Age validation of four rockfishes (genera Sebastes and Sebastolobus) with bomb-produced radiocarbon
Craig Kastelle A B , Thomas Helser A , Todd TenBrink A , Charles Hutchinson A , Betty Goetz A , Chris Gburski A and Irina Benson AA National Oceanic and Atmospheric Administration, National Marine Fisheries Service, Alaska Fisheries Science Center, 7600 Sand Point Way NE, Seattle, WA 98115, USA.
B Corresponding author. Email: craig.kastelle@noaa.gov
Marine and Freshwater Research 71(10) 1355-1366 https://doi.org/10.1071/MF19280
Submitted: 7 September 2019 Accepted: 3 December 2019 Published: 13 February 2020
Abstract
In rockfish (Family Scorpaenidae), age determination is difficult and the annual nature of otolith growth zones must be validated independently. We applied routine age determination to four species of Gulf of Alaska rockfish: two shallower-water species, namely harlequin rockfish (Sebastes variegatus) and redstripe rockfish (Sebastes proriger), and two deep-water species, namely shortspine thornyhead (Sebastolobus alascanus) and shortraker rockfish (Sebastes borealis). The estimated ages (counts of presumed annual growth zones in the otoliths) were then evaluated with bomb-produced radiocarbon (14C) and Bayesian modelling with Markov chain Monte Carlo simulations. This study successfully demonstrated the level of accuracy in estimated ages of redstripe rockfish (a 35% probability of underageing, and ~5% probability of overageing) and harlequin rockfish (a 100% probability that they were underaged by ~3 or 4 years). Measured Δ14C in shortspine thornyhead and shortraker rockfish otoliths was lower and increased later than expected. Hence, incorrect age determination could not be evaluated. This is likely caused by dissimilar environmental and biological availability of 14C between these two species and the Pacific halibut (Hippoglossus stenolepis) reference chronology, or underageing of these two species.
Additional keywords: age accuracy, age determination, Bayesian modelling, Markov chain Monte Carlo simulations, otolith, Scorpaenidae.
References
Abookire, A. A., Piatt, J. F., and Norcross, B. L. (2001). Juvenile groundfish habitat in Kachemak Bay, Alaska, during late summer. Alaska Fishery Research Bulletin 8, 45–56.Alaska Fisheries Science Center (2017). Fish species maximum age data. Available at https://www.fisheries.noaa.gov/alaska/commercial-fishing/fish-species-maximum-age-data [Verified 15 November 2019].
Andrews, A. H., Kalish, J. M., Newman, S. J., and Johnston, J. M. (2011). Bomb radiocarbon dating of three important reef-fish species using Indo-Pacific Δ14C chronologies. Marine and Freshwater Research 62, 1259–1269.
| Bomb radiocarbon dating of three important reef-fish species using Indo-Pacific Δ14C chronologies.Crossref | GoogleScholarGoogle Scholar |
Beamish, R. J. (1979). New information on the longevity of Pacific ocean perch (Sebastes alutus). Journal of the Fisheries Research Board of Canada 36, 1395–1400.
| New information on the longevity of Pacific ocean perch (Sebastes alutus).Crossref | GoogleScholarGoogle Scholar |
Beamish, R. J., and Fournier, D. A. (1981). A method for comparing the precision of a set of age determinations. Canadian Journal of Fisheries and Aquatic Sciences 38, 982–983.
| A method for comparing the precision of a set of age determinations.Crossref | GoogleScholarGoogle Scholar |
Beamish, R. J., and McFarlane, G. A. (1983). The forgotten requirement for age validation in fisheries biology. Transactions of the American Fisheries Society 112, 735–743.
| The forgotten requirement for age validation in fisheries biology.Crossref | GoogleScholarGoogle Scholar |
Butler, J. L., Kastelle, C., Rubin, K., Kline, D. E., Heijnis, H., Jacobson, L., Andrews, A., and Wakefield, W. W. (1995). Age determination of shortspine thornyhead Sebastes alascanus, using otolith sections and 210Pb : 226Ra ratios. Administrative Report LJ-95-12, National Marine Fisheries Service, Southwest Fisheries Science Center, La Jolla, CA. USA.
Campana, S. E. (2001). Accuracy, precision and quality control in age determination, including a review of the use and abuse of age validation methods. Journal of Fish Biology 59, 197–242.
| Accuracy, precision and quality control in age determination, including a review of the use and abuse of age validation methods.Crossref | GoogleScholarGoogle Scholar |
Campana, S. E., and Jones, C. M. (1998). Radiocarbon from nuclear testing applied to age validation of black drum, Pogonias cromis. Fishery Bulletin 96, 185–192.
Campana, S. E., Annand, M. C., and McMillan, J. I. (1995). Graphical and statistical methods for determining the consistency of age determinations. Transactions of the American Fisheries Society 124, 131–138.
| Graphical and statistical methods for determining the consistency of age determinations.Crossref | GoogleScholarGoogle Scholar |
Chang, W. Y. B. (1982). A statistical method for evaluating the reproducibility of age determination. Canadian Journal of Fisheries and Aquatic Sciences 39, 1208–1210.
| A statistical method for evaluating the reproducibility of age determination.Crossref | GoogleScholarGoogle Scholar |
Echave, K. B., and Hulson, P. F. (2018). Assessment of the thornyhead stock complex in the Gulf of Alaska. Available at https://www.afsc.noaa.gov/REFM/Docs/2018/GOA/GOAthorny.pdf [Verified 14 November 2019].
Fissel, B., Dalton, M., Garber-Yonts, B., Haynie, A., Kasperski, S., Lee, J., Lew, D., Lavoie, A., Seung, C., Sparks, K., Szymkowiak, M., and Wise, S. (2019). Stock assessment and fishery evaluation report for the groundfish fisheries of the Gulf of Alaska and Bering Sea/Aleutian Islands area: economic status of the groundfish fisheries off Alaska, 2017. Available at https://www.fisheries.noaa.gov/webdam/download/90070908 [Verified 15 November 2019].
Goetz, B. J., Pistion, C. E., and Gburski, C. M. (2012a). Rockfish (Sebastes) species. In ‘Age Determination Manual of the Alaska Fisheries Science Center Age and Growth Program’. (Eds M. E. Matta and D. K. Kimura.) NOAA Professional Paper NMFS 13, pp. 49–64. (National Marine Fisheries Service: Seattle, WA, USA.)
Goetz, B. J., Piston, C. E., Hutchinson, C. E., Johnson, C. G., and Matta, M. E. (2012b). Collection and preparation of otoliths for age determination. In ‘Age Determination Manual of the Alaska Fisheries Science Center Age and Growth Program’. (Eds M. E. Matta and D. K. Kimura.) NOAA Professional Paper NMFS 13, pp. 11–15. (National Marine Fisheries Service: Seattle, WA, USA.)
Guido, P., Omori, M., Katayama, S., and Kimura, K. (2004). Classification of juvenile rockfish, Sebastes inermis, to Zostera and Sargassum beds, using the macrostructure and chemistry of otoliths. Marine Biology 145, 1243–1255.
| Classification of juvenile rockfish, Sebastes inermis, to Zostera and Sargassum beds, using the macrostructure and chemistry of otoliths.Crossref | GoogleScholarGoogle Scholar |
Gunderson, D. R., and Sample, T. M. (1980). Distribution and abundance of rockfish off Washington, Oregon, and California during 1977. Marine Fisheries Review 42, 2–16.
Haltuch, M. A., Hamel, O. S., Piner, K. R., McDonald, P., Kastelle, C. R., and Field, J. C. (2013). A California current bomb radiocarbon reference chronology and petrale sole (Eopsetta jordani) age validation. Canadian Journal of Fisheries and Aquatic Sciences 70, 22–31.
| A California current bomb radiocarbon reference chronology and petrale sole (Eopsetta jordani) age validation.Crossref | GoogleScholarGoogle Scholar |
Hamel, O. S., Piner, K. R., and Wallace, J. R. (2008). A robust deterministic model describing the bomb radiocarbon signal for use in fish age validation. Transactions of the American Fisheries Society 137, 852–859.
| A robust deterministic model describing the bomb radiocarbon signal for use in fish age validation.Crossref | GoogleScholarGoogle Scholar |
Helser, T. E., Kastelle, C. R., and Lai, H. L. (2014). Modeling environmental factors affecting assimilation of bomb-produced Δ14C in the North Pacific Ocean: Implications for age validation studies. Ecological Modelling 277, 108–118.
| Modeling environmental factors affecting assimilation of bomb-produced Δ14C in the North Pacific Ocean: Implications for age validation studies.Crossref | GoogleScholarGoogle Scholar |
Hutchinson, C. E., Kastelle, C. R., Kimura, D. K., and Gunderson, D. R. (2007). Using radiometric ages to develop conventional ageing methods for shortraker rockfish (Sebastes borealis). In ‘Biology, Assessment, and Management of North Pacific Rockfishes’. (Eds J. Heifetz, J. DiCosimo, A. J. Gharrett, M. S. Love, V. M. O’Connell, and R. D. Stanley.) pp. 237–249. (Alaska Sea Grant, University of Alaska Fairbanks: Anchorage, AK, USA.)
International Pacific Halibut Commission (1998). The Pacific halibut: biology, fishery, and management. Technical Report number 40, International Pacific Halibut Commission, Seattle, WA, USA.
Jacobson, L. D., and Vetter, R. D. (1996). Bathymetric demography and niche separation of thornyhead rockfish: Sebastolobus alascanus and Sebastolobus altivelis. Canadian Journal of Fisheries and Aquatic Sciences 53, 600–609.
| Bathymetric demography and niche separation of thornyhead rockfish: Sebastolobus alascanus and Sebastolobus altivelis.Crossref | GoogleScholarGoogle Scholar |
Kalish, J. M. (1995). Radiocarbon and fish biology. In ‘Recent Developments in Fish Otolith Research’. (Eds D. H. Secor, J. M. Dean, and S. E. Campana.) pp. 637–653. (University of South Carolina Press: Columbia, SC, USA.)
Kastelle, C. R., Kimura, D. K., and Jay, S. R. (2000). Using Pb-210/Ra-226 disequilibrium to validate conventional ages in Scorpaenids (genera Sebastes and Sebastolobus). Fisheries Research 46, 299–312.
| Using Pb-210/Ra-226 disequilibrium to validate conventional ages in Scorpaenids (genera Sebastes and Sebastolobus).Crossref | GoogleScholarGoogle Scholar |
Kastelle, C. R., Kimura, D. K., and Goetz, B. J. (2008). Bomb radiocarbon age validation of Pacific ocean perch (Sebastes alutus) using new statistical methods. Canadian Journal of Fisheries and Aquatic Sciences 65, 1101–1112.
| Bomb radiocarbon age validation of Pacific ocean perch (Sebastes alutus) using new statistical methods.Crossref | GoogleScholarGoogle Scholar |
Kastelle, C. R., Helser, T. E., Wischniowski, S. G., Loher, T., Goetz, B. J., and Kautzi, L. A. (2016). Incorporation of bomb-produced 14C into fish otoliths: a novel approach for evaluating age validation and bias with an application to yellowfin sole and northern rockfish. Ecological Modelling 320, 79–91.
| Incorporation of bomb-produced 14C into fish otoliths: a novel approach for evaluating age validation and bias with an application to yellowfin sole and northern rockfish.Crossref | GoogleScholarGoogle Scholar |
Kastelle, C. R., Helser, T. E., McKay, J. L., Johnston, C. G., Anderl, D. M., Matta, M. E., and Nichol, D. G. (2017). Age validation of Pacific cod (Gadus macrocephalus) using high-resolution stable oxygen isotope (δ18O) chronologies in otoliths. Fisheries Research 185, 43–53.
| Age validation of Pacific cod (Gadus macrocephalus) using high-resolution stable oxygen isotope (δ18O) chronologies in otoliths.Crossref | GoogleScholarGoogle Scholar |
Kerr, L. A., Andrews, A. H., Munk, K., Coale, K. H., Frantz, B. R., Cailliet, G. M., and Brown, T. A. (2005). Age validation of quillback rockfish (Sebastes maliger) using bomb radiocarbon. Fishery Bulletin 103, 97–107.
Kimura, D. K., and Anderl, D. M. (2005). Quality control of age data at the Alaska Fisheries Science Center. Marine and Freshwater Research 56, 783–789.
| Quality control of age data at the Alaska Fisheries Science Center.Crossref | GoogleScholarGoogle Scholar |
Kimura, D. K., Kastelle, C. R., Goetz, B. J., Gburski, C. M., and Buslov, A. V. (2006). Corroborating the ages of walleye pollock (Theragra chalcogramma). Marine and Freshwater Research 57, 323–332.
| Corroborating the ages of walleye pollock (Theragra chalcogramma).Crossref | GoogleScholarGoogle Scholar |
Kline, D. E. (1996). Radiochemical age verification for two deep-sea rockfishes. M.Sc. Thesis, San Jose State University, San Jose, CA, USA.
Kumamoto, Y., Murata, A., Kawano, T., Watanabe, S., and Fukasawa, M. (2013). Decadal changes in bomb-produced radiocarbon in the Pacific Ocean from the 1990s to 2000s. Radiocarbon 55, 1641–1650.
| Decadal changes in bomb-produced radiocarbon in the Pacific Ocean from the 1990s to 2000s.Crossref | GoogleScholarGoogle Scholar |
Love, M. S., Yoklavich, M., and Thorsteinson, L. (2002). ‘The Rockfishes of the Northeast Pacific.’ (University of California Press: Berkeley, CA, USA.)
Matta, M. E., and Kimura, D. K. (2012). Age determination manual of the Alaska Fisheries Science Center Age and Growth Program. NOAA, Professional Paper NMFS 13, United States Department of Commerce, Seattle, WA, USA.
McCurdy, W. M., Panfili, J., Meunier, A. J., Geffen, A. J., and de Pontual, H. (2002). Preparation of calcified structures. In ‘Manual of Fish Sclerochronology’. (Eds J. Panfili, H. de Pontual, H. Troadec, and P. J. Wright.) pp. 331–357. (Ifremer–IRD Coedition: Brest, France.)
Munk, K. M. (2001). Maximum ages of groundfishes in waters off Alaska and British Columbia and considerations of age determination. Alaska Fishery Research Bulletin 8, 12–21.
Norcross, B. L., Holladay, B. A., Dressel, S. C., and Frandsen, M. (1996). Recruitment of juvenile flatfishes in Alaska: habitat preference near Kodiak Island. OCS Study MMS 96-0003, University of Alaska, Coastal Marine Institute, Fairbanks, AK, USA.
Norcross, B. L., Blanchard, A., and Holladay, B. A. (1999). Comparison of models for defining nearshore flatfish nursery areas in Alaskan waters. Fisheries Oceanography 8, 50–67.
| Comparison of models for defining nearshore flatfish nursery areas in Alaskan waters.Crossref | GoogleScholarGoogle Scholar |
Nydal, R. (1993). Application of bomb 14C as a tracer in the global carbon cycle. Trends in Geophysical Research 2, 355–364.
Orlov, A. M. (2001). Ocean current patterns and aspects of life history of some northwestern Pacific scorpaenids. In ‘Spatial Processes and Management of Marine Populations’. (Eds G. H. Kruse, N. Bez, A. Booth, M. W. Dorn, S. Hills, R. N. Lipcius, D. Pelletier, C. Roy, S. J. Smith, and D. Witherell.) pp. 161–184. (University of Alaska Fairbanks: Fairbanks, AK, USA.)
Parker, S. J., Berkeley, S. A., Golden, J. T., Gunderson, D. R., Heifetz, J., Hixon, M. A., Larson, R., Leaman, B. M., Love, M. S., Musick, J. A., O’Connell, V. M., Ralston, S., Weeks, H. J., and Yoklavich, M. M. (2000). Management of Pacific rockfish. Fisheries (Bethesda, Md.) 25, 22–30.
| Management of Pacific rockfish.Crossref | GoogleScholarGoogle Scholar |
Pearson, K. E., and Gunderson, D. R. (2003). Reproductive biology and ecology of shortspine thornyhead rockfish, Sebastolobus alascanus, and longspine thornyhead rockfish, S. altivelis, from the northeastern Pacific Ocean. Environmental Biology of Fishes 67, 117–136.
| Reproductive biology and ecology of shortspine thornyhead rockfish, Sebastolobus alascanus, and longspine thornyhead rockfish, S. altivelis, from the northeastern Pacific Ocean.Crossref | GoogleScholarGoogle Scholar |
Piner, K. R., and Wischniowski, S. G. (2004). Pacific halibut chronology of bomb radiocarbon in otoliths from 1944 to 1981 and a validation of ageing methods. Journal of Fish Biology 64, 1060–1071.
| Pacific halibut chronology of bomb radiocarbon in otoliths from 1944 to 1981 and a validation of ageing methods.Crossref | GoogleScholarGoogle Scholar |
Rooper, C. N. (2008). An ecological analysis of rockfish (Sebastes spp.) assemblages in the North Pacific Ocean along broad-scale environmental gradients. Fishery Bulletin 106, 1–11.
Stuart, I. G., and McKillup, S. C. (2002). The use of sectioned otoliths to age barramundi (Lates calcarifer) (Bloch, 1790). Hydrobiologia 479, 231–236.
| The use of sectioned otoliths to age barramundi (Lates calcarifer) (Bloch, 1790).Crossref | GoogleScholarGoogle Scholar |
Stuiver, M., and Polach, H. A. (1977). Discussion: reporting of 14C data. Radiocarbon 19, 355–363.
| Discussion: reporting of 14C data.Crossref | GoogleScholarGoogle Scholar |
Tribuzio, C. A., Coutré, K., and Echave, K. B. (2017). Assessment of the other rockfish stock complex in the Gulf of Alaska. Available at https://www.afsc.noaa.gov/REFM/Docs/2017/GOAorock.pdf [Verified 15 November 2019].
Wischniowski, S. G., Kastelle, C. R., Loher, T., and Helser, T. E. (2015). Incorporation of bomb-produced C-14 into fish otoliths: an example of basin-specific rates from the North Pacific Ocean. Canadian Journal of Fisheries and Aquatic Sciences 72, 879–892.
| Incorporation of bomb-produced C-14 into fish otoliths: an example of basin-specific rates from the North Pacific Ocean.Crossref | GoogleScholarGoogle Scholar |
Woods Hole Oceanographic Institution National Ocean Sciences Accelerator Mass Spectrometry Facility (2018). Radiocarbon data & calculations. Available at http://www.whoi.edu/nosams/page.do?pid=40146 [Verified 15 November 2019].