Register      Login
Marine and Freshwater Research Marine and Freshwater Research Society
Advances in the aquatic sciences
RESEARCH ARTICLE

Dietary analysis and mesocosm feeding trials confirm the eastern rock lobster (Sagmariasus verreauxi) as a generalist predator that can avoid ingesting urchin spines during feeding

Jeremy K. Day https://orcid.org/0000-0002-6004-4780 A C , Nathan A. Knott https://orcid.org/0000-0001-8186-7359 B , Daniel S. Swadling https://orcid.org/0000-0001-8186-7359 A and David J. Ayre https://orcid.org/0000-0002-3124-4417 A
+ Author Affiliations
- Author Affiliations

A School of Earth, Atmospheric and Life Sciences, University of Wollongong, NSW 2500, Australia.

B NSW Department of Primary Industries, Fisheries Research, 4 Woollamia Road, Huskisson, NSW 2540, Australia.

C Corresponding author. Email: jkd018@uowmail.edu.au

Marine and Freshwater Research 72(8) 1220-1232 https://doi.org/10.1071/MF20287
Submitted: 24 September 2020  Accepted: 1 February 2021   Published: 23 March 2021

Abstract

Worldwide, lobsters are considered important predators of macroalgae-consuming urchin species, but this has not been tested for Australia’s common lobster, the eastern rock lobster (Sagmariasus verreauxi). We predicted that the abundant urchins, the long-spined urchin (Centrostephanus rodgersii) and the short-spined urchin (Heliocidaris erythrogramma), would form substantial components of lobster diets. To test this hypothesis, we examined 115 lobster stomachs from 9 locations and conducted 14 feeding trials, in which lobsters were offered either urchin species. Dissections revealed various stomach items, with detritus (51%), bivalves (34%), gastropods (28%) and algae (26%) occurring more frequently than urchins (19%). Urchin spines were found in 22 lobsters that ranged in size from 91- to 124-mm carapace length, with all individuals containing H. erythrogramma spines and C. rodgersii spines observed only once. During feeding trials, seven urchins were consumed. Four H. erythrogramma were eaten on Day 1, whereas one was not eaten until Day 11. Two C. rodgersii were eaten on Days 2 and 10. Only three of the six lobsters observed to eat urchins ingested spines. Together, these data show that S. verreauxi is a generalist predator that consumes urchins, although, because urchins could be eaten without ingesting spines, future studies are needed to assess the importance of urchins as dietary items for S. verreauxi.


References

Agatsuma, Y. (2001). Ecology of Strongylocentrotus nudus. Developments in Aquaculture and Fisheries Science 32, 347–361.
Ecology of Strongylocentrotus nudus.Crossref | GoogleScholarGoogle Scholar |

Andrew, N. (Ed.) (1999). ‘Under Southern Seas: the Ecology of Australia’s Rocky Reefs.’ (UNSW Press.)

Andrew, N. L., and MacDiarmid, A. B. (1991). Interrelations between sea urchins and spiny lobsters in northeastern New Zealand. Marine Ecology Progress Series 70, 211–222.
Interrelations between sea urchins and spiny lobsters in northeastern New Zealand.Crossref | GoogleScholarGoogle Scholar |

Andrew, N. L., and O’Neill, A. L. (2000). Large-scale patterns in habitat structure on subtidal rocky reefs in New South Wales. Marine and Freshwater Research 51, 255–263.
Large-scale patterns in habitat structure on subtidal rocky reefs in New South Wales.Crossref | GoogleScholarGoogle Scholar |

Andrew, N. L., and Underwood, A. J. (1993). Density-dependent foraging in the sea urchin Centrostephanus rodgersii on shallow subtidal reefs in New South Wales, Australia. Marine Ecology Progress Series 99, 89–98.
Density-dependent foraging in the sea urchin Centrostephanus rodgersii on shallow subtidal reefs in New South Wales, Australia.Crossref | GoogleScholarGoogle Scholar |

Ayling, A. M. (1981). The role of biological disturbance in temperate subtidal encrusting communities. Ecology 62, 830–847.
The role of biological disturbance in temperate subtidal encrusting communities.Crossref | GoogleScholarGoogle Scholar |

Babcock, R. C., Shears, N. T., Alcala, A. C., Barrett, N. S., Edgar, G. J., Lafferty, K. D., McClanahan, T. R., and Russ, G. R. (2010). Decadal trends in marine reserves reveal differential rates of change in direct and indirect effects. Proceedings of the National Academy of Sciences of the United States of America 107, 18256–18261.
Decadal trends in marine reserves reveal differential rates of change in direct and indirect effects.Crossref | GoogleScholarGoogle Scholar | 20176941PubMed |

Baker, R., Buckland, A., and Sheaves, M. (2014). Fish gut content analysis: robust measures of diet composition. Fish and Fisheries 15, 170–177.
Fish gut content analysis: robust measures of diet composition.Crossref | GoogleScholarGoogle Scholar |

Banks, S. C., Ling, S. D., Johnson, C. R., Piggott, M. P., Williamson, J. E., and Beheregaray, L. B. (2010). Genetic structure of a recent climate change‐driven range extension. Molecular Ecology 19, 2011–2024.
Genetic structure of a recent climate change‐driven range extension.Crossref | GoogleScholarGoogle Scholar | 20406383PubMed |

Barker, M. F. (2007). Ecology of Evechinus chloroticus. In ‘Edible Sea Urchins: Biology and Ecology’. (Ed. J. Miller Lawrence.) pp. 319–338. (Elsevier Science: Amsterdam, Netherlands.)

Barker, M. F. (2020). Evechinus chloroticus. Developments in Aquaculture and Fisheries Science 43, 519–536.
Evechinus chloroticus.Crossref | GoogleScholarGoogle Scholar |

Bates, B., Maechler, M., Bolker, B., and Walker, S. (2015). Fitting Linear Mixed-Effects Models Using lme4. Journal of Statistical Software 67, 1–48.
Fitting Linear Mixed-Effects Models Using lme4.Crossref | GoogleScholarGoogle Scholar |

Battaglene, S. C., Simon, C. J., Fitzgibbon, Q. P., Smith, G. G., and Carter, C. G. (2013). Could the Eastern Rock Lobster, Sagmariasus verreauxi, be the best spiny lobster for aquaculture? In ‘Larvi 2013 – Fish and Shellfish Larviculture Symposium’, 2–5 September 2013, Ghent, Belgium. (Ed. C. I. Hendry.) p. 27 (Laboratory of Aquaculture and Artemia Reference Center, Ghent University: Ghent, Belgium.)

Bax, N., Barrett, N. S., Hobday, A. J., and Casper, R. M. (2013). Preadapting a Tasmanian coastal ecosystem to ongoing climate change through reintroduction of a locally extinct species. CSIRO Marine and Atmospheric Research 2013, project number 2010/564. (Fisheries Research and Development Corporation, University of Tasmania and CSIRO Marine and Atmospheric Research.) Available at https://eprints.utas.edu.au/16655/ [Verified 22 February 2021].

Beck, H. J., and Styan, C. A. (2010). Colour patterns in the sea urchin, Heliocidaris erythrogramma, suggest limited connectivity across the Southern and Pacific Ocean coastlines of Australia. Marine and Freshwater Research 61, 143–152.
Colour patterns in the sea urchin, Heliocidaris erythrogramma, suggest limited connectivity across the Southern and Pacific Ocean coastlines of Australia.Crossref | GoogleScholarGoogle Scholar |

Blount, C., and Worthington, D. (2002). Identifying individuals of the sea urchin Centrostephanus rodgersii with high-quality roe in New South Wales, Australia. Fisheries Research 58, 341–348.
Identifying individuals of the sea urchin Centrostephanus rodgersii with high-quality roe in New South Wales, Australia.Crossref | GoogleScholarGoogle Scholar |

Breen, P. A., and Mann, K. H. (1976). Changing lobster abundance and the destruction of kelp beds by sea urchins. Marine Biology 34, 137–142.
Changing lobster abundance and the destruction of kelp beds by sea urchins.Crossref | GoogleScholarGoogle Scholar |

Byrne, M., and Andrew, N. (2013). Centrostephanus rodgersii. Developments in Aquaculture and Fisheries Science 38, 243–256.
Centrostephanus rodgersii.Crossref | GoogleScholarGoogle Scholar |

Byrne, M., Andrew, N. L., Worthington, D. G., and Brett, P. A. (1998). Reproduction in the diadematoid sea urchin Centrostephanus rodgersii in contrasting habitats along the coast of New South Wales, Australia. Marine Biology 132, 305–318.
Reproduction in the diadematoid sea urchin Centrostephanus rodgersii in contrasting habitats along the coast of New South Wales, Australia.Crossref | GoogleScholarGoogle Scholar |

Carter, J. A., and Steele, D. H. (1982a). Attraction to and selection of prey by immature lobsters (Homarus americanus). Canadian Journal of Zoology 60, 326–336.
Attraction to and selection of prey by immature lobsters (Homarus americanus).Crossref | GoogleScholarGoogle Scholar |

Carter, J. A., and Steele, D. H. (1982b). Stomach contents of immature lobsters (Homarus americanus) from Placentia Bay, Newfoundland. Canadian Journal of Zoology 60, 337–347.
Stomach contents of immature lobsters (Homarus americanus) from Placentia Bay, Newfoundland.Crossref | GoogleScholarGoogle Scholar |

Chittleborough, R. G. (1975). Environmental factors affecting growth and survival of juvenile western rock lobsters Panulirus longipes (Milne-Edwards). Marine and Freshwater Research 26, 177–196.
Environmental factors affecting growth and survival of juvenile western rock lobsters Panulirus longipes (Milne-Edwards).Crossref | GoogleScholarGoogle Scholar |

Clements, R., Liew, T. S., Vermeulen, J. J., and Schilthuizen, M. (2008). Further twists in gastropod shell evolution. Biology Letters 4, 179–182.
Further twists in gastropod shell evolution.Crossref | GoogleScholarGoogle Scholar | 18182365PubMed |

Colman, J. A. (1972). Food of snapper, Chrysophrys auratus (Forster), in the Hauraki Gulf, New Zealand. New Zealand Journal of Marine and Freshwater Research 6, 221–239.
Food of snapper, Chrysophrys auratus (Forster), in the Hauraki Gulf, New Zealand.Crossref | GoogleScholarGoogle Scholar |

Cook, K., and Vanderklift, M. A. (2011). Depletion of predatory fish by fishing in a temperate reef ecosystem leads to indirect effects on prey, but not to lower trophic levels. Marine Ecology Progress Series 432, 195–205.
Depletion of predatory fish by fishing in a temperate reef ecosystem leads to indirect effects on prey, but not to lower trophic levels.Crossref | GoogleScholarGoogle Scholar |

Derby, C. D., Steullet, P., Horner, A. J., and Cate, H. S. (2001). The sensory basis of feeding behavior in the Caribbean spiny lobster, Panulirus argus. Marine and Freshwater Research 52, 1339–1350.
The sensory basis of feeding behavior in the Caribbean spiny lobster, Panulirus argus.Crossref | GoogleScholarGoogle Scholar |

Diggles, B. K. (1999). Diseases of spiny lobsters in New Zealand. In ‘Conference proceedings of the International Symposium on Lobster Health Management’, 19–21 September 1999, Adelaide, SA, Australia. (Eds L. H. Evans and J. B. Jones.) pp. 18–34. (Aquatic Science Research Unit, Curtin University of Technology)

Diggles, B. K., and Handlinger, J. (1999). Disease conditions of larval and juvenile spiny lobsters. In ‘Rock Lobster Autopsy Manual’. (Ed. L. H. Evans.) p. 68. (Fisheries Research and Development Corporation, Curtin University of Technology.)

Edgar, G. J. (1990). Predator-prey interactions in seagrass beds. III. Impacts of the western rock lobster Panulirus cygnus (George) on epifaunal gastropod populations. Journal of Experimental Marine Biology and Ecology 139, 33–42.
Predator-prey interactions in seagrass beds. III. Impacts of the western rock lobster Panulirus cygnus (George) on epifaunal gastropod populations.Crossref | GoogleScholarGoogle Scholar |

Edmunds, M. (1995). The Ecology of the juvenile southern rock lobster, Jasus edwardsii (Hutton 1875) (Palinuridae). Ph.D. dissertation, University of Tasmania.

Eurich, J. G., Selden, R. L., and Warner, R. R. (2014). California spiny lobster preference for urchins from kelp forests: implications for urchin barren persistence. Marine Ecology Progress Series 498, 217–225.
California spiny lobster preference for urchins from kelp forests: implications for urchin barren persistence.Crossref | GoogleScholarGoogle Scholar |

Fell, H. B. (1949). The occurrence of Australian echinoids in New Zealand waters. Records of the Auckland Institute and Museum 6, 343–346.

Filbee-Dexter, K., and Scheibling, R. E. (2014). Sea urchin barrens as alternative stable states of collapsed kelp ecosystems. Marine Ecology Progress Series 495, 1–25.
Sea urchin barrens as alternative stable states of collapsed kelp ecosystems.Crossref | GoogleScholarGoogle Scholar |

Fitzgibbon, Q. P., and Battaglene, S. C. (2012). Effect of photoperiod on the culture of early stage phyllosoma and metamorphosis of spiny lobster (Sagmariasus verreauxi). Aquaculture 368–369, 48–54.
Effect of photoperiod on the culture of early stage phyllosoma and metamorphosis of spiny lobster (Sagmariasus verreauxi).Crossref | GoogleScholarGoogle Scholar |

Fitzgibbon, Q. P., Simon, C. J., Smith, G. G., Carter, C. G., and Battaglene, S. C. (2017). Temperature dependent growth, feeding, nutritional condition and aerobic metabolism of juvenile spiny lobster, Sagmariasus verreauxi. Comparative Biochemistry and Physiology – A. Molecular & Integrative Physiology 207, 13–20.
Temperature dependent growth, feeding, nutritional condition and aerobic metabolism of juvenile spiny lobster, Sagmariasus verreauxi.Crossref | GoogleScholarGoogle Scholar |

Foster, M. S., and Schiel, D. R. (2010). Loss of predators and the collapse of southern California kelp forests (?): alternatives, explanations and generalizations. Journal of Experimental Marine Biology and Ecology 393, 59–70.
Loss of predators and the collapse of southern California kelp forests (?): alternatives, explanations and generalizations.Crossref | GoogleScholarGoogle Scholar |

Gagnon, P., Himmelman, J. H., and Johnson, L. E. (2004). Temporal variation in community interfaces: kelp-bed boundary dynamics adjacent to persistent urchin barrens. Marine Biology 144, 1191–1203.
Temporal variation in community interfaces: kelp-bed boundary dynamics adjacent to persistent urchin barrens.Crossref | GoogleScholarGoogle Scholar |

Gannes, L. Z., O’Brien, D. M., and Del Rio, C. M. (1997). Stable isotopes in animal ecology: assumptions, caveats, and a call for more laboratory experiments. Ecology 78, 1271–1276.
Stable isotopes in animal ecology: assumptions, caveats, and a call for more laboratory experiments.Crossref | GoogleScholarGoogle Scholar |

Gianguzza, P., Bonaviri, C., and Guidetti, P. (2009). Crushing predation of the spiny star Marthasterias glacialis upon the sea urchin Paracentrotus lividus. Marine Biology 156, 1083–1086.
Crushing predation of the spiny star Marthasterias glacialis upon the sea urchin Paracentrotus lividus.Crossref | GoogleScholarGoogle Scholar |

Gillanders, B. M. (1995). Feeding ecology of the temperate marine fish Achoerodus viridis (Labridae): size, seasonal and site-specific differences. Marine and Freshwater Research 46, 1009–1020.
Feeding ecology of the temperate marine fish Achoerodus viridis (Labridae): size, seasonal and site-specific differences.Crossref | GoogleScholarGoogle Scholar |

Gillanders, B. M., and Kingsford, M. J. (1998). Influence of habitat on abundance and size structure of a large temperate-reef fish, Achoerodus viridis (Pisces: Labridae). Marine Biology 132, 503–514.
Influence of habitat on abundance and size structure of a large temperate-reef fish, Achoerodus viridis (Pisces: Labridae).Crossref | GoogleScholarGoogle Scholar |

Glasby, T. M., and Gibson, P. T. (2020). Decadal dynamics of subtidal barrens habitat. Marine Environmental Research 154, 104869.
Decadal dynamics of subtidal barrens habitat.Crossref | GoogleScholarGoogle Scholar | 31928986PubMed |

Growns, J. E., and Ritz, D. A. (1994). Colour variation in southern Tasmania populations of Heliocidaris erythrogramma (Echinometridae: Echinoidea). Marine and Freshwater Research 45, 233–242.
Colour variation in southern Tasmania populations of Heliocidaris erythrogramma (Echinometridae: Echinoidea).Crossref | GoogleScholarGoogle Scholar |

Guest, M. A., Frusher, S. D., Nichols, P. D., Johnson, C. R., and Wheatley, K. E. (2009). Trophic effects of fishing southern rock lobster Jasus edwardsii shown by combined fatty acid and stable isotope analyses. Marine Ecology Progress Series 388, 169–184.
Trophic effects of fishing southern rock lobster Jasus edwardsii shown by combined fatty acid and stable isotope analyses.Crossref | GoogleScholarGoogle Scholar |

Guidetti, P. (2006). Marine reserves re-establish lost predatory interactions and cause community changes in rocky reefs. Ecological Applications 16, 963–976.
Marine reserves re-establish lost predatory interactions and cause community changes in rocky reefs.Crossref | GoogleScholarGoogle Scholar | 16826995PubMed |

Haley, C. N., Blamey, L. K., Atkinson, L. J., and Branch, G. M. (2011). Dietary change of the rock lobster Jasus lalandii after an ‘invasive’ geographic shift: effects of size, density and food availability. Estuarine, Coastal and Shelf Science 93, 160–170.
Dietary change of the rock lobster Jasus lalandii after an ‘invasive’ geographic shift: effects of size, density and food availability.Crossref | GoogleScholarGoogle Scholar |

Harborne, A. R., Renaud, P. G., Tyler, E. H. M., and Mumby, P. J. (2009). Reduced density of the herbivorous urchin Diadema antillarum inside a Caribbean marine reserve linked to increased predation pressure by fishes. Coral Reefs 28, 783–791.
Reduced density of the herbivorous urchin Diadema antillarum inside a Caribbean marine reserve linked to increased predation pressure by fishes.Crossref | GoogleScholarGoogle Scholar |

Haug, J. T., Maas, A., Haug, C., and Waloszek, D. (2012). Evolution of crustacean appendages. In ‘The Natural History of the Crustacea’. (Eds L. Watling and M. Thiel.) pp. 34–73 (Oxford University Press: New York, NY, USA.)

Hickman, R. W. (1972). Rock lobsters feeding on oysters (note). New Zealand Journal of Marine and Freshwater Research 6, 641–644.
Rock lobsters feeding on oysters (note).Crossref | GoogleScholarGoogle Scholar |

James, P. J., and Tong, L. J. (1998). Feeding technique, critical size and size preference of Jasus edwardsii fed cultured and wild mussels. Marine and Freshwater Research 49, 151–156.
Feeding technique, critical size and size preference of Jasus edwardsii fed cultured and wild mussels.Crossref | GoogleScholarGoogle Scholar |

Jeffs, A. G., Gardner, C., and Cockcroft, A. (2013). Jasus and Sagmariasus species. In Lobsters: Biology, Management, Aquaculture and Fisheries’. (Ed. B. L. Phillips) pp. 259–278 (Wiley: Chichester, UK.)

Jeffs, A., Daniels, C., and Heasman, K. (2020). Aquaculture of marine lobsters. In ‘Fisheries and Aquaculture’. (Eds G. Lovrich and M. Thiel.) pp. 285–300. (Oxford University Press: New York, NY, USA.)

Jenkinson, R. S., Hovel, K. A., Dunn, R. P., and Edwards, M. S. (2020). Biogeographical variation in the distribution, abundance, and interactions among key species on rocky reefs of the northeast Pacific. Marine Ecology Progress Series 648, 51–65.
Biogeographical variation in the distribution, abundance, and interactions among key species on rocky reefs of the northeast Pacific.Crossref | GoogleScholarGoogle Scholar |

Jensen, M. A., Fitzgibbon, Q. P., Carter, C. G., and Adams, L. R. (2013). The effect of stocking density on growth, metabolism and ammonia–N excretion during larval ontogeny of the spiny lobster Sagmariasus verreauxi. Aquaculture 376–379, 45–53.
The effect of stocking density on growth, metabolism and ammonia–N excretion during larval ontogeny of the spiny lobster Sagmariasus verreauxi.Crossref | GoogleScholarGoogle Scholar |

Johnson, C.R., Ling, S.D., Sanderson, C., Dominguez, J.G.S., Flukes, E.B., Frusher, S.D., Gardner, C., Hartmann, K., Jarman, S., Marzloff, M.P, Little, R., Soulie, J.C., Melbourne-Thomas, J., Redd, K. (2013). Rebuilding Ecosystem Resilience: Assessment of management options to minimise formation of ‘barrens’ habitat by the long-spined sea urchin (Centrostephanus rodgersii) in Tasmania. FRDC Report 2007/045, Tasmanian Department of Primary Industries, Parks, Water and Environment.

Johnston, D. J. (2003). Ontogenetic changes in digestive enzyme activity of the spiny lobster, Jasus edwardsii (Decapoda; Palinuridae). Marine Biology 143, 1071–1082.
Ontogenetic changes in digestive enzyme activity of the spiny lobster, Jasus edwardsii (Decapoda; Palinuridae).Crossref | GoogleScholarGoogle Scholar |

Jones, J. I., and Waldron, S. (2003). Combined stable isotope and gut contents analysis of food webs in plant‐dominated, shallow lakes. Freshwater Biology 48, 1396–1407.
Combined stable isotope and gut contents analysis of food webs in plant‐dominated, shallow lakes.Crossref | GoogleScholarGoogle Scholar |

Keesing, J. (2001). The ecology of Heliocidaris erythrogramma. Developments in Aquaculture and Fisheries Science 32, 261–270.
The ecology of Heliocidaris erythrogramma.Crossref | GoogleScholarGoogle Scholar |

Keesing, J. K. (2007). Ecology of Heliocidaris erythrogramma. Developments in Aquaculture and Fisheries Science 37, 339–351.
Ecology of Heliocidaris erythrogramma.Crossref | GoogleScholarGoogle Scholar |

Keesing, J. K. (2020). Heliocidaris erythrogramma. Developments in Aquaculture and Fisheries Science 43, 537–552.
Heliocidaris erythrogramma.Crossref | GoogleScholarGoogle Scholar |

Kelly, S. (2001). Temporal variation in the movement of the spiny lobster Jasus edwardsii. Marine and Freshwater Research 52, 323–331.
Temporal variation in the movement of the spiny lobster Jasus edwardsii.Crossref | GoogleScholarGoogle Scholar |

Kelly, S., and MacDiarmid, A. B. (2003). Movement patterns of mature spiny lobsters, Jasus edwardsii, from a marine reserve. New Zealand Journal of Marine and Freshwater Research 37, 149–158.
Movement patterns of mature spiny lobsters, Jasus edwardsii, from a marine reserve.Crossref | GoogleScholarGoogle Scholar |

Kelly, S., Scott, D., MacDiarmid, A. B., and Babcock, R. C. (2000). Spiny lobster, Jasus edwardsii, recovery in New Zealand marine reserves. Biological Conservation 92, 359–369.
Spiny lobster, Jasus edwardsii, recovery in New Zealand marine reserves.Crossref | GoogleScholarGoogle Scholar |

Kensler, C. B. (1967). Notes on laboratory rearing of juvenile spiny lobsters, Jasus edwardsii (Hutton) (Crustacea: Decapoda: Palinuridae). New Zealand Journal of Marine and Freshwater Research 1, 71–75.
Notes on laboratory rearing of juvenile spiny lobsters, Jasus edwardsii (Hutton) (Crustacea: Decapoda: Palinuridae).Crossref | GoogleScholarGoogle Scholar |

King, C. K., Hoegh-Guldberg, O., and Byrne, M. (1994). Reproductive cycle of Centrostephanus rodgersii (Echinoidea), with recommendations for the establishment of a sea urchin fishery in New South Wales. Marine Biology 120, 95–106.

Koehler, A. V., and Poulin, R. (2010). Host partitioning by parasites in an intertidal crustacean community. The Journal of Parasitology 96, 862–868.
Host partitioning by parasites in an intertidal crustacean community.Crossref | GoogleScholarGoogle Scholar | 20950092PubMed |

Lafferty, K. D. (2004). Fishing for lobsters indirectly increases epidemics in sea urchins. Ecological Applications 14, 1566–1573.
Fishing for lobsters indirectly increases epidemics in sea urchins.Crossref | GoogleScholarGoogle Scholar |

Lah, R. A., Benkendorff, K., and Bucher, D. (2017). Thermal tolerance and preference of exploited turbinid snails near their range limit in a global warming hotspot. Journal of Thermal Biology 64, 100–108.
Thermal tolerance and preference of exploited turbinid snails near their range limit in a global warming hotspot.Crossref | GoogleScholarGoogle Scholar | 28166939PubMed |

Lavalli, K. L., and Spanier, E. (2015). Predator adaptations of decapods. In ‘Lifestyles and Feeding Biology: The Natural History of the Crustacea’. (Eds M. Theil and L. Watling.) pp. 190–228. (Oxford University Press: New York, NY, USA.)

Lawry, J. V. (1967). Structure and function of the parapodial cirri of the polynoid polychaete, Harmothoë. Zeitschrift für Zellforschung und Mikroskopische Anatomie 82, 345–361.
Structure and function of the parapodial cirri of the polynoid polychaete, Harmothoë.Crossref | GoogleScholarGoogle Scholar |

Layton, C., Coleman, M. A., Marzinelli, E. M., Steinberg, P. D., Swearer, S. E., Vergés, A., Wernberg, T., and Johnson, C. R. (2020). Kelp forest restoration in Australia. Frontiers in Marine Science 7, 74.
Kelp forest restoration in Australia.Crossref | GoogleScholarGoogle Scholar |

Ling, S. D. (2009). Climate change and a range-extending sea urchin: catastrophic-shifts and resilience in a temperate reef ecosystem. Ph.D. Dissertation, University of Tasmania.

Ling, S. D., and Johnson, C. R. (2009). Population dynamics of an ecologically important range-extender: kelp beds versus sea urchin barrens. Marine Ecology Progress Series 374, 113–125.
Population dynamics of an ecologically important range-extender: kelp beds versus sea urchin barrens.Crossref | GoogleScholarGoogle Scholar |

Ling, S. D., Johnson, C. R., Frusher, S. D., and Ridgway, K. R. (2009a). Overfishing reduces resilience of kelp beds to climate-driven catastrophic phase shift. Proceedings of the National Academy of Sciences of the United States of America 106, 22341–22345.
Overfishing reduces resilience of kelp beds to climate-driven catastrophic phase shift.Crossref | GoogleScholarGoogle Scholar | 20018706PubMed |

Ling, S. D., Johnson, C. R., Ridgway, K., Hobday, A. J., and Haddon, M. (2009b). Climate‐driven range extension of a sea urchin: inferring future trends by analysis of recent population dynamics. Global Change Biology 15, 719–731.
Climate‐driven range extension of a sea urchin: inferring future trends by analysis of recent population dynamics.Crossref | GoogleScholarGoogle Scholar |

Ling, S. D., Scheibling, R. E., Rassweiler, A., Johnson, C. R., Shears, N., Connell, S. D., Salomon, A. K., Norderhaug, K. M., Perez-Matus, A., Hernandez, J. C., Clemente, S., Blamey, L. K., Hereu, B., Ballesteros, E., Sala, E., Garrabou, J., Cebrian, E., Zabala, M., Fujita, D., and Johnson, L. E. (2015). Global regime shift dynamics of catastrophic sea urchin overgrazing. Philosophical Transactions of the Royal Society of London – B. Biological Sciences 370, 20130269.
Global regime shift dynamics of catastrophic sea urchin overgrazing.Crossref | GoogleScholarGoogle Scholar |

Ling, S. D., Kriegisch, N., Woolley, B., and Reeves, S. E. (2019). Density‐dependent feedbacks, hysteresis, and demography of overgrazing sea urchins. Ecology 100, e02577.
Density‐dependent feedbacks, hysteresis, and demography of overgrazing sea urchins.Crossref | GoogleScholarGoogle Scholar | 30707451PubMed |

MacArthur, L. D., Phillips, D. L., Hyndes, G. A., Hanson, C. E., and Vanderklift, M. A. (2011). Habitat surrounding patch reefs influences the diet and nutrition of the western rock lobster. Marine Ecology Progress Series 436, 191–205.
Habitat surrounding patch reefs influences the diet and nutrition of the western rock lobster.Crossref | GoogleScholarGoogle Scholar |

MacDiarmid, A. B., Freeman, D., and Kelly, S. (2013). Rock lobster biology and ecology: contributions to understanding through the Leigh Marine Laboratory 1962–2012. New Zealand Journal of Marine and Freshwater Research 47, 313–333.
Rock lobster biology and ecology: contributions to understanding through the Leigh Marine Laboratory 1962–2012.Crossref | GoogleScholarGoogle Scholar |

Marchese, G., Fitzgibbon, Q. P., Trotter, A. J., Carter, C. G., Jones, C. M., and Smith, G. G. (2019). The influence of flesh ingredients format and krill meal on growth and feeding behaviour of juvenile tropical spiny lobster Panulirus ornatus. Aquaculture 499, 128–139.
The influence of flesh ingredients format and krill meal on growth and feeding behaviour of juvenile tropical spiny lobster Panulirus ornatus.Crossref | GoogleScholarGoogle Scholar |

Mayfield, S., Atkinson, L. J., Branch, G. M., and Cockcroft, C. (2000). Diet of the West Coast rock lobster Jasus lalandii: Influence of lobster size, sex, capture depth, latitude, and moult stage. African Journal of Marine Science 22, 57–69.
Diet of the West Coast rock lobster Jasus lalandii: Influence of lobster size, sex, capture depth, latitude, and moult stage.Crossref | GoogleScholarGoogle Scholar |

Montgomery, S. S. (2005). Effects of trap‐shape, bait, and soak‐time on sampling the eastern rock lobster, Jasus verreauxi. New Zealand Journal of Marine and Freshwater Research 39, 353–363.
Effects of trap‐shape, bait, and soak‐time on sampling the eastern rock lobster, Jasus verreauxi.Crossref | GoogleScholarGoogle Scholar |

Montgomery, S. S., and Craig, J. R. (2005). Distribution and abundance of recruits of the eastern rock lobster (Jasus verreauxi) along the coast of New South Wales, Australia. New Zealand Journal of Marine and Freshwater Research 39, 619–628.
Distribution and abundance of recruits of the eastern rock lobster (Jasus verreauxi) along the coast of New South Wales, Australia.Crossref | GoogleScholarGoogle Scholar |

Montgomery, S. S., and Liggins, G. W. (2013). Recovery of the eastern rock lobster Sagmariasus verreauxi off New South Wales, Australia. Marine Biology Research 9, 104–115.
Recovery of the eastern rock lobster Sagmariasus verreauxi off New South Wales, Australia.Crossref | GoogleScholarGoogle Scholar |

Montgomery, S. S., Liggins, G. W., Craig, J. R., and McLeod, J. R. (2009). Growth of the spiny lobster Jasus verreauxi (Decapoda: Palinuridae) off the east coast of Australia. New Zealand Journal of Marine and Freshwater Research 43, 113–123.
Growth of the spiny lobster Jasus verreauxi (Decapoda: Palinuridae) off the east coast of Australia.Crossref | GoogleScholarGoogle Scholar |

Moss, G. A., James, P. J., Allen, S. E., and Bruce, M. P. (2004). Temperature effects on the embryo development and hatching of the spiny lobster Sagmariasus verreauxi. New Zealand Journal of Marine and Freshwater Research 38, 795–801.
Temperature effects on the embryo development and hatching of the spiny lobster Sagmariasus verreauxi.Crossref | GoogleScholarGoogle Scholar |

Murray, F., and Cowie, P. R. (2011). Plastic contamination in the decapod crustacean Nephrops norvegicus. Marine Pollution Bulletin 62, 1207–1217.
Plastic contamination in the decapod crustacean Nephrops norvegicus.Crossref | GoogleScholarGoogle Scholar | 21497854PubMed |

Nichols, K. D., Segui, L., and Hovel, K. A. (2015). Effects of predators on sea urchin density and habitat use in a southern California kelp forest. Marine Biology 162, 1227–1237.
Effects of predators on sea urchin density and habitat use in a southern California kelp forest.Crossref | GoogleScholarGoogle Scholar |

Nishida, S., and Kittaka, J. (1992). Integumental organs of the phyllosoma larva of the rock lobster Jasus edwardsii (Hutton). Journal of Plankton Research 14, 563–573.
Integumental organs of the phyllosoma larva of the rock lobster Jasus edwardsii (Hutton).Crossref | GoogleScholarGoogle Scholar |

Nur, I. (2018). Parasites and histopathology of infected spiny lobster Panulirus spp. cultured in outer of Kendari Bay, Indonesia. Aquaculture, Aquarium, Conservation & Legislation 11, 108–117.

O’Rorke, R., Lavery, S. D., Wang, M., Nodder, S. D., and Jeffs, A. G. (2014). Determining the diet of larvae of the red rock lobster (Jasus edwardsii) using high-throughput DNA sequencing techniques. Marine Biology 161, 551–563.
Determining the diet of larvae of the red rock lobster (Jasus edwardsii) using high-throughput DNA sequencing techniques.Crossref | GoogleScholarGoogle Scholar |

Parsons, T. R. (1992). The removal of marine predators by fisheries and the impact of trophic structure. Marine Pollution Bulletin 25, 51–53.
The removal of marine predators by fisheries and the impact of trophic structure.Crossref | GoogleScholarGoogle Scholar |

Pederson, H. G., and Johnson, C. R. (2006). Predation of the sea urchin Heliocidaris erythrogramma by rock lobsters (Jasus edwardsii) in no-take marine reserves. Journal of Experimental Marine Biology and Ecology 336, 120–134.
Predation of the sea urchin Heliocidaris erythrogramma by rock lobsters (Jasus edwardsii) in no-take marine reserves.Crossref | GoogleScholarGoogle Scholar |

Pederson, H. G., and Johnson, C. R. (2008). Growth and age structure of sea urchins (Heliocidaris erythrogramma) in complex barrens and native macroalgal beds in eastern Tasmania. ICES Journal of Marine Science 65, 1–11.
Growth and age structure of sea urchins (Heliocidaris erythrogramma) in complex barrens and native macroalgal beds in eastern Tasmania.Crossref | GoogleScholarGoogle Scholar |

Pistevos, J. C., Nagelkerken, I., Rossi, T., and Connell, S. D. (2017). Antagonistic effects of ocean acidification and warming on hunting sharks. Oikos 126, 3–18.
Antagonistic effects of ocean acidification and warming on hunting sharks.Crossref | GoogleScholarGoogle Scholar |

Powter, D. M., Gladstone, W., and Platell, M. (2010). The influence of sex and maturity on the diet, mouth morphology and dentition of the Port Jackson shark, Heterodontus portusjacksoni. Marine and Freshwater Research 61, 74–85.
The influence of sex and maturity on the diet, mouth morphology and dentition of the Port Jackson shark, Heterodontus portusjacksoni.Crossref | GoogleScholarGoogle Scholar |

Provost, E. J., Kelaher, B. P., Dworjanyn, S. A., Russell, B. D., Connell, S. D., Ghedini, G., Gillanders, B. M., Figueira, W., and Coleman, M. A. (2017). Climate‐driven disparities among ecological interactions threaten kelp forest persistence. Global Change Biology 23, 353–361.
Climate‐driven disparities among ecological interactions threaten kelp forest persistence.Crossref | GoogleScholarGoogle Scholar | 27392308PubMed |

Radford, C. A., and Marsden, I. D. (2005). Does Morning as Opposed to Night‐time Feeding Affect Growth in Juvenile Spiny Lobsters, Jasus edwardsi. Journal of the World Aquaculture Society 36, 480–488.
Does Morning as Opposed to Night‐time Feeding Affect Growth in Juvenile Spiny Lobsters, Jasus edwardsi.Crossref | GoogleScholarGoogle Scholar |

Redd, K. S. (2017). Using DNA to explore predator diet in temperate marine ecosystems. Ph.D. dissertation, University of Tasmania.

Redd, K. S., Jarman, S. N., Frusher, S. D., and Johnson, C. R. (2008). A molecular approach to identify prey of the southern rock lobster. Bulletin of Entomological Research 98, 233–238.
A molecular approach to identify prey of the southern rock lobster.Crossref | GoogleScholarGoogle Scholar | 18439347PubMed |

Redd, K. S., Ling, S. D., Frusher, S. D., Jarman, S., and Johnson, C. R. (2014). Using molecular prey detection to quantify rock lobster predation on barrens‐forming sea urchins. Molecular Ecology 23, 3849–3869.
Using molecular prey detection to quantify rock lobster predation on barrens‐forming sea urchins.Crossref | GoogleScholarGoogle Scholar | 24844936PubMed |

Robles, C., Sweetnam, D., and Eminike, J. (1990). Lobster predation on mussels: Shore‐level differences in prey vulnerability and predator preference. Ecology 71, 1564–1577.
Lobster predation on mussels: Shore‐level differences in prey vulnerability and predator preference.Crossref | GoogleScholarGoogle Scholar |

Rowan, K. S. (1989). ‘Photosynthetic Pigments of Algae’, 1st edn. (Cambridge University Press: Cambridge, UK.)

Rudnick, D., and Resh, V. (2005). Stable isotopes, mesocosms and gut content analysis demonstrate trophic differences in two invasive decapod crustacea. Freshwater Biology 50, 1323–1336.
Stable isotopes, mesocosms and gut content analysis demonstrate trophic differences in two invasive decapod crustacea.Crossref | GoogleScholarGoogle Scholar |

Sangil, C., Clemente, S., Martín-García, L., and Hernández, J. C. (2012). No-take areas as an effective tool to restore urchin barrens on subtropical rocky reefs. Estuarine, Coastal and Shelf Science 112, 207–215.
No-take areas as an effective tool to restore urchin barrens on subtropical rocky reefs.Crossref | GoogleScholarGoogle Scholar |

Shears, N. T., and Babcock, R. C. (2002). Marine reserves demonstrate top-down control of community structure on temperate reefs. Oecologia 132, 131–142.
Marine reserves demonstrate top-down control of community structure on temperate reefs.Crossref | GoogleScholarGoogle Scholar | 28547276PubMed |

Shears, N. T., and Babcock, R. C. (2003). Continuing trophic cascade effects after 25 years of no-take marine reserve protection. Marine Ecology Progress Series 246, 1–16.
Continuing trophic cascade effects after 25 years of no-take marine reserve protection.Crossref | GoogleScholarGoogle Scholar |

Simon, C. J., Fitzgibbon, Q. P., Battison, A., Carter, C. G., and Battaglene, S. C. (2015). Bioenergetics of nutrient reserves and metabolism in spiny lobster juveniles Sagmariasus verreauxi: predicting nutritional condition from hemolymph biochemistry. Physiological and Biochemical Zoology 88, 266–283.
Bioenergetics of nutrient reserves and metabolism in spiny lobster juveniles Sagmariasus verreauxi: predicting nutritional condition from hemolymph biochemistry.Crossref | GoogleScholarGoogle Scholar | 25860826PubMed |

Taylor, R. B. (1998). Density, biomass and productivity of animals in four subtidal rocky reef habitats: the importance of small mobile invertebrates. Marine Ecology Progress Series 172, 37–51.
Density, biomass and productivity of animals in four subtidal rocky reef habitats: the importance of small mobile invertebrates.Crossref | GoogleScholarGoogle Scholar |

Tegner, M. J., and Dayton, P. K. (2000). Ecosystem effects of fishing in kelp forest communities. ICES Journal of Marine Science 57, 579–589.
Ecosystem effects of fishing in kelp forest communities.Crossref | GoogleScholarGoogle Scholar |

Tegner, M. J., and Levin, L. A. (1983). Spiny lobsters and sea urchins: analysis of a predator-prey interaction. Journal of Experimental Marine Biology and Ecology 73, 125–150.
Spiny lobsters and sea urchins: analysis of a predator-prey interaction.Crossref | GoogleScholarGoogle Scholar |

Thuy, B., and Stöh, S. (2011). Lateral arm plate morphology in brittle stars (Echinodermata: Ophiuroidea): new perspectives for ophiuroid micropalaeontology and classification. Zootaxa 3013, 1–47.
Lateral arm plate morphology in brittle stars (Echinodermata: Ophiuroidea): new perspectives for ophiuroid micropalaeontology and classification.Crossref | GoogleScholarGoogle Scholar |

Valentine, J. P., and Johnson, C. R. (2005). Persistence of sea urchin (Heliocidaris erythrogramma) barrens on the east coast of Tasmania: inhibition of macroalgal recovery in the absence of high densities of sea urchins. Botanica Marina 48, 106–115.
Persistence of sea urchin (Heliocidaris erythrogramma) barrens on the east coast of Tasmania: inhibition of macroalgal recovery in the absence of high densities of sea urchins.Crossref | GoogleScholarGoogle Scholar |

Wang, M., and Jeffs, A. G. (2014). Nutritional composition of potential zooplankton prey of spiny lobster larvae: a review. Reviews in Aquaculture 6, 270–299.
Nutritional composition of potential zooplankton prey of spiny lobster larvae: a review.Crossref | GoogleScholarGoogle Scholar |

Watson, B. D. (1965). The fine structure of the body-wall in a free-living nematode, Euchromadora vulgaris. Journal of Cell Science 3, 75–81.

Weiss, H. M., Lozano-Álvarez, E., Briones-Fourzán, P., and Negrete-Soto, F. (2006). Using red light with fixed-site video cameras to study the behavior of the spiny lobster, Panulirus argus, and associated animals at night and inside their shelters. Marine Technology Society Journal 40, 86–95.
Using red light with fixed-site video cameras to study the behavior of the spiny lobster, Panulirus argus, and associated animals at night and inside their shelters.Crossref | GoogleScholarGoogle Scholar |

Wickham, H. (2016). ‘ggplot2: Elegant Graphics for Data Analysis.’ (Springer-Verlag: New York, NY, USA.)

Williams, M. J. (1981). Methods for analysis of natural diet in portunid crabs (Crustacea: Decapoda: Portunidae). Journal of Experimental Marine Biology and Ecology 52, 103–113.
Methods for analysis of natural diet in portunid crabs (Crustacea: Decapoda: Portunidae).Crossref | GoogleScholarGoogle Scholar |

Williams, S. T. (2017). Molluscan shell colour. Biological Reviews of the Cambridge Philosophical Society 92, 1039–1058.
Molluscan shell colour.Crossref | GoogleScholarGoogle Scholar | 27005683PubMed |

Witten, P. E., Huysseune, A., and Hall, B. K. (2010). A practical approach for the identification of the many cartilaginous tissues in teleost fish. Journal of Applied Ichthyology 26, 257–262.
A practical approach for the identification of the many cartilaginous tissues in teleost fish.Crossref | GoogleScholarGoogle Scholar |

Wraith, J., Lynch, T., Minchinton, T. E., Broad, A., and Davis, A. R. (2013). Bait type affects fish assemblages and feeding guilds observed at baited remote underwater video stations. Marine Ecology Progress Series 477, 189–199.
Bait type affects fish assemblages and feeding guilds observed at baited remote underwater video stations.Crossref | GoogleScholarGoogle Scholar |

Ziegler, P. E., Haddon, M., Frusher, S. D., and Johnson, C. R. (2004). Modelling seasonal catchability of the southern rock lobster Jasus edwardsii by water temperature, moulting, and mating. Marine Biology 145, 179–190.
Modelling seasonal catchability of the southern rock lobster Jasus edwardsii by water temperature, moulting, and mating.Crossref | GoogleScholarGoogle Scholar |