Free Standard AU & NZ Shipping For All Book Orders Over $80!
Register      Login
Marine and Freshwater Research Marine and Freshwater Research Society
Advances in the aquatic sciences
RESEARCH ARTICLE

A snapshot of reef conditions in North Ari Atoll (Maldives) following the 2016 bleaching event and Acanthaster planci outbreak

A. Caragnano https://orcid.org/0000-0001-7092-6931 A B I , D. Basso C , S. Spezzaferri D , P. Hallock E and Conférence Universitaire de Suisse Occidentale Scientific Party
+ Author Affiliations
- Author Affiliations

A Dipartimento di Scienze della Vita e dell’Ambiente, Università Politecnica delle Marche, Via Brecce Bianche, I-60131 Ancona, Italy.

B Dipartimento di Scienze della Vita, Università degli Studi di Trieste, Via L. Giorgieri 10, I-34127 Trieste, Italy.

C CoNISMa Local Research Unit, Università degli Studi di Milano-Bicocca, Dipartimento di Scienze dell’Ambiente e della Terra, Piazza della Scienza 4, I-20126 Milano, Italy.

D Department of Geosciences, University of Fribourg, Chemin du Musée 6, CH-1700 Fribourg Switzerland.

E University of South Florida, College of Marine Science, Saint Petersburg, FL 33701 USA.

F École polytechnique fédérale de Lausanne, Environmental Engineering Institute, Route Cantonale, CH-1015 Lausanne, Switzerland.

G University of Geneva, Department of Earth Sciences, Rue des Maraîchers 13, CH205 Geneva, Switzerland.

H University of Lausanne, Faculty of Geosciences and Environment, Géopolis, CH-1015 Lausanne, Switzerland.

I Corresponding author. Email: annalisacaragnano@hotmail.com

Marine and Freshwater Research 72(7) 987-996 https://doi.org/10.1071/MF20119
Submitted: 21 April 2020  Accepted: 30 December 2020   Published: 10 February 2021

Abstract

Coral reefs are degrading worldwide. This study explored the benthic community structure (biotic and abiotic benthic cover and coral composition) at three islands (Rasdhoo, Maayafushi and Vihamaafaru) in the central Maldivian archipelago, 2 years after the 2016 El Niño–Southern Oscillation (ENSO) and the associated mass-bleaching events. Hence, we assessed benthic cover on the same GPS sites and depth (10 m) of a subset of reefs that had been previously studied. The islands represent a range of management categories and oceanic influence. Average live coral cover in 2018 was lowest on Maayafushi reefs (0.65 ± 0.41%), a resort island with minimal exposure to oceanic influence. At Rasdhoo, a community island with south-eastern oceanic exposure, live coral cover was 14.70 ± 3.20% and 90% of the colonies were less than 20 cm in diameter. At Vihamaafaru, an uninhabited island with oceanic exposure from the west, reefs assessed had a live coral cover of 17.9 ± 6.80%, Acropora spp. remained the dominant taxa, and 35% of colonies were 20 cm or greater in diameter. This evident trend, in variation of live coral cover and size of the coral colonies, among the three island settings indicates the greatest potential for recovery of coral cover on reefs with more exposure to oceanic influence.

Keywords: climate change, coral cover, coral size, crown-of-thorns starfish, ENSO 2016, reef recovery.


References

Agardy, T., Hicks, F., Nistharan, F., Fisam, A., Abdulla, A., Schmidt, A., and Grimsditch, G. (2017). ‘Ecosystem Services Assessment of North Ari Atoll Maldives.’(IUCN and Government of Maldives: Gland, Switzerland.)

Albright, R., Takeshita, Y., Koweek, D. A., Ninokawa, A., Wolfe, K., Rivlin, T., Nebuchina, Y., Young, J., and Caldeira, K. (2018). Carbon dioxide addition to coral reef waters suppresses net community calcification. Nature 555, 516–519.
Carbon dioxide addition to coral reef waters suppresses net community calcification.Crossref | GoogleScholarGoogle Scholar | 29539634PubMed |

Andersson, A. J., and Gledhill, D. (2013). Ocean acidification and coral reefs: effects on breakdown, dissolution, and net ecosystem calcification. Annual Review of Marine Science 5, 321–348.
Ocean acidification and coral reefs: effects on breakdown, dissolution, and net ecosystem calcification.Crossref | GoogleScholarGoogle Scholar | 22881351PubMed |

Andersson, A. J., Kline, D. I., Edmunds, P. J., Archer, S. D., Bednaršek, N., Carpenter, R. C., Chadsey, M., Goldstein, P., Grottoli, A. G., Hurst, T. P., King, A. L., Kübler, J. E., Kuffner, I. B., Mackey, K. R. M., Menge, B. A., Paytan, A., Riebesell, U., Schnetzer, A., Warner, M. E., and Zimmerman, R. C. (2015). Understanding ocean acidification impacts on organismal to ecological scales. Oceanography 25, 16–27.
Understanding ocean acidification impacts on organismal to ecological scales.Crossref | GoogleScholarGoogle Scholar |

Aubert, O., and Droxler, A. W. (1996). Seismic stratigraphy and depositional signatures of the Maldive carbonate system (Indian Ocean). Marine and Petroleum Geology 13, 503–536.
Seismic stratigraphy and depositional signatures of the Maldive carbonate system (Indian Ocean).Crossref | GoogleScholarGoogle Scholar |

Baird, A., and Marshall, P. (2002). Mortality, growth and reproduction in scleractinian corals following bleaching on the Great Barrier Reef. Marine Ecology Progress Series 237, 133–141.
Mortality, growth and reproduction in scleractinian corals following bleaching on the Great Barrier Reef.Crossref | GoogleScholarGoogle Scholar |

Baker, A. C., Glynn, P. W., and Riegl, B. (2008). Climate change and coral reef bleaching: an ecological assessment of long‐term impacts, recovery trends and future outlook. Estuarine, Coastal and Shelf Science 80, 435–471.
Climate change and coral reef bleaching: an ecological assessment of long‐term impacts, recovery trends and future outlook.Crossref | GoogleScholarGoogle Scholar |

Ban, S. S., Graham, N. A. J., and Connolly, S. R. (2014). Evidence for multiple stressor interactions and effects on coral reefs. Global Change Biology 20, 681–697.
Evidence for multiple stressor interactions and effects on coral reefs.Crossref | GoogleScholarGoogle Scholar | 24166756PubMed |

Bates, D., Mächler, M., Bolker, B., and Walker, S. (2015). Fitting linear mixed-effects models using lme4. Journal of Statistical Software 67, 1–48.
Fitting linear mixed-effects models using lme4.Crossref | GoogleScholarGoogle Scholar |

Beccari, V., Spezzaferri, S., Stainbank, S., Hallock, P., Basso, D., Caragnano, A., Pisapia, C., Adams, A., Angeloz, A., Del Piero, N., Dietsche, P., Eymard, I., Farley, N., Fau, M., Foubery, A., Lauper, B., Lehmann, A., Maillet, M., Negga, H., Ordonez, L., Peyrotty, G., Rime, V., Rüggeberg, A., Schoellhorn, I., and Vimpere, L. (2020). Responses of reef bioindicators to recent temperature anomalies in distinct areas of the North Ari and Rasdhoo atolls (Maldives). Ecological Indicators 112, 106128.
Responses of reef bioindicators to recent temperature anomalies in distinct areas of the North Ari and Rasdhoo atolls (Maldives).Crossref | GoogleScholarGoogle Scholar |

Bellwood, D. R., Hughes, T. P., Folke, C., and Nyström, M. (2004). Confronting the coral reef crisis. Nature 429, 827–833.
Confronting the coral reef crisis.Crossref | GoogleScholarGoogle Scholar | 15215854PubMed |

Bianchi, C. N. (2001). Bioconstruction in marine ecosystems and Italian marine biology. Biologia Marina Mediterranea 8, 112–130.

Birkeland, C. (1987). Partial correlations of island size, human population size and Acanlhaster planci abundance. Bulletin of Marine Science 41, 633.

Bruckner, A. W., Coward, G., Bimson, K., and Rattanawongwan, T. (2017). Predation by feeding aggregations of Drupella spp. inhibits the recovery of reefs damaged by a mass bleaching event. Coral Reefs 36, 1181–1187.
Predation by feeding aggregations of Drupella spp. inhibits the recovery of reefs damaged by a mass bleaching event.Crossref | GoogleScholarGoogle Scholar |

Caragnano, A., Colombo, F., Rodondi, G., and Basso, D. (2009). 3-D Distribution of nongeniculate Corallinales: a case study from a reef crest of South Sinai (Red Sea, Egypt). Coral Reefs 28, 881–891.
3-D Distribution of nongeniculate Corallinales: a case study from a reef crest of South Sinai (Red Sea, Egypt).Crossref | GoogleScholarGoogle Scholar |

Carleton, J. H., and Done, T. J. (1995). Quantitative video sampling of coral reef benthos: largescale application. Coral Reefs 14, 35–46.
Quantitative video sampling of coral reef benthos: largescale application.Crossref | GoogleScholarGoogle Scholar |

Ciarapica, G., and Passeri, L. (1993). An overview of the Maldivian coral reefs in Felidu and North Malé Atoll (Indian Ocean): platform drowning by ecological crises. Facies 28, 33–65.
An overview of the Maldivian coral reefs in Felidu and North Malé Atoll (Indian Ocean): platform drowning by ecological crises.Crossref | GoogleScholarGoogle Scholar |

Cleary, D. F. R., Polónia, A. R. M., Renema, W., Hoeksema, B. W., Rachello-Dolmen, P. G., Moolenbeek, R. G., Budiyanto, A., Yahmantoro, , Tuti, Y., Giyanto, , Draisma, S. G. A., Prud’homme van Reine, W. F., Hariyantof, R., Gittenberger, A., Rikohf, M. S., and de Voogd, N. J. (2016). Variation in the composition of corals, fishes, sponges, echinoderms, ascidians, molluscs, foraminifera and macroalgae across a pronounced in-to-offshore environmental gradient in the Jakarta Bay–Thousand Islands coral reef complex. Marine Pollution Bulletin 110, 701–717.
Variation in the composition of corals, fishes, sponges, echinoderms, ascidians, molluscs, foraminifera and macroalgae across a pronounced in-to-offshore environmental gradient in the Jakarta Bay–Thousand Islands coral reef complex.Crossref | GoogleScholarGoogle Scholar |

Connell, J. H. (1997). Disturbance and recovery of coral assemblages. Coral Reefs 16, S101–S113.
Disturbance and recovery of coral assemblages.Crossref | GoogleScholarGoogle Scholar |

Cooley, S. R., Kite-Powell, H. L., and Dovey, S. C. (2009). Ocean acidification’s potential to alter global marine ecosystem services. Oceanography 22, 172–181.
Ocean acidification’s potential to alter global marine ecosystem services.Crossref | GoogleScholarGoogle Scholar |

De Falco, C., Bracco, A., and Pasquero, C. (2020). Climatic and oceanographic controls on coral bleaching conditions in the Maldivian region. Frontiers in Marine Science 7, 539869.
Climatic and oceanographic controls on coral bleaching conditions in the Maldivian region.Crossref | GoogleScholarGoogle Scholar |

English, S., Wilkinson, C., and Baker, V. (Eds) (1997). ‘Survey Manual for Tropical Marine Resources’, 2nd edn. (Australian Institute of Marine Science Publishing: Townsville, Qld, Australia.)

Fallati, L., Saponari, L., Savini, A., Marchese, F., Corselli, C., and Galli, P. (2020). Multi-temporal UAV data and object-based image analysis (OBIA) for estimation of substrate changes in a post-bleaching scenario on a Maldivian reef. Remote Sensing 12, 2093.
Multi-temporal UAV data and object-based image analysis (OBIA) for estimation of substrate changes in a post-bleaching scenario on a Maldivian reef.Crossref | GoogleScholarGoogle Scholar |

Gates, R. D., Baghdasarian, G., and Muscatine, L. (1992). Temperature stress causes host‐cell detachment in symbiotic cnidarians: implications for coral bleaching. The Biological Bulletin 182, 324–332.
Temperature stress causes host‐cell detachment in symbiotic cnidarians: implications for coral bleaching.Crossref | GoogleScholarGoogle Scholar | 29304594PubMed |

Glynn, P. W. (1988). El Nino warming, coral mortality and reef framework destruction by echinoid bioerosion in the eastern Pacific. Galaxea 7, 20–30.

Glynn, P. W., and Manzello, D. P. (2015). Bioerosion and coral‐reef growth: a dynamic balance. In ‘Coral Reefs in the Anthropocene’. (Ed. C. Birkeland.) pp. 67–97. (Springer Science and Business Media: Dordrecht, Netherlands.)

Graham, N. A. J., and Nash, K. L. (2013). The importance of structural complexity in coral reef ecosystems. Coral Reefs 32, 315–326.
The importance of structural complexity in coral reef ecosystems.Crossref | GoogleScholarGoogle Scholar |

Graham, N. A. J., Nash, K. L., and Kool, J. T. (2011). Coral reef recovery dynamics in a changing world. Coral Reefs 30, 283–294.
Coral reef recovery dynamics in a changing world.Crossref | GoogleScholarGoogle Scholar |

Hall, V. R., and Hughes, T. P. (1996). Reproductive strategies of modular organisms: comparative studies of reef-building corals. Ecology 77, 950–963.
Reproductive strategies of modular organisms: comparative studies of reef-building corals.Crossref | GoogleScholarGoogle Scholar |

Hallock, P. (2001). Coral reefs, carbonate sediments, nutrients, and global change. Topics in Geobiology 17, 387–427.
Coral reefs, carbonate sediments, nutrients, and global change.Crossref | GoogleScholarGoogle Scholar |

Hamylton, S. M., Duce, S., Vila‐Concejo, A., Roelfsema, C. M., Phinn, S. R., Carvalho, R. C., Shaw, E. C., and Joyce, K. E. (2017). Estimating regional coral reef calcium carbonate production from remotely sensed seafloor maps. Remote Sensing of Environment 201, 88–98.
Estimating regional coral reef calcium carbonate production from remotely sensed seafloor maps.Crossref | GoogleScholarGoogle Scholar |

Harney, J. N., and Fletcher, C. H. (2003). A budget of carbonate framework and sediment production, Kailua Bay, Oahu, Hawaii. Journal of Sedimentary Research 73, 856–868.
A budget of carbonate framework and sediment production, Kailua Bay, Oahu, Hawaii.Crossref | GoogleScholarGoogle Scholar |

Harris, D. L., Rovere, A., Casella, E., Power, H., Canavesio, R., Collin, A., Pomeroy, A., Webster, J. M., and Parravicini, V. (2018). Coral reef structural complexity provides important coastal protection from waves under rising sea levels. Science Advances 4, eaao4350.
Coral reef structural complexity provides important coastal protection from waves under rising sea levels.Crossref | GoogleScholarGoogle Scholar | 29503866PubMed |

Henry, L.-A., and Hart, M. (2005). Regeneration from injury and resource allocation in sponges and corals: a review. International Review of Hydrobiology 90, 125–158.
Regeneration from injury and resource allocation in sponges and corals: a review.Crossref | GoogleScholarGoogle Scholar |

Heron, S. F., Eakin, C. M., and Douvere, F. (2017). ‘Impacts of Climate Change on World Heritage Coral Reefs: a First Global Scientific Assessment.’ (UNESCO World Heritage Centre: Paris, France.)

Hoeksema, B. W. (1991). Control of bleaching in mushroom coral populations (Scleractinia: Fungiidae) in the Java Sea: stress tolerance and interference by life history strategy. Marine Ecology Progress Series 74, 225–237.
Control of bleaching in mushroom coral populations (Scleractinia: Fungiidae) in the Java Sea: stress tolerance and interference by life history strategy.Crossref | GoogleScholarGoogle Scholar |

Huang, Z.-C., Lenain, L., Melville, W. K., Middleton, J. H., Reineman, B., Statom, N., and McCabe, R. M. (2012). Dissipation of wave energy and turbulence in a shallow coral reef lagoon. Journal of Geophysical Research – Oceans 117, C03015.
Dissipation of wave energy and turbulence in a shallow coral reef lagoon.Crossref | GoogleScholarGoogle Scholar |

Hubbard, D. K. (2015). Reef biology and geology – A matter of scale. In ‘Coral Reefs in the Anthropocene’. (Ed. C. Birkeland.) pp. 42–66. (Springer Science and Business Media: Dordrecht, Netherlands.)

Hughes, T. P., Barnes, M. L., Bellwood, D. R., Cinner, J. E., Cumming, G. S., Jackson, J. B. C., Kleypas, J., van de Leemput, I. A., Lough, J. M., Morrison, T. H., Palumbi, S. R., van Nes, E. H., and Scheffer, M. (2017). Coral reefs in the Anthropocene. Nature 546, 82–90.
Coral reefs in the Anthropocene.Crossref | GoogleScholarGoogle Scholar | 28569801PubMed |

Jones, G. P., McCormick, M. I., Srinivasan, M., and Eagle, J. V. (2004). Coral decline threatens fish biodiversity in marine reserves. Proceedings of the National Academy of Sciences of the United States of America 101, 8251–8253.
Coral decline threatens fish biodiversity in marine reserves.Crossref | GoogleScholarGoogle Scholar | 15150414PubMed |

Kelley, R. A. (2011). ‘Indo Pacific Coral Finder’, 2nd edn. (BYOGUIDES Publishing: Townsville, Qld, Australia.)

Knowlton, N., Brainard, R. E., Fisher, R., Moews, M., Plaisance, L., and Caley, M. J. (2010). Coral reef biodiversity. In ‘Life in the World’s Oceans: Diversity, Distribution, and Abundance’. (Ed. A. D. McIntyre.) pp. 65–78. (Wiley‐Blackwell: Chichester, UK.)

Lasagna, R., Gnone, G., Taruffi, M., Morri, C., Bianchi, C. N., Parravicini, V., and Lavorano, S. (2014). A new synthetic index to evaluate reef coral condition. Ecological Indicators 40, 1–9.
A new synthetic index to evaluate reef coral condition.Crossref | GoogleScholarGoogle Scholar |

Loya, Y., Sakai, K., Yamazato, K., Nakano, Y., Sambali, H., and van Woesik, R. (2001). Coral bleaching: the winners and the losers. Ecology Letters 4, 122–131.
Coral bleaching: the winners and the losers.Crossref | GoogleScholarGoogle Scholar |

Montano, S., Chou, W.-H., Chen, C. A., Galli, P., and Reimer, J. D. (2015). First record of the coral-killing sponge Terpios hoshinota in the Maldives and Indian Ocean. Bulletin of Marine Science 91, 97–98.
First record of the coral-killing sponge Terpios hoshinota in the Maldives and Indian Ocean.Crossref | GoogleScholarGoogle Scholar |

Montefalcone, M., Morri, C., and Bianchi, C. N. (2018). Long-term change in bioconstruction potential of Maldivian coral reefs following extreme climate anomalies. Global Change Biology 24, 5629–5641.
Long-term change in bioconstruction potential of Maldivian coral reefs following extreme climate anomalies.Crossref | GoogleScholarGoogle Scholar | 30194747PubMed |

Morgan, K. M., and Kench, P. S. (2014). A detrital sediment budget of a Maldivian reef platform. Geomorphology 222, 122–131.
A detrital sediment budget of a Maldivian reef platform.Crossref | GoogleScholarGoogle Scholar |

Moritz, C., Ducarme, F., Sweet, M. J., Fox, M. D., Zgliczynski, B., Ibrahim, N., Basheer, A., Furby, K. A., Caldwell, Z. R., Pisapia, C., Grimsditch, G., and Abdulla, A. (2017). The ‘resort effect’: can tourist islands act as refuges for coral reef species? Diversity & Distributions 23, 1301–1312.
The ‘resort effect’: can tourist islands act as refuges for coral reef species?Crossref | GoogleScholarGoogle Scholar |

Morri, C., Aliani, S., and Bianchi, C. N. (2010). Reef status in the Rasfari region (North Malé Atoll, Maldives) five years before the mass mortality event of 1998. Estuarine, Coastal and Shelf Science 86, 258–264.
Reef status in the Rasfari region (North Malé Atoll, Maldives) five years before the mass mortality event of 1998.Crossref | GoogleScholarGoogle Scholar |

Morri, C., Montefalcone, M., Lasagna, R., Gatti, G., Rovere, A., Parravicini, V., Baldelli, G., Colantoni, P., and Bianchi, C. N. (2015). Through bleaching and tsunami: coral reef recovery in the Maldives. Marine Pollution Bulletin 98, 188–200.
Through bleaching and tsunami: coral reef recovery in the Maldives.Crossref | GoogleScholarGoogle Scholar | 26228070PubMed |

Muir, P. R., Marshall, P. A., Abdulla, A., and Aguirre, J. D. (2017). Species identity and depth predict bleaching severity in reef‐building corals: shall the deep inherit the reef? Proceeding of the Royal Society of London – B. Biology 284, 20171551.
Species identity and depth predict bleaching severity in reef‐building corals: shall the deep inherit the reef?Crossref | GoogleScholarGoogle Scholar |

Munday, P. L. (2004). Habitat loss, resource specialization, and extinction on coral reefs. Global Change Biology 10, 1642–1647.
Habitat loss, resource specialization, and extinction on coral reefs.Crossref | GoogleScholarGoogle Scholar |

Muscatine, L. (1990). The role of symbiotic algae in carbon and energy flux in reef corals. In ‘Coral Reefs’. (Ed. Z. Dubinsky.) pp. 75–87. (Elsevier: Amsterdam, Netherlands.)

Nakamura, T., and van Woesik, R. (2001). Water-flow rates and passive diffusion partially explain differential survival of corals during the 1998 bleaching event. Marine Ecology Progress Series 212, 301–304.
Water-flow rates and passive diffusion partially explain differential survival of corals during the 1998 bleaching event.Crossref | GoogleScholarGoogle Scholar |

Nerem, R. S., Beckley, B. D., Fasullo, J. T., Hamlington, B. D., Masters, D., and Mitchum, G. T. (2018). Climate-change-driven accelerated sea-level rise detected in the altimeter era. Proceedings of the National Academy of Sciences of the United States of America 115, 2022–2025.
Climate-change-driven accelerated sea-level rise detected in the altimeter era.Crossref | GoogleScholarGoogle Scholar | 29440401PubMed |

NOAA (2017). NOAA National Centers for Environmental Information, State of the Climate: Global Climate Report for Annual 2016. Available at https://www.ncdc.noaa.gov/sotc/global/201613 [Verified 16 January 2021].

Palandro, D. A., Andrefouet, S., Hu, C., Hallock, P., Mueller-Karger, F. E., Dustan, P., Callahan, M. K., Kranenburg, C., and Beaver, C. R. (2008). Quantification of two decades of shallow-water coral reef habitat decline in the Florida Keys National Marine Sanctuary using Landsat data (1984–2002). Remote Sensing of Environment 112, 3388–3399.
Quantification of two decades of shallow-water coral reef habitat decline in the Florida Keys National Marine Sanctuary using Landsat data (1984–2002).Crossref | GoogleScholarGoogle Scholar |

Pernice, M., and Hughes, D. J. (2019). Forecasting global coral bleaching. Nature Climate Change 9, 803–804.
Forecasting global coral bleaching.Crossref | GoogleScholarGoogle Scholar |

Perry, C. T., and Morgan, K. M. (2017). Bleaching drives collapse in reef carbonate budgets and reef growth potential on southern Maldives reefs. Scientific Reports 7, 40581.
Bleaching drives collapse in reef carbonate budgets and reef growth potential on southern Maldives reefs.Crossref | GoogleScholarGoogle Scholar | 28084450PubMed |

Perry, C. T., and Smithers, S. G. (2010). Evidence for the episodic ‘turn on’ and ‘turn off’ of turbid‐zone coral reefs during the late Holocene sea‐level highstand. Geology 38, 119–122.
Evidence for the episodic ‘turn on’ and ‘turn off’ of turbid‐zone coral reefs during the late Holocene sea‐level highstand.Crossref | GoogleScholarGoogle Scholar |

Perry, C. T., Edinger, E. N., Kench, P. S., Mumby, P. J., Murphy, G., Steneck, R. S., and Smithers, S. G. (2012). Estimating rates of biologically driven coral reef framework production and erosion: a new census-based carbonate budget methodology and applications to the reefs of Bonaire. Coral Reefs 31, 853–868.
Estimating rates of biologically driven coral reef framework production and erosion: a new census-based carbonate budget methodology and applications to the reefs of Bonaire.Crossref | GoogleScholarGoogle Scholar |

Pisapia, C., Rahman, M. A., Abdulla, A., Basheer, A., Caldwell, Z., Ducarme, F., Elkateb, A., Fox, M., Furby, K., Ibrahim, M., Moritz, C., Schmidt, A., Spezzaferri, S., Sweet, M., Zgliczynski, B., and Grimsditch, G. (2017a). Baseline assessment of coral reefs of North Ari Atoll. In ‘Cruise Report’. pp. 1–32. (IUCN and Government of Maldives: Gland, Switzerland.)

Pisapia, C., El Kateb, A., Hallock, P., and Spezzaferri, S. (2017b). Assessing coral reef health in the North Ari Atoll (Maldives) using the FoRAM Index. Marine Micropaleontology 133, 50–57.
Assessing coral reef health in the North Ari Atoll (Maldives) using the FoRAM Index.Crossref | GoogleScholarGoogle Scholar |

Pisapia, C., Burn, D., and Pratchett, M. S. (2019). Changes in the population and community structure of corals during recent disturbances (February 2016–October 2017) on Maldivian coral reefs. Scientific Reports 9, 8402.
Changes in the population and community structure of corals during recent disturbances (February 2016–October 2017) on Maldivian coral reefs.Crossref | GoogleScholarGoogle Scholar | 31182730PubMed |

Pratchett, M. S., Wilson, S. K., and Baird, A. H. (2006). Declines in the abundance of Chaetodon butterflyfishes following extensive coral depletion. Journal of Fish Biology 69, 1269–1280.
Declines in the abundance of Chaetodon butterflyfishes following extensive coral depletion.Crossref | GoogleScholarGoogle Scholar |

Pratchett, M. S., Trapon, M., Berumen, M. L., and Chong-Seng, K. (2011). Recent disturbances augment community shifts in coral assemblages in Moorea, French Polynesia. Coral Reefs 30, 183–193.
Recent disturbances augment community shifts in coral assemblages in Moorea, French Polynesia.Crossref | GoogleScholarGoogle Scholar |

Richardson, L. E., Graham, N. A. J., Pratchett, M. S., Eurich, J. G., and Hoey, A. S. (2018). Mass coral bleaching causes biotic homogenization of reef fish assemblages. Global Change Biology 24, 3117–3129.
Mass coral bleaching causes biotic homogenization of reef fish assemblages.Crossref | GoogleScholarGoogle Scholar | 29633512PubMed |

Ricke, K. L., Orr, J. C., Schneider, K., and Caldeira, K. (2013). Risks to coral reefs from ocean carbonate chemistry changes in recent earth system model projections. Environmental Research Letters 8, 034003.
Risks to coral reefs from ocean carbonate chemistry changes in recent earth system model projections.Crossref | GoogleScholarGoogle Scholar |

Riegl, B. (2001). Inhibition of reef framework by frequent disturbance: examples from the Arabian Gulf, South Africa, and the Cayman Islands. Palaeogeography, Palaeoclimatology, Palaeoecology 175, 79–101.
Inhibition of reef framework by frequent disturbance: examples from the Arabian Gulf, South Africa, and the Cayman Islands.Crossref | GoogleScholarGoogle Scholar |

Riegl, B. M., Bruckner, A. W., Rowlands, G. P., Purkis, S. J., and Renaud, P. (2012). Red Sea coral reef trajectories over 2 decades suggest increasing community homogenization and decline in coral size. PLoS One 7, e38396.
Red Sea coral reef trajectories over 2 decades suggest increasing community homogenization and decline in coral size.Crossref | GoogleScholarGoogle Scholar | 22693620PubMed |

Rogers, A., Harborne, A. R., Brown, C. J., Bozec, Y. M., Castro, C., Chollett, I., Hock, K., Knowland, C. A., Marshell, A., Ortiz, J. C., Razak, T., Roff, G., Samper-Villareal, J., Saunders, M. I., Wolff, N. H., and Mumby, P. J. (2015). Anticipative management for coral reef ecosystem services in the 21st century. Global Change Biology 21, 504–514.
Anticipative management for coral reef ecosystem services in the 21st century.Crossref | GoogleScholarGoogle Scholar | 25179273PubMed |

Rovere, A., Khanna, P., Bianchi, C. N., Droxler, A. W., Morri, C., and Naar, D. F. (2018). Submerged reef terraces in the Maldivian Archipelago (Indian Ocean). Geomorphology 317, 218–232.
Submerged reef terraces in the Maldivian Archipelago (Indian Ocean).Crossref | GoogleScholarGoogle Scholar |

Ryan, E. J., Hanmer, K., and Kench, P. S. (2019). Massive corals maintain a positive carbonate budget of a Maldivian upper reef platform despite major bleaching event. Scientific Reports 9, 6515.
Massive corals maintain a positive carbonate budget of a Maldivian upper reef platform despite major bleaching event.Crossref | GoogleScholarGoogle Scholar | 31019243PubMed |

Sale, P. F. (1991). Habitat structure and recruitment in coral reef fishes. In ‘Population and Community Biology Series’. (Eds S. S. Bell, E. D. McCoy, and H. R. Mushinsky.) Vol 8, pp. 197–210. (Springer: Dordrecht, Netherlands.)

Saponari, L., Montano, S., Seveso, D., and Galli, P. (2015). The occurrence of an Acanthaster planci outbreak in Ari Atoll, Maldives. Marine Biodiversity 45, 599–600.
The occurrence of an Acanthaster planci outbreak in Ari Atoll, Maldives.Crossref | GoogleScholarGoogle Scholar |

Saponari, L., Montalbetti, E., Galli, P., Strona, G., Seveso, D., Dehnert, I., and Montano, S. (2018). Monitoring and assessing a 2-year outbreak of the corallivorous seastar Acanthaster planci in Ari Atoll, Republic of Maldives. Environmental Monitoring and Assessment 190, 344.
Monitoring and assessing a 2-year outbreak of the corallivorous seastar Acanthaster planci in Ari Atoll, Republic of Maldives.Crossref | GoogleScholarGoogle Scholar | 29754219PubMed |

Sapp, J. (2003). ‘What is Natural? Coral Reef Crisis.’ (Oxford University Press.)

Sheppard, C. R. C., Spalding, M., Bradshaw, C., and Wilson, S. (2002). Erosion vs. recovery of coral reefs after 1998 El Niño: Chagos Reefs, Indian Ocean. Ambio 31, 40–48.
Erosion vs. recovery of coral reefs after 1998 El Niño: Chagos Reefs, Indian Ocean.Crossref | GoogleScholarGoogle Scholar |

Stella, J. S., Pratchett, M. S., Hutchings, P. A., and Jones, G. P. (2011). Coral-associated invertebrates: Diversity, ecological importance and vulnerability to disturbance. Oceanography and Marine Biology – an Annual Review 49, 43–116.
Coral-associated invertebrates: Diversity, ecological importance and vulnerability to disturbance.Crossref | GoogleScholarGoogle Scholar |

West, J. M., and Salm, R. V. (2003). Resistance and resilience to coral bleaching: implications for coral reef conservation and management. Conservation Biology 17, 956–967.
Resistance and resilience to coral bleaching: implications for coral reef conservation and management.Crossref | GoogleScholarGoogle Scholar |

Wilson, S. K., Graham, N. A. J., and Polunin, N. V. C. (2007). Appraisal of visual assessments of habitat complexity and benthic composition on coral reefs. Marine Biology 151, 1069–1076.
Appraisal of visual assessments of habitat complexity and benthic composition on coral reefs.Crossref | GoogleScholarGoogle Scholar |

Wooldridge, S. A. (2017). Instability and breakdown of the coral‐algae symbiosis upon exceedence of the interglacial pCO2 threshold (>260 ppmv): the ‘missing’ earth-system feedback mechanism. Coral Reefs 36, 1025–1037.
Instability and breakdown of the coral‐algae symbiosis upon exceedence of the interglacial pCO2 threshold (>260 ppmv): the ‘missing’ earth-system feedback mechanism.Crossref | GoogleScholarGoogle Scholar |