Free Standard AU & NZ Shipping For All Book Orders Over $80!
Register      Login
Marine and Freshwater Research Marine and Freshwater Research Society
Advances in the aquatic sciences
RESEARCH ARTICLE

Phytoplankton–zooplankton relationships based on phytoplankton functional groups in two tropical reservoirs

Anamaria S. Diniz A , Juliana S. Severiano B , Mauro Melo Júnior C , Ênio W. Dantas D and Ariadne N. Moura A E
+ Author Affiliations
- Author Affiliations

A Laboratório de Taxonomia e Ecologia de Microalgas, Universidade Federal Rural de Pernambuco, R. Manuel de Medeiros, s/n – Dois Irmãos, Recife, 52171-900, Pernambuco, Brazil.

B Laboratório de Ecologia Aquática, Universidade Estadual da Paraíba, R. Baraúnas, 351 – Universitário, Campina Grande, 58429-500, Paraíba, Brazil,

C Laboratório de Ecologia do Plâncton, Universidade Federal Rural de Pernambuco, R. Manuel de Medeiros, s/n – Dois Irmãos, Recife, 52171-900, Pernambuco, Brazil.

D Universidade Estadual da Paraíba – Campus V, Centro de Ciências Biológicas e Sociais Aplicadas, R. Monsenhor Walfredo Leal 487, Tambiá, 58020-540, João Pessoa, Paraíba, Brazil.

E Corresponding author. Email: ariadne_moura@hotmail.com

Marine and Freshwater Research 70(5) 721-733 https://doi.org/10.1071/MF18049
Submitted: 7 February 2018  Accepted: 5 November 2018   Published: 17 January 2019

Abstract

The aim of this study was to evaluate the phytoplankton–zooplankton interaction, using phytoplankton morphology-based functional groups, in two reservoirs that have different trophic state indices (TSIs). We hypothesised that the herbivorous relationships of zooplankton with the phytoplankton community would differ between reservoirs with different TSIs. In order to test this hypothesis, field collections to study the phytoplankton, zooplankton and abiotic variables were undertaken between July 2016 and April 2017 from the subsurface layer and in situ experiments were conducted using biomanipulation of the micro- and mesozooplankton. In situ experiments consisted of 18 microcosms in 5-L transparent plastic bottles (in triplicate). The mesotrophic reservoir showed predominance of chlorophytes (Group IV) and mesozooplankton during the study period. In the presence of zooplankton, all phytoplankton groups showed negative growth rates and higher ingestion values, mainly Group IV. In the supereutrophic reservoir, ingestion rates showed that micro- and mesozooplankton reduced the biomass of colonial (Group VII) and filamentous (Group III) cyanobacteria respectively. The findings of the present study reveal that Copepoda Calanoida, as well as small cladocerans, may be the most suitable zooplankton groups for biomass biomanipulation of different morphofunctional phytoplankton groups in mesotrophic reservoirs, and for the control of cyanobacteria in supereutrophic reservoirs.

Additional keywords: algae, biocontrol, Calanoida, temporal variation, trophic state.


References

Almeida, V. L. S., Melão, M. G. G., and Moura, A. N. (2012). Plankton diversity and limnological characterization in two shallow tropical urban reservoirs of Pernambuco State, Brazil. Anais da Academia Brasileira de Ciências 84, 537–550.
Plankton diversity and limnological characterization in two shallow tropical urban reservoirs of Pernambuco State, Brazil.Crossref | GoogleScholarGoogle Scholar |

Alvares, C. A., Stape, J. L., Sentelhas, P. C., de Moraes, G., Leonardo, J., and Sparovek, G. (2013). Köppen’s climate classification map for Brazil. Meteorologische Zeitschrift 22, 711–728.
Köppen’s climate classification map for Brazil.Crossref | GoogleScholarGoogle Scholar |

American Public Health Association (1995). ‘Standard Methods for the Examination of Water and Wastewater’, 20th edn. (APHA: Washington, DC.)

Ariyadej, C., Tansakul, R., Tansakul, P., and Angsupanich, S. (2004). Phytoplankton diversity and its relationships to the physico-chemical environment in the Banglang Reservoir, Yala Province. Songklanakarin Journal of Science and Technology 26, 595–607.

Arndt, H. (1993). Rotifers as predators on components of the microbial web bacteria, heterotrophic flagellates, ciliates – a review. Hydrobiologia 255–256, 231–246.
Rotifers as predators on components of the microbial web bacteria, heterotrophic flagellates, ciliates – a review.Crossref | GoogleScholarGoogle Scholar |

Bednarska, A., and Dawidowicz, P. (2007). Change in filter-screen morphology and depth selection: uncoupled responses of Daphnia to the presence of filamentous cyanobacteria. Limnology and Oceanography 52, 2358–2363.
Change in filter-screen morphology and depth selection: uncoupled responses of Daphnia to the presence of filamentous cyanobacteria.Crossref | GoogleScholarGoogle Scholar |

Boersma, M. (2000). The nutritional quality of P-limited algae for Daphnia. Limnology and Oceanography 45, 1157–1161.
The nutritional quality of P-limited algae for Daphnia.Crossref | GoogleScholarGoogle Scholar |

Bonecker, C. C., and Aoyagui, A. S. M. (2005). Relationships between rotifers, phytoplankton and bacterioplankton in the Corumbá reservoir, Goiás State, Brazil. Hydrobiologia 546, 415–421.
Relationships between rotifers, phytoplankton and bacterioplankton in the Corumbá reservoir, Goiás State, Brazil.Crossref | GoogleScholarGoogle Scholar |

Bonecker, C. C., Nagae, M. Y., Bletller, M. C. M., Velho, L. F. M., and Lansac-Tôha, F. A. (2007). Zooplankton biomass in tropical reservoirs in southern Brazil. Hydrobiologia 579, 115–123.
Zooplankton biomass in tropical reservoirs in southern Brazil.Crossref | GoogleScholarGoogle Scholar |

Borges, P. A. F., Train, S., and Rodrigues, L. C. (2008). Spatial and temporal variation of phytoplankton in two subtropical Brazilian reservoirs. Hydrobiologia 607, 63–74.
Spatial and temporal variation of phytoplankton in two subtropical Brazilian reservoirs.Crossref | GoogleScholarGoogle Scholar |

Branco, C. W. C., and Senna, P. A. C. (1996). Relations among heterotrophic bacteria, chlorophyll-a, total phytoplankton, total zooplankton and physical and chemical features in the Paranoá Reservoir, Brasília, Brazil. Hydrobiologia 337, 171–181.
Relations among heterotrophic bacteria, chlorophyll-a, total phytoplankton, total zooplankton and physical and chemical features in the Paranoá Reservoir, Brasília, Brazil.Crossref | GoogleScholarGoogle Scholar |

Colina, M., Calliari, D., Carballo, C., and Kruk, C. (2016). A trait-based approach to summarize zooplankton–phytoplankton interactions in freshwaters. Hydrobiologia 767, 221–233.
A trait-based approach to summarize zooplankton–phytoplankton interactions in freshwaters.Crossref | GoogleScholarGoogle Scholar |

Cunha, D. G. F., Calijuri, M. C., and Lamparelli, M. C. (2013). A trophic state index for tropical/subtropical reservoirs (TSItsr). Ecological Engineering 60, 126–134.
A trophic state index for tropical/subtropical reservoirs (TSItsr).Crossref | GoogleScholarGoogle Scholar |

Dantas, E. W., Bittencourt-Oliveira, M. C., and Moura, A. N. (2012). Dynamics of phytoplankton associations in three reservoirs in northeastern Brazil assessed using Reynolds’ theory. Limnologica 42, 72–80.
Dynamics of phytoplankton associations in three reservoirs in northeastern Brazil assessed using Reynolds’ theory.Crossref | GoogleScholarGoogle Scholar |

dos Santos Severiano, J., Almeida-Melo, V. L. S., Melo-Magalhães, E. M., Bittencourt-Oliveira, M. C., and Moura, A. N. (2017). Effects of zooplankton and nutrients on phytoplankton: an experimental analysis in a eutrophic tropical reservoir. Marine and Freshwater Research 68, 1061–1069.
Effects of zooplankton and nutrients on phytoplankton: an experimental analysis in a eutrophic tropical reservoir.Crossref | GoogleScholarGoogle Scholar |

dos Santos Severiano, J., Almeida-Melo, V. L. S., Bittencourt-Oliveira, M. C., Chia, M. A. C., and Moura, A. N. (2018). Effects of increased zooplankton biomass on phytoplankton and cyanotoxins: a tropical mesocosm study. Harmful Algae 71, 10–18.
Effects of increased zooplankton biomass on phytoplankton and cyanotoxins: a tropical mesocosm study.Crossref | GoogleScholarGoogle Scholar | 29306392PubMed |

Dumont, H. J., Van de Velde, I., and Dumont, S. (1975). The dry weight estimate of biomass in a selection of Cladocera, Copepoda and Rotifera from the plankton, periphyton and benthos of continental waters. Oecologia 19, 75–97.
The dry weight estimate of biomass in a selection of Cladocera, Copepoda and Rotifera from the plankton, periphyton and benthos of continental waters.Crossref | GoogleScholarGoogle Scholar | 28308833PubMed |

Elmoor-Loureiro, L. M. A. (1997). ‘Manual de identificação de cladóceros límnicos do Brasil.’ (Universa: Brasília, Brazil.)

Eskinazi-Sant’Anna, E. M., Menezes, R., Costa, I. S., Araújo, M., Panosso, R., and Attayde, J. L. (2013). Zooplankton assemblages in eutrophic reservoirs of the Brazilian semi-arid. Brazilian Journal of Biology 73, 37–52.
Zooplankton assemblages in eutrophic reservoirs of the Brazilian semi-arid.Crossref | GoogleScholarGoogle Scholar |

Flores, E., and Herrero, A. (2005). Nitrogen assimilation and nitrogen control in cyanobacteria. Biochemical Society Transactions 33, 164–167.
Nitrogen assimilation and nitrogen control in cyanobacteria.Crossref | GoogleScholarGoogle Scholar | 15667295PubMed |

Fragoso, C. R. Jr, Ferreira, T. F., and Da Motta Marques, D. (Eds) (2009). ‘Modelagem ecológica em ecossistemas aquáticos.’ (Oficina de textos: São Paulo, Brazil.)

Fulton, R. S., and Paerl, H. W. (1987). Toxic and inhibitory effects of the blue-green alga Microcystis aeruginosa on herbivorous zooplankton. Journal of Plankton Research 9, 837–855.
Toxic and inhibitory effects of the blue-green alga Microcystis aeruginosa on herbivorous zooplankton.Crossref | GoogleScholarGoogle Scholar |

Ger, K. A., Hansson, L. A., and Lürling, M. (2014). Understanding cyanobacteria–zooplankton interactions in a more eutrophic world. Freshwater Biology 59, 1783–1798.
Understanding cyanobacteria–zooplankton interactions in a more eutrophic world.Crossref | GoogleScholarGoogle Scholar |

Ger, K. A., Urrutia-Cordeiro, P., Frost, P. C., Hansson, L. A., Sarnelle, O., Wilson, A. E., and Lürling, M. (2016). The interaction between cyanobacteria and zooplankton in a more eutrophic world. Harmful Algae 54, 128–144.
The interaction between cyanobacteria and zooplankton in a more eutrophic world.Crossref | GoogleScholarGoogle Scholar | 28073472PubMed |

Golterman, H. L. (1971). ‘Chemical Analysis of Freshwaters.’ IBP Handbook 8 (Blackwell: Oxford, UK.)

Graham, L. E., and Wilcox, L. W. (Eds) (2000). ‘Algae.’ (Prentice Hall: Upper Saddle River, NJ, USA.)

Gustafsson, S., Rengefors, K., and Hansson, L. A. (2005). Increased consumer fitness following transfer of toxin tolerance to offspring via maternal effects. Ecology 86, 2561–2567.
Increased consumer fitness following transfer of toxin tolerance to offspring via maternal effects.Crossref | GoogleScholarGoogle Scholar |

Harke, M. J., Steffen, M. M., Gobler, C. J., Otten, T. G., Wilhelm, S. W., Wood, S. A., and Paerl, H. W. (2016). A review of the global ecology, genomics, and biogeography of the toxic cyanobacterium, Microcystis spp. Harmful Algae 54, 4–20.
A review of the global ecology, genomics, and biogeography of the toxic cyanobacterium, Microcystis spp.Crossref | GoogleScholarGoogle Scholar | 28073480PubMed |

Havens, K. E., Elia, A. C., Taticchi, M. I., and Fulton, R. S. (2009). Zooplankton–phytoplankton relationships in shallow subtropical versus temperate lakes Apopka (Florida, USA) and Trasimeno (Umbria, Italy). Hydrobiologia 628, 165–175.
Zooplankton–phytoplankton relationships in shallow subtropical versus temperate lakes Apopka (Florida, USA) and Trasimeno (Umbria, Italy).Crossref | GoogleScholarGoogle Scholar |

Heathcote, A. J., Filstrup, C. T., Kendall, D., and Downing, J. A. (2016). Biomass pyramids in lake plankton: influence of Cyanobacteria size and abundance. Inland Waters 6, 250–257.
Biomass pyramids in lake plankton: influence of Cyanobacteria size and abundance.Crossref | GoogleScholarGoogle Scholar |

Heuschele, J., and Selander, E. (2014). The chemical ecology of copepods. Journal of Plankton Research 36, 895–913.
The chemical ecology of copepods.Crossref | GoogleScholarGoogle Scholar |

Hillebrand, H., Dürselen, C., Kirschtel, D., Pollingher, U., and Zohary, T. (1999). Biovolume calculation for pelagic and benthic microalgae. Journal of Phycology 35, 403–424.
Biovolume calculation for pelagic and benthic microalgae.Crossref | GoogleScholarGoogle Scholar |

Huys, R., and Boxshall, G. A. (Eds) (1991). ‘Copepod Evolution.’ (Ray Society: London, UK.)

Kâ, S., Mendoza-Vera, J. M., Bouvy, M., Champalbert, G., Gom-Kâ, R., and Pagano, M. (2012). Can tropical freshwater zooplankton graze efficiently on cyanobacteria? Hydrobiologia 679, 119–138.
Can tropical freshwater zooplankton graze efficiently on cyanobacteria?Crossref | GoogleScholarGoogle Scholar |

Kaczkowski, Z., Wojtal-Frankiewicz, A., Gągała, I., Mankiewicz-Boczek, J., Jaskulska, A., Frankiewicz, P., Izydorczyk, K., Jurczak, T., and Godlewska, M. (2017). Relationships among cyanobacteria, zooplankton and fish in sub-bloom conditions in the Sulejow Reservoir. Journal of Limnology 76, 380–396.

Komárek, J., and Anagnostidis, K. (1999). ‘Cyanoprokayota 1. Teil: Chroococcales. Subwasserflora von Mitteleuropa. Vol. 19.’ (Eds H. Ettl, G. Gartner, H. Heyning, and D. Mollenhauer.) (Gustav Fischer Verlag: Stuttgart, Germany.)

Komárek, J., and Anagnostidis, K. (2005). ‘Cyanoprokayota 2. Teil: Oscillatoriales. Subwasserflora von Mitteleuropa. Vol. 19.’ (Eds B. Budel, L. Krienitz, G. Gartner, and M. Schargerl.) (Elsevier Spektrum Akademescher Velarg: München, Germany.)

Koroleff, F. (1976). Determination of nutrients. In ‘Methods of Seawater Analysis’. (Ed. K. Grasshoff.) pp. 117–187. (Verlag Chemie: Weinheim, Germany.)

Koste W. (1978). ‘Rotatória: die Rädertiere Mitteleroupas Ein Bestimmungswerk begrüdet von Max Voigt–Monogonta’. (Gebrüder Borntraeger: Berlin, Germany.)

Kozak, A., Gołdyn, R., and Dondajewska, R. (2015). Phytoplankton composition and abundance in restored Maltański Reservoir under the influence of physico-chemical variables and zooplankton grazing pressure. PLoS One 10, e0124738.
Phytoplankton composition and abundance in restored Maltański Reservoir under the influence of physico-chemical variables and zooplankton grazing pressure.Crossref | GoogleScholarGoogle Scholar | 26488770PubMed |

Krammer, K., and Lange-Bertalot, H. (Eds) (1991). ‘Bacillariophyceae, 3. Teil: Centrales, Fragilariaceae and Eunotiaceae. Süβwasser flora von Mitteleuropa. Vol. 2/3.’ (Eds H. Ettl, J. Gerloff, H. Heynig, D. Mollenhauer.) (Gustav Fischer Verlag: Stuttgart, Germany.)

Kruk, C., and Segura, A. M. (2012). The habitat template of phytoplankton morphology-based functional groups. Hydrobiologia 698, 191–202.
The habitat template of phytoplankton morphology-based functional groups.Crossref | GoogleScholarGoogle Scholar |

Kruk, C., Huszar, V. L. M., Peeters, E. T. H. M., Bonilla, S., Costa, L., Lürling, M., Reynolds, C. S., and Scheffer, M. (2010). A morphological classification capturing functional variation in phytoplankton. Freshwater Biology 55, 614–627.
A morphological classification capturing functional variation in phytoplankton.Crossref | GoogleScholarGoogle Scholar |

Kruk, C., Segura, A. M., Costa, L. S., Lacerot, G., Kosten, S., Peeters, E. T., Huszar, V. L. M., Mazzeo, N., and Scheffer, M. (2016). Functional redundancy increases towards the tropics in lake phytoplankton. Journal of Plankton Research 39, 518–530.

Lawton, L., Marsalek, B., Padisák, J., and Chorus, I. (1999). Determination of cyanobacteria in the laboratory. In ‘Toxic Cyanobacteria in Water’. (Eds I. Chorus, J. Bartram, and F. N. Spon.) pp. 347–367. (E&F Spon: London, UK.)

Li, M., Zhu, W., Gao, L., and Lu, L. (2013). Changes in extracellular polysaccharide content and morphology of Microcystis aeruginosa at different specific growth rates. Journal of Applied Phycology 25, 1023–1030.
Changes in extracellular polysaccharide content and morphology of Microcystis aeruginosa at different specific growth rates.Crossref | GoogleScholarGoogle Scholar |

Lira, G. A. S. T., Moura, A. N., Vilar, M. C. P., Cordeiro-Araujo, M. K., and Bittencourt-Oliveira, M. C. (2014). Vertical and temporal variation in phytoplankton assemblages correlated with environmental conditions in the Mundaú reservoir, semi-arid northeastern Brazil. Brazilian Journal of Biology 74, S093–S102.
Vertical and temporal variation in phytoplankton assemblages correlated with environmental conditions in the Mundaú reservoir, semi-arid northeastern Brazil.Crossref | GoogleScholarGoogle Scholar |

Litchman, E., Ohman, M. D., and Kiorboe, T. (2013). Trait-based approaches to zooplankton communities. Journal of Plankton Research 35, 473–484.
Trait-based approaches to zooplankton communities.Crossref | GoogleScholarGoogle Scholar |

Mackereth, F. J. H., Heron, J., and Talling, J. F. (1978). ‘Water Analysis: Some Revised Methods for Limnologists.’ (Freshwater Biological Association Scientific: Ambleside, UK.)

Marin, V., Huntley, M. E., and Frost, B. (1986). Measuring feeding rates of pelagic herbivores: analysis of experimental design and methods. Marine Biology 93, 49–58.
Measuring feeding rates of pelagic herbivores: analysis of experimental design and methods.Crossref | GoogleScholarGoogle Scholar |

Naselli-Flores, L., and Barone, R. (2012). Phytoplankton dynamics in permanent and temporary Mediterranean waters: is the game hard to play because of hydrological disturbance? Hydrobiologia 701, 219–233.

Neumann-Leitão, S., Nogueira-Paranhos, J. D., and Souza, F. B. V. A. (1989). Zooplâncton do Açude de Apipucos, Recife – PE (Brasil). Arquivos de Biologia e Tecnologia 32, 803–821.

Okun, N., Brasil, J., Attayde, J. L., and Costa, I. A. (2008). Omnivory does not prevent trophic cascades in pelagic food webs. Freshwater Biology 53, 129–138.

Padisák, J., Crossetti, L. O., and Naselli-Flores, L. (2009). Use and misuse in the application of the phytoplankton functional classification: a critical review with updates. Hydrobiologia 621, 1–19.
Use and misuse in the application of the phytoplankton functional classification: a critical review with updates.Crossref | GoogleScholarGoogle Scholar |

Panosso, R., Carlsson, P. E. R., Kozlowsky-Suzuki, B., Azevedo, S. M., and Granéli, E. (2003). Effect of grazing by a neotropical copepod, Notodiaptomus, on a natural cyanobacterial assemblage and on toxic and non-toxic cyanobacterial strains. Journal of Plankton Research 25, 1169–1175.
Effect of grazing by a neotropical copepod, Notodiaptomus, on a natural cyanobacterial assemblage and on toxic and non-toxic cyanobacterial strains.Crossref | GoogleScholarGoogle Scholar |

Pérez-Morales, A., Sarma, S. S. S., and Nandini, S. (2014). Feeding and filtration rates of zooplankton (rotifers and cladocerans) fed toxic cyanobacterium (Microcystis aeruginosa). Journal of Environmental Biology 35, 1013–1020.
| 25522500PubMed |

Pinto-Coelho, R., Pinel-Alloul, B., Méthot, G., and Havens, K. E. (2005). Crustacean zooplankton in lakes and revoirs of temperate and tropical regions: variation with trophic status. Canadian Journal of Fisheries and Aquatic Sciences 62, 348–361.
Crustacean zooplankton in lakes and revoirs of temperate and tropical regions: variation with trophic status.Crossref | GoogleScholarGoogle Scholar |

Popovský, J., and Pfiester, L. A. (1990). ‘Dinophyceae (Dinoflagellida). Süßwasserflora von Mitteleuropa. Vol. 6’ (Eds H. Ettl, J. Gerloff, H. Heyning, D. Mollenhauer.) (Gustav Fischer Verlag: Stuttgart.)

Prescott, G. W., Bicudo, C. E. D., and Vinyard, W. C. (1982). ‘A Synopsis of North American Desmids: Part II. Desmidiaceae: Placodermae Section 4.’ (University of Nebraska Press: Lincoln, NE, USA.)

Présing, M., Katalin, V., Vörös, L., and Shafik, H. M. (1997). Relative nitrogen deficiency without occurrence of nitrogen fixing blue-green algae in a hypertrophic reservoir. In ‘Shallow Lakes’ 95’. (Eds L. Kufel, A. Prejs, J. I. Rybak) Vol. 119, pp. 55–61. (Springer: Dordrecht, Netherlands.)

Rangel, L. M., Silva, L. H., Rosa, P., Roland, F., and Huszar, V. L. (2012). Phytoplankton biomass is mainly controlled by hydrology and phosphorus concentrations in tropical hydroelectric reservoirs. Hydrobiologia 693, 13–28.
Phytoplankton biomass is mainly controlled by hydrology and phosphorus concentrations in tropical hydroelectric reservoirs.Crossref | GoogleScholarGoogle Scholar |

Reynolds, C. S. (1998). What factors influence the species composition of phytoplankton in lakes of different trophic status? Hydrobiologia 369–370, 11–26.
What factors influence the species composition of phytoplankton in lakes of different trophic status?Crossref | GoogleScholarGoogle Scholar |

Rose, V., Rollwagen-Bollens, G., and Bollens, S. M. (2017). Interactive effects of phosphorus and zooplankton grazing on cyanobacterial blooms in a shallow temperate lake. Hydrobiologia 788, 345–359.
Interactive effects of phosphorus and zooplankton grazing on cyanobacterial blooms in a shallow temperate lake.Crossref | GoogleScholarGoogle Scholar |

Ruttner-Kolisko, A. (1977). Suggestions for biomass calculation of planctonic rotifers. Archiv für Hydrobiologie 8, 71–77.

Salmaso, N., Naselli-Flores, L., and Padisák, J. (2015). Functional classifications and their application in phytoplankton ecology. Freshwater Biology 60, 603–619.
Functional classifications and their application in phytoplankton ecology.Crossref | GoogleScholarGoogle Scholar |

Sieburth, J. M., Smetacek, V., and Lenz, J. (1978). Pelagic ecosystem structure: heterotrophic compartments of the plankton and their relationship to plankton size fractions. Limnology and Oceanography 23, 1256–1263.
Pelagic ecosystem structure: heterotrophic compartments of the plankton and their relationship to plankton size fractions.Crossref | GoogleScholarGoogle Scholar |

Soares, M. C. S., Rocha, M. I. D. A., Marinho, M. M., Azevedo, S. M., Branco, C. W., and Huszar, V. L. (2009). Changes in species composition during annual cyanobacterial dominance in a tropical reservoir: physical factors, nutrients and grazing effects. Aquatic Microbial Ecology 57, 137–149.
Changes in species composition during annual cyanobacterial dominance in a tropical reservoir: physical factors, nutrients and grazing effects.Crossref | GoogleScholarGoogle Scholar |

Soares, M. C. S., Lürling, M., and Huszar, V. L. (2010). Responses of the rotifer Brachionus calyciflorus to two tropical toxic cyanobacteria (Cylindrospermopsis raciborskii and Microcystis aeruginosa) in pure and mixed diets with green algae. Journal of Plankton Research 32, 999–1008.
Responses of the rotifer Brachionus calyciflorus to two tropical toxic cyanobacteria (Cylindrospermopsis raciborskii and Microcystis aeruginosa) in pure and mixed diets with green algae.Crossref | GoogleScholarGoogle Scholar |

Sousa, W., Attayde, J. L., Rocha, E. S., and Eskinazi-Sant’anna, E. M. (2008). The response of zooplankton assemblages to variations in the water quality of four man-made lake sin semi-arid northeastern Brazil. Journal of Plankton Research 30, 699–708.
The response of zooplankton assemblages to variations in the water quality of four man-made lake sin semi-arid northeastern Brazil.Crossref | GoogleScholarGoogle Scholar |

Sterner, R. W., and Elser, J. J. (Eds) (2002). ‘Ecological Stoichiometry: The Biology of Elements from Molecules to the Biosphere.’ (Princeton University Press: Princeton, NJ, USA.)

Tallberg, P., Horppila, J., Vaisanem, A., and Nurminem, L. (1999). Seasonal succession of phytoplankton and zooplankton along a trophic gradient in a eutrophic lake – implications for food web management. Hydrobiologia 412, 81–94.
Seasonal succession of phytoplankton and zooplankton along a trophic gradient in a eutrophic lake – implications for food web management.Crossref | GoogleScholarGoogle Scholar |

Tõnno, I., Agasild, H., Kõiv, T., Freiberg, R., Nõges, P., and Nõges, T. (2016). Algal diet of small-bodied crustacean zooplankton in a cyanobacteria-dominated eutrophic lake. PLoS One 4, 1–17.

Utermöhl, H. (1958). Zur vervollkommer der quantitativen phytoplankton methodik. Internationale Vereiningung fuer Theoretische und Angewandte Limnologie: Mitteilungen 9, 1–38.

Vanderploeg, H. A., and Scavia, D. (1979a). Calculation and use of selectivity coefficients of feeding: zooplankton grazing. Ecological Modelling 7, 135–149.
Calculation and use of selectivity coefficients of feeding: zooplankton grazing.Crossref | GoogleScholarGoogle Scholar |

Vanderploeg, H. A., and Scavia, D. (1979b). Two electivity indices for feeding with special reference to zooplankton grazing. Journal of the Fisheries Research Board of Canada 36, 362–365.
Two electivity indices for feeding with special reference to zooplankton grazing.Crossref | GoogleScholarGoogle Scholar |

Vasconcelos, F. R., Menezes, R. F., and Attayde, J. L. (2018). Effects of the Nile tilapia (Oreochromis niloticus L.) on the plankton community of a tropical reservoir during and after an algal bloom. Hydrobiologia 817, 1–9.
Effects of the Nile tilapia (Oreochromis niloticus L.) on the plankton community of a tropical reservoir during and after an algal bloom.Crossref | GoogleScholarGoogle Scholar |

von Rückert, G., and Giani, A. (2008). Biological interactions in the plankton community of a tropical eutrophic reservoir: is the phytoplankton controlled by zooplankton? Journal of Plankton Research 30, 1157–1168.
Biological interactions in the plankton community of a tropical eutrophic reservoir: is the phytoplankton controlled by zooplankton?Crossref | GoogleScholarGoogle Scholar |

Ward, D. M., Castenholz, R. W., Whitton, B. A., and Potts, M. (Eds) (2000). ‘The Ecology of Cyanobacteria.’ (Springer: Dordrecht, Netherlands.)

Wu, X., and Kong, F. (2009). Effects of light and wind speed on the vertical distribution of Microcystis aeruginosa colonies of different sizes during a summer bloom. International Review of Hydrobiology 94, 258–266.
Effects of light and wind speed on the vertical distribution of Microcystis aeruginosa colonies of different sizes during a summer bloom.Crossref | GoogleScholarGoogle Scholar |