Register      Login
Marine and Freshwater Research Marine and Freshwater Research Society
Advances in the aquatic sciences
RESEARCH ARTICLE

Habitat suitability for Chilean silverside (Basilichthys microlepidotus) in the Mataquito River, Maule Region: a geospatial approach

Pablo M. Rojas Venegas A B and Christian D. Espinoza A
+ Author Affiliations
- Author Affiliations

A División de Investigación en Acuicultura, Instituto de Fomento Pesquero, PO Box 665, Puerto Montt, Chile.

B Corresponding author. Email: pablo.rojas@ifop.cl

Marine and Freshwater Research 69(8) 1301-1311 https://doi.org/10.1071/MF17263
Submitted: 8 September 2017  Accepted: 18 January 2018   Published: 7 May 2018

Abstract

Habitat suitability for the Chilean silverside (Basilichthys microlepidotus) in the Mataquito River, located in the Maule Region, was evaluate using geospatial analysis tools. Data were recorded in 2011 (a total of 40 fixed sampling stations) along the Mataquito River, as a result of five limnological surveys (i.e. January, March, June, August and November) in order to characterise the habitat and estimate the abundance of the Chilean silverside in the river. Preference curves were used to describe the dependence of Chilean silverside on relevant physicochemical, hydromorphological and biological parameters. The habitat suitability model showed that the combination of relevant parameters can more accurately explain the presence of a high habitat suitability index in the middle and lower sections of the river, as well as the lower half of the upper section of the Mataquito River. The habitat suitability model provides a comprehensive overall vision of hydrological–hydraulic, morphodynamic and environmental phenomena that determine the dominant habitat for Chilean silverside in the Mataquito River. Understanding the bioecological aspects of Chilean silverside and the dynamics of the Mataquito River system contributes to the establishment of policies for river resource conservation at the local and regional scales.

Additional keywords: fish, fresh water, limnology, modelling.


References

Aadland, L. P. (1993). Stream habitat types: their fish assemblages and relationship to flow. North American Journal of Fisheries Management 13, 790–806.
Stream habitat types: their fish assemblages and relationship to flow.Crossref | GoogleScholarGoogle Scholar |

Allan, J. D. (1995). ‘Stream Ecology: Structure and Function of Running Waters.’ (Chapman and Hall: London, UK.)

Ayllón, D., Almodóvar, A., Nicola, G. G., and Elvira, B. (2009). Interactive effects of cover and hydraulics on brown trout habitat selection patterns. River Research and Applications 25, 1051–1065.
Interactive effects of cover and hydraulics on brown trout habitat selection patterns.Crossref | GoogleScholarGoogle Scholar |

Boavida, I., Santos, J., Cortes, R., Pinheiro, A., and Ferreira, M. (2011). Assessment of instream structures for habitat improvement for two critically endangered fish species. Aquatic Ecology 45, 113–124.
Assessment of instream structures for habitat improvement for two critically endangered fish species.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3MXhsFyru7o%3D&md5=4cc5beb0ed4460c98f6f49ea956f2f7dCAS |

Bovee, K. D. (1982). A guide to stream habitat analysis using the instream flow incremental methodology. Instream Flow Information Paper Number 12, US Fish and Wildlife Service, Washington DC, USA.

Bovee, K. D. (1986). Development and evaluation of habitat suitability criteria for use in the instream flow incremental methodology. Instream Flow Information Paper Number 21, Biological Report, Vol. 89(7), US Fish and Wildlife Service, Washington DC, USA.

Bovee, K. D., and Milhous, R. T. (1978). Hydraulic simulation in instream flow studies: theory and technique. Instream Flow Paper number 5, US Fish and Wildlife Service, Office of Biological Services 78/33, Washington DC, USA.

Bovee, K. D., Lamb, B. L., Bartholow, J. M., Stalnaker, C. B., Taylor, J., and Henriksen, J. (1998). Stream habitat analysis using the instream flow incremental methodology. Information and Technology Report 1998–0004, US Geological Survey, Reston, VA, USA.

Brooks, A. J., Haeusler, T., Reinfelds, I., and Williams, S. (2005). Hydraulic microhabitats and the distribution of macroinvertebrate assemblages in riffles. Freshwater Biology 50, 331–344.
Hydraulic microhabitats and the distribution of macroinvertebrate assemblages in riffles.Crossref | GoogleScholarGoogle Scholar |

Burgman, M. A., Breininger, D. R., Duncan, B. W., and Ferson, S. (2001). Setting reliability bounds on habitat suitability indices. Ecological Applications 11, 70–78.
Setting reliability bounds on habitat suitability indices.Crossref | GoogleScholarGoogle Scholar |

Burrough, P. A., and McDonnell, R. A. (1998). ‘Principles of Geographical Information Systems.’ (Oxford University Press: London, UK.)

Campos, H., Arenas, J., Jara, C., Gonder, T., and Prins, R. (1984). Macrozoobentos y fauna íctica de las aguas limnéticas de Chiloé y Aysén continentales (Chile). Medio Ambiente 7, 52–64.

Campos, H., Gavilán, J. F., Alay, F., and Ruiz, V. H. (1993a). Comunidad íctica de la hoya hidrográfica del Río Biobío. In ‘Gestión de Recursos Hídricos de la Cuenca del Río Biobío y del Área Marina Costera Adyacente’. (Eds F. Faranda and O. Parra.) pp. 249–278. (Centro EULA-Chile, Universidad de Concepción: Concepción, Chile.)

Clark, J. S., Rizzo, D. M., Watzin, M. C., and Hession, W. C. (2008). Spatial distribution and geomorphic condition of fish habitat in streams: an analysis using hydraulic modeling and geostatistics. River Research and Applications 24, 885–899.
Spatial distribution and geomorphic condition of fish habitat in streams: an analysis using hydraulic modeling and geostatistics.Crossref | GoogleScholarGoogle Scholar |

Crowder, D. W., and Diplas, P. (2000). Using two-dimensional hydrodynamic models at scales of ecological importance. Journal of Hydrology 230, 172–191.
Using two-dimensional hydrodynamic models at scales of ecological importance.Crossref | GoogleScholarGoogle Scholar |

Dirección General de Aguas (2004). Diagnóstico y clasificación de los cursos y cuerpos de agua según objetivos de calidad ‘Cuenca río Mataquito’. Gobierno de Chile, Ministerio de Obras Públicas, Santiago, Chile.

Domínguez, E., and Fernández, H. (Eds) (2009). ‘Macroinvertebrados Bentónicos Sudamericanos. Sistemática y Biología.’ (Fundación Miguel Lillo: Tucumán, Argentina.)

Dudgeon, D., Arthington, A. H., Gessner, M. O., Kawabata, Z.-I., Knowler, D. J., Lévêque, C., Naiman, R. J., Prieur-Richard, A.-H., Soto, D., Stiassny, M. L. J., and Sullivan, C. A. (2006). Freshwater biodiversity: importance, threats, status and conservation challenges. Biological Reviews of the Cambridge Philosophical Society 81, 163–182.
Freshwater biodiversity: importance, threats, status and conservation challenges.Crossref | GoogleScholarGoogle Scholar |

Dyer, B. (2000). Systematic review and biogeography of the freshwater fishes of Chile. Estudios Oceanológicos 19, 77–98.

Fahrig, L. (2003). Effects of habitat fragmentation on biodiversity. Annual Review of Ecology Evolution and Systematics 34, 487–515.
Effects of habitat fragmentation on biodiversity.Crossref | GoogleScholarGoogle Scholar |

Feinsinger, O., Spears, E., and Poole, R. (1981). A simple mesure of niche breadth. Ecology 62, 27–32.
A simple mesure of niche breadth.Crossref | GoogleScholarGoogle Scholar |

García, A., Jorde, K., Habit, E., Caamaño, D., and Parra, O. (2011). Downstream environmental effects of dam operations: changes in habitat quality for native fish species. River Research and Applications 27, 312–327.
Downstream environmental effects of dam operations: changes in habitat quality for native fish species.Crossref | GoogleScholarGoogle Scholar |

Gillenwater, D., Granataa, T., and Zika, U. (2006). GIS-based modeling of spawning habitat suitability for walleye in the Sandusky River, Ohio, and implications for dam removal and river restoration. Ecological Engineering 28, 311–323.
GIS-based modeling of spawning habitat suitability for walleye in the Sandusky River, Ohio, and implications for dam removal and river restoration.Crossref | GoogleScholarGoogle Scholar |

Gleick, P. H. (2003). Global freshwater resources: soft-path solutions for the 21st century. Science 302, 1524–1528.
Global freshwater resources: soft-path solutions for the 21st century.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3sXpt1Smsb0%3D&md5=bbfe1c1cc1324c0093308158e8ac8fd0CAS |

Hirzel, A., and Guisan, A. (2002). Which is the optimal sampling strategy for habitat suitability modeling. Ecological Modelling 157, 331–341.
Which is the optimal sampling strategy for habitat suitability modeling.Crossref | GoogleScholarGoogle Scholar |

Hirzel, A., Hausser, J., Chessel, D., and Perrin, N. (2002). Ecological-niche factor analysis: how to compute habitat-suitability maps without absence data. Ecology 83, 2027–2036.
Ecological-niche factor analysis: how to compute habitat-suitability maps without absence data.Crossref | GoogleScholarGoogle Scholar |

Jorde, K., Schneider, M., and Zöllner, F. (2000). Analysis of instream habitat quality – preference functions and fuzzy models. In ‘Stochastic Hydraulics 2000’. (Eds H. Wang.) pp. 671–680. (Balkema; Rotterdam, Netherlands.)

Jowett, I. G. (1993). A method for objectively identifying pool, run, and riffle habitats from physical measurements. New Zealand Journal of Marine and Freshwater Research 27, 241–248.
A method for objectively identifying pool, run, and riffle habitats from physical measurements.Crossref | GoogleScholarGoogle Scholar |

Jowett, I. G. (2003). Hydraulic constraints on habitat suitability for benthic invertebrates in gravel-bed rivers. River Research and Applications 19, 495–507.
Hydraulic constraints on habitat suitability for benthic invertebrates in gravel-bed rivers.Crossref | GoogleScholarGoogle Scholar |

Karr, J. R. (1991). Biological integrity: a long-neglected aspect of water resource management. Ecological Applications 1, 66–84.
Biological integrity: a long-neglected aspect of water resource management.Crossref | GoogleScholarGoogle Scholar |

Kemp, J. L., Harper, D. M., and Crosa, G. A. (1999). Use of ‘functional habitats’ to link ecology with morphology and hydrology in river rehabilitation. Aquatic Conservation 9, 159–178.
Use of ‘functional habitats’ to link ecology with morphology and hydrology in river rehabilitation.Crossref | GoogleScholarGoogle Scholar |

Kemp, J. L., Harper, D. M., and Crosa, G. A. (2000). The habitat-scale ecohydraulics of rivers. Ecological Engineering 16, 17–29.
The habitat-scale ecohydraulics of rivers.Crossref | GoogleScholarGoogle Scholar |

Leclerc, M., Boudreault, A., Bechara, J. A., and Corfa, G. (1995). Two-dimensional hydrodynamic modeling: a neglected tool in the instream flow incremental methodology. Transactions of the American Fisheries Society 124, 645–662.
Two-dimensional hydrodynamic modeling: a neglected tool in the instream flow incremental methodology.Crossref | GoogleScholarGoogle Scholar |

Mérigoux, S., and Dolédec, S. (2004). Hydraulic requirements of stream communities: a case study on invertebrates. Freshwater Biology 49, 600–613.
Hydraulic requirements of stream communities: a case study on invertebrates.Crossref | GoogleScholarGoogle Scholar |

Merwade, V. M., Maidment, D. R., and Goff, J. A. (2006). Anisotropic considerations while interpolating river channel bathymetry. Journal of Hydrology 331, 731–741.
Anisotropic considerations while interpolating river channel bathymetry.Crossref | GoogleScholarGoogle Scholar |

Murchie, K. J., Hair, K. P. E., Pullen, C. E., Redpath, T. D., Stephens, H. R., and Cooke, S. J. (2008). Fish response to modified flow regimes in regulated rivers: research methods, effects and opportunities. River Research and Applications 24, 197–217.
Fish response to modified flow regimes in regulated rivers: research methods, effects and opportunities.Crossref | GoogleScholarGoogle Scholar |

Naiman, R. J., and Turner, M. G. (2000). A future perspective on North America’s freshwater ecosystems. Ecological Applications 10, 958–970.
A future perspective on North America’s freshwater ecosystems.Crossref | GoogleScholarGoogle Scholar |

Norris, R. H., and Thomas, M. C. (1999). What is river health? Freshwater Biology 41, 197–209.
What is river health?Crossref | GoogleScholarGoogle Scholar |

Nukazawa, K., Shiraiwa, J., and Kazama, S. (2011). Evaluations of seasonal habitat variations of freshwater fishes, fireflies, and frogs using a habitat suitability index model that includes river water temperature. Ecological Modelling 222, 3718–3726.
Evaluations of seasonal habitat variations of freshwater fishes, fireflies, and frogs using a habitat suitability index model that includes river water temperature.Crossref | GoogleScholarGoogle Scholar |

Parasiewicz, P., and Walker, J. D. (2007). Comparison of MesoHABSIM with two microhabitat models (PHABSIM and HARPHA). River Research and Applications 23, 904–923.
Comparison of MesoHABSIM with two microhabitat models (PHABSIM and HARPHA).Crossref | GoogleScholarGoogle Scholar |

Parra, O., Valdovinos, C., and Habit, E. (2000). Determinación del Caudal Mínimo Ecológico del Proyecto Hidroeléctrico Quilleco. Unidad de Sistemas Acuáticos, Centro EULA-Chile, Universidad de Concepción, Concepción, Chile.

Pires, A. M., Cowx, I. G., and Coelho, M. M. (2000). Life history strategy of Leuciscus pyrenaicus (Cyprinidae) in intermittent streams of the Guadiana basin (Portugal). Cybium 24, 287–297.

Rojas, P. (2015). Informe Final Proyecto: Repoblación del pejerrey nativo en el río Mataquito, Región del Maule. Fuente de Financiamiento: Consejo de Defensa del Estado (CDE), Santiago, Chile.

Sala, O. E., Chapin, F. S., Armesto, J. J., Berlow, E., Bloomfield, J., Dirzo, R., Huber-Sanwald, E., Huenneke, L. F., Jackson, R. B., Kinzig, A., Leemans, R., Lodge, D. M., Mooney, H. A., Oesterheld, M., Poff, N. L., Sykes, M. T., Walker, B. H., Walker, M., and Wall, D. H. (2000). Global biodiversity scenarios for the year 2100. Science 287, 1770–1774.
Global biodiversity scenarios for the year 2100.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3cXhvVWltLk%3D&md5=dd960e986dff7ca0b513704c564d7546CAS |

Schloeder, C. A., Zimmerman, N. E., and Jacobs, M. J. (2001). Comparison of methods for interpolating soil properties using limited data. Soil Science Society of America Journal 65, 470–479.
Comparison of methods for interpolating soil properties using limited data.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD38Xpt1On&md5=77490c2b0c33ca7b7ac893a4cc4bc598CAS |

Schneider, M. (2001). Habitat- and Abflussmodellierung für Fließgewässer mit unscharfen Berechnungsansätzen. Ph.D. Dissertation, Universität Stuttgart, Stuttgart, Germany.

Schweizer, S., Borsuk, M. E., Jowett, I., and Reichert, P. (2007). Predicting joint frequency distributions of depth and velocity for instream habitat assessment. River Research and Applications 23, 287–302.
Predicting joint frequency distributions of depth and velocity for instream habitat assessment.Crossref | GoogleScholarGoogle Scholar |

Shi, X., Liu, J., You, X., Bao, K., Meng, B., and Chen, B. (2017). Evaluation of river habitat integrity based on benthic macroinvertebrate-based multi-metric model. Ecological Modelling 353, 63–76.
Evaluation of river habitat integrity based on benthic macroinvertebrate-based multi-metric model.Crossref | GoogleScholarGoogle Scholar |

Smith, D. L., and Brannon, E. L. (2007). Influence of cover on mean column hydraulic characteristics in small pool riffle morphology streams. River Research and Applications 23, 125–139.
Influence of cover on mean column hydraulic characteristics in small pool riffle morphology streams.Crossref | GoogleScholarGoogle Scholar |

Stalnaker, C., Lamb, B., Henriksen, J., Bovee, K., and Bartlow, J. (1995). ‘The Instream Flow Incremental Methodology. A Primer for IFIM.’ (US Department of Interior National Biological Service: Washington DC, USA.)

Statzner, B., Gore, J. A., and Resh, V. H. (1988). Hydraulic stream ecology: observed patterns and potential applications. Journal of the North American Benthological Society 7, 307–360.
Hydraulic stream ecology: observed patterns and potential applications.Crossref | GoogleScholarGoogle Scholar |

Tomczak, M. (1998). Spatial interpolation and its uncertainty using automated anisotropic inverse distance weighting (IDW)-cross-validation/jackknife approach. Journal of Geographic Information and Decision Analysis 2, 18–30.

Vargas, P. V., Arismendi, I., Lara, G., Millar, J., and Peredo, S. (2010). Evidencia de solapamiento de micro-hábitat entre juveniles del salmón introducido Oncorhynchus tshawystscha y el pez chileno Trichomycterus areolatus en el río Allipén, Chile. Revista de Biología Marina 45, 285–292.

Véliz, D., Catalán, L., Pardo, R., Acuña, P., Díaz, A., Poulin, E., and Vila, I. (2012). The genus Basilichthys (Teleostei: Atherinopsidae) revisited along its Chilean distribution range (21 to 40°S) using variation in morphology and mtDNA. Revista Chilena de Historia Natural 85, 49–59.
The genus Basilichthys (Teleostei: Atherinopsidae) revisited along its Chilean distribution range (21 to 40°S) using variation in morphology and mtDNA.Crossref | GoogleScholarGoogle Scholar |

Wesche, T. A. (1985). Stream channel modifications and reclamation structures to enhance fish habitat. In ‘The Restoration of Rivers and Streams’. (Ed. J. A. Gore.) pp. 103–159. (Butterworth: Boston, MA, USA.)