

The RUSLE model was initially evaluated by employing its foundational conceptual variables pertinent 

to each discrete storm event. The resultant data from this evaluation was subsequently juxtaposed with the 

observed suspended sediment yield at the catchment's outlet. Secondly, an examination of the sensitivity of the 

conceptual factors was conducted to ascertain which individual factors or a synergistic combination of factors 

exhibited greater responsiveness to the model output. This analysis was performed employing a variance-based 

sensitivity methodology aimed at elucidating the parameters of the highest sensitivity. This methodology was 

favoured in comparison to alternative methodologies, including the one-at-a-time (OAT) approach, which is also 

referred to as local sensitivity analysis. This technique involves the systematic alteration of individual parameters 

(by a specified percentage) while maintaining the constancy of all other variables. This methodology was favoured 

in comparison to alternative methodologies, including the OAT approach, which is also referred to as local 

sensitivity analysis. This technique involves the systematic alteration of individual parameters (by a specified 

percentage) while maintaining the constancy of all other variables. Conceptual variables consisted of α and ß, 

which required enhancement by calibration. Physical variables included KLSCP, which was assessed utilising 

remote sensing and GIS. These parameters were regarded as invariant throughout the study period. The 

hydrological variables comprised runoff volume and peak runoff discharge, both of which exhibited variability 

in response to storm events and the time of concentration. Consequently, a sensitivity analysis was conducted on 

both the conceptual and hydrological parameters employing the Sobol methodology (Wang and Solomatine 

2019).  



Eicken (1993) introduced a highly effective technique for estimating variance-based sensitivity indices by 

applying Monte Carlo simulation. The Sobol index measures the sensitivity of output to input variables, with 

higher values indicating greater influence. This approach constitutes a comprehensive and model-agnostic form 

of sensitivity analysis predicated on the variance decomposition principle. Its objective is to ascertain the extent 

to which each parameter and its interactions contribute to the total unconditional variance of the model’s output. 

Let us denote the model as a function. 

1 2 3( , , ,..., )kY f x x x x=   (S6) 

where x1, x2, …, xk represent distinct independent variables, and Y denotes the resultant output of the model. Sobol 

proposed partitioning the function f into components of ascending dimensionality: 
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where each term is a function only of the factors in its index, e.g. fi (xi), fi = fi (xi, xj). The uniqueness of the 

decomposition is guaranteed under the condition that the input factors are independent and that the individual 

components in (S2) possess square integrability and exhibit a mean of zero across the specified domain of 

existence. The total unconditional variance is defined as: 
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where  

( ( )i iV V E Y =   (S9) 

( ( , ))ij i i jV V E Y j V V =  − −   (S10) 

Equation S7 contains the k terms of the first order. The Vij terms are the second-order terms that explain 

that part of the effect of xi and xj that is not described by the first-order terms. This way, individual factors' variance 

contributions and interactions with the total output variance can be determined. The variance contributions can 

then be computed as sensitivity indices: 
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The first-order index, Si, serves as an indicator of the contribution of the variance attributed to individual 

parameter xi within the overall variance of the model's output. The partial variance Vi, as delineated in Eqn S11, 

is derived from the variance of the conditional expectation articulated in Eqn S9. The term Si is frequently referred 

to as the primary effect of xi on the dependent variable Y. This can be conceptualised as the proportion of the 

variance in the model's output that would, on average, be eliminated if xi were constrained to a specific value 

within its defined range. The influence on the variance of the model's output resulting from the interaction between 



factors xi and xj is represented by Sij. STi encapsulates the primary effect of xi alongside all interactions with other 

factors extending up to the kth order. 
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