Register      Login
Marine and Freshwater Research Marine and Freshwater Research Society
Advances in the aquatic sciences
RESEARCH ARTICLE

Population genetics of Pampus echinogaster along the Pacific coastline of China: insights from the mitochondrial DNA control region and microsatellite molecular markers

Yuan Li A B , Longshan Lin A F , Na Song B , Yan Zhang C and Tianxiang Gao D E F
+ Author Affiliations
- Author Affiliations

A Third Institute of Oceanography, State Oceanic Administration, Xiamen, 361005, P.R. China.

B Fisheries College, Ocean University of China, Qingdao, 266003, P.R. China.

C Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Qingdao, 266071, P.R. China.

D School of Fishery, Zhejiang Ocean University, Zhoushan, 316004, P.R. China.

E Key Laboratory for Technology Research on Sustainable Utilization of Marine Fishery Resources, Zhoushan, 316021, P.R. China.

F Corresponding authors. Email: gaotianxiang0611@163.com; linlsh@tio.org.cn

Marine and Freshwater Research 69(6) 971-981 https://doi.org/10.1071/MF17218
Submitted: 18 July 2017  Accepted: 24 November 2017   Published: 19 March 2018

Abstract

Genetic variation among seven populations of Pampus echinogaster collected from the coastal waters of China was investigated based on the mitochondrial DNA control region and microsatellite molecular markers. The results revealed a high level of genetic diversity that may be related primarily to the life history traits and diverse habitats of this species. Analysis of the genetic structure and migration of P. echinogaster revealed weak genetic differentiation among populations, with an absence of a phylogeographic structure, indicating relatively high genetic homogeneity that may be associated with a recent population expansion event. The complex migratory and high dispersal ability of ichthyoplankton, as well as China’s offshore circulation, may have played important roles in shaping the current genetic structure of P. echinogaster. Unlike stock division in conventional fisheries, the present study found no significant differences among the P. echinogaster populations, all of which were panmictic. Therefore, in addition to accounting for conventional fishery stocks, a comprehensive assessment should be conducted by considering the phylogenetic structure among different populations.

Additional keywords: genetic structure, historical demography, migration route, population diversity.


References

Abe, T., and Kosakai, T. (1964). Notes on an economically important but scientifically little-known silver pomfret, Pampus echinogaster (Pampidae, Teleostei). Japanese Journal of Ichthyology 12, 29–31.

Aris-Brosou, S., and Excoffier, L. (1996). The impact of population expansion and mutation rate heterogeneity on DNA sequence polymorphism. Molecular Biology and Evolution 13, 494–504.
The impact of population expansion and mutation rate heterogeneity on DNA sequence polymorphism.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK28Xht1Kgurs%3D&md5=40015c9ece35e6f6450e03c7d6372d06CAS |

Avise, J. C. (2000). ‘Phylogeography: The History and Formation of Species.’ (Harvard University Press: Cambridge, MA, USA.)

Botstein, D., White, R. L., Skolnick, M., and Davis, R. W. (1980). Construct ion of a genetic linkage map in man using restriction fragment length polymorphisms. American Journal of Human Genetics 32, 314–331.
| 1:CAS:528:DyaL3cXkvFamtbc%3D&md5=ceb1578128d0cce08041a40fa1ae56c0CAS |

Bowen, B. W., Bass, A. L., Rocha, L. A., Grant, W. S., and Robertson, D. R. (2001). Phylogeography of the trumpetfishes (Aulostomus): ring species complex on a global scale. Evolution 55, 1029–1039.
Phylogeography of the trumpetfishes (Aulostomus): ring species complex on a global scale.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3MXltFeksr8%3D&md5=3baf2e24a68de7e4ac91463729db4236CAS |

Cheng, J., Yanagimoto, T., Song, N., and Gao, T. (2015). Population genetic structure of chub mackerel Scomber japonicus in the Northwestern Pacific inferred from microsatellite analysis. Molecular Biology Reports 42, 373–382.
Population genetic structure of chub mackerel Scomber japonicus in the Northwestern Pacific inferred from microsatellite analysis.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC2cXhvVKls7%2FO&md5=4dea946edc7a23a33ecbccf9cbfe51a9CAS |

Di Rienzo, A., Peterson, A. C., Garza, J. C., Valdes, A. M., and Slatkin, M. (1994). Mutational processes of simple-sequence repeat loci in human populations. Proceedings of the National Academy of Sciences of the United States of America 91, 3166–3170.
Mutational processes of simple-sequence repeat loci in human populations.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK2cXktVantrk%3D&md5=7067823f48dfaaf02f1fb4d2da3762cbCAS |

Dolganov, V. N., Kharin, V. E., and Zemnukhov, V. V. (2007). Species composition and distribution of butterfishes (Stromateidae) in waters of Russia. Journal of Ichthyology 47, 579–584.
Species composition and distribution of butterfishes (Stromateidae) in waters of Russia.Crossref | GoogleScholarGoogle Scholar |

Drummond, A. J., Suchard, M. A., Xie, D., and Rambaut, A. (2012). Bayesian phylogenetics with BEAUti and the BEAST 1.7. Molecular Biology and Evolution 29, 1969–1973.
Bayesian phylogenetics with BEAUti and the BEAST 1.7.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC38XhtFagu7fO&md5=b52e03ce183204e60a50da1ea6693285CAS |

Evanno, G., Regnaut, S., and Goudet, J. (2005). Detecting the number of clusters of individuals using the software STRUCTURE: a simulation study. Molecular Ecology 14, 2611–2620.
Detecting the number of clusters of individuals using the software STRUCTURE: a simulation study.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2MXmvF2qtrg%3D&md5=1a6dd9f70529b53d70b81fd5ac590562CAS |

Excoffier, L., Laval, G., and Schneider, S. (2005). Arlequin (version 3.0): an integrated software package for population genetics data analysis. Evolutionary Bioinformatics Online 1, 47–50.
Arlequin (version 3.0): an integrated software package for population genetics data analysis.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD28XjsFSltg%3D%3D&md5=7e86e90392265936d8aa25dc407748d3CAS |

Goudet, J. (1995). FSTAT (version 1.2): a computer program to calculate F-statistics. The Journal of Heredity 86, 485–486.
FSTAT (version 1.2): a computer program to calculate F-statistics.Crossref | GoogleScholarGoogle Scholar |

Grant, W., and Bowen, B. (1998). Shallow population histories in deep evolutionary lineages of marine fishes: insights from sardines and anchovies and lessons for conservation. The Journal of Heredity 89, 415–426.
Shallow population histories in deep evolutionary lineages of marine fishes: insights from sardines and anchovies and lessons for conservation.Crossref | GoogleScholarGoogle Scholar |

Han, Z., Yanagimoto, T., Zhang, Y., and Gao, T. (2012). Phylogeography study of Ammodytes personatus in Northwestern Pacific: Pleistocene isolation, temperature and current conducted secondary contact. PLoS One 7, e37425.
Phylogeography study of Ammodytes personatus in Northwestern Pacific: Pleistocene isolation, temperature and current conducted secondary contact.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC38Xot1Cqu78%3D&md5=a7e4a7ded91592d19a263be5637af811CAS |

Hewitt, G. H. (1996). Some genetic consequences of ice ages, and their role in divergence and speciation. Biological Journal of the Linnean Society. Linnean Society of London 58, 247–276.
Some genetic consequences of ice ages, and their role in divergence and speciation.Crossref | GoogleScholarGoogle Scholar |

Hewitt, G. (2000). The genetic legacy of the Quaternary ice ages. Nature 405, 907–913.
The genetic legacy of the Quaternary ice ages.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3cXks1Wmu78%3D&md5=da333fc73cdcceab8e60df260c5112ecCAS |

Jin, X., Zhao, X., and Meng, T. (2006). The resources dynamics of main fishery species. In ‘Biological Resources and Environment of Bohai Sea and Yellow Sea’. (Eds X. Li.) pp. 204–215. (Science Press: Beijing, China.) [In Chinese].

Jombart, T., Devillard, S., and Balloux, F. (2010). Discriminant analysis of principal components: a new method for the analysis of genetically structured populations. BMC Genetics 11, 94.
Discriminant analysis of principal components: a new method for the analysis of genetically structured populations.Crossref | GoogleScholarGoogle Scholar |

Lespinet, O., Wolf, Y. I., Koonin, E. V., and Aravind, L. (2002). The role of lineage-specific gene family expansion in the evolution of eukaryotes. Genome Research 12, 1048–1059.
The role of lineage-specific gene family expansion in the evolution of eukaryotes.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD38XlsVWgsr4%3D&md5=5291d487de6eadcd49291ce998365e03CAS |

Li, Y., Song, N., Khan, F. S., Yanagimoto, T., and Gao, T. (2013). New evidence of morphological characters and DNA barcoding of Pampus argenteus (Euphrasen, 1788). Journal of Fisheries of China 37, 1601–1608.
New evidence of morphological characters and DNA barcoding of Pampus argenteus (Euphrasen, 1788).Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC2cXhvFGhtL3M&md5=088b77d5646cf766363f80df7ae92d29CAS |

Li, Y., Zhang, Y., Gao, T., Han, Z., Lin, L., and Zhang, X. (2017). Morphological characteristics and DNA barcoding of Pampus echinogaster (Basilewsky, 1855). Acta Oceanologica Sinica 36, 18–23.
Morphological characteristics and DNA barcoding of Pampus echinogaster (Basilewsky, 1855).Crossref | GoogleScholarGoogle Scholar |

Liu, J., Gao, T., Wu, S., and Zhang, Y. (2007). Pleistocene isolation in the Northwestern Pacific marginal seas and limited dispersal in a marine fish, Chelon haematocheilus (Temminck & Schlegel, 1845). Molecular Ecology 16, 275–288.
Pleistocene isolation in the Northwestern Pacific marginal seas and limited dispersal in a marine fish, Chelon haematocheilus (Temminck & Schlegel, 1845).Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2sXks1yru7w%3D&md5=f18aaa25d400f97f19f4f159853d678bCAS |

Liu, J., Chen, Y., and Ma, L. (2015). Stromateidae. In ‘Fishes of Bohai Sea and Yellow Sea’. (Eds J. Liu.) pp. 267–267. (Science Press: Beijing, China.) [In Chinese].

Luikart, G., and Cornuet, J. M. (1998). Empirical evaluation of a test for identifying recently bottlenecked populations from allele frequency data. Conservation Biology 12, 228–237.
Empirical evaluation of a test for identifying recently bottlenecked populations from allele frequency data.Crossref | GoogleScholarGoogle Scholar |

Meng, Y., Zhang, L., Zhao, F., Shi, Z., and Zhuang, P. (2012). Prelimary study on the genetic diversity of four geographic populations of silver pomfret (Pampus argenteus). Marine Fisheries 37, 48–52.
| 1:CAS:528:DC%2BC3sXjs1Wksrc%3D&md5=5eb1e83387904702d37db8c2d9b576d1CAS |

Nakabo, T. (2013). Suborder Stromateoidei. In ‘Fishes of Japan with Pictorial Keys to the Species (II)’, 3rd edn. (Eds N. Tetsuji.) pp. 1079–1080. (Tokai University Press: Kanagawa, Japan.) [In Japanese].

Nei, M. (1987). ‘Molecular Evolutionary Genetics.’ (Columbia University Press: New York, NY, USA.)

Oh, C. W., Na, J. H., and Kim, J. K. (2009). Population biology of Korean pomfret Pampus echinogaster (Basilewsky, 1855) (Perciformes: Stromateidae) on the western coast of Korea, Yellow Sea. Animal Cells and Systems 13, 83–89.
Population biology of Korean pomfret Pampus echinogaster (Basilewsky, 1855) (Perciformes: Stromateidae) on the western coast of Korea, Yellow Sea.Crossref | GoogleScholarGoogle Scholar |

Piry, S., Luikart, G., and Cornuet, J. M. (1999). BOTTLENECK: a computer program for detecting recent reductions in the effective population size using allele frequency data. The Journal of Heredity 90, 502–503.
BOTTLENECK: a computer program for detecting recent reductions in the effective population size using allele frequency data.Crossref | GoogleScholarGoogle Scholar |

Posada, D. (2008). jModelTest: phylogenetic model averaging. Molecular Biology and Evolution 25, 1253–1256.
jModelTest: phylogenetic model averaging.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1cXotlKgsb4%3D&md5=628cd04355508114bafe3d36e17c81b4CAS |

Pritchard, J. K., Stephens, M., Rosenberg, N. A., and Donnelly, P. (2000). Association mapping in structured populations. American Journal of Human Genetics 67, 170–181.
Association mapping in structured populations.Crossref | GoogleScholarGoogle Scholar | 1:STN:280:DC%2BD3czptVWnuw%3D%3D&md5=841ab21862e3294d52c8b4ae0fe2cad7CAS |

Qiu, F., Li, H., Lin, H., Ding, S., and Miyamoto, M. M. (2016). Phylogeography of the inshore fish, Bostrychus sinensis, along the Pacific coastline of China. Molecular Phylogenetics and Evolution 96, 112–117.
Phylogeography of the inshore fish, Bostrychus sinensis, along the Pacific coastline of China.Crossref | GoogleScholarGoogle Scholar |

Raymond, M., and Rousset, F. (1995). GENEPOP (version 1.2): population genetics software for exact tests and ecumenicism. The Journal of Heredity 86, 248–249.
GENEPOP (version 1.2): population genetics software for exact tests and ecumenicism.Crossref | GoogleScholarGoogle Scholar |

Savolainen, P., Zhang, Y., Luo, J., Lundeberg, J., and Leitner, T. (2002). Genetic evidence for an East Asian origin of domestic dogs. Science 298, 1610–1613.
Genetic evidence for an East Asian origin of domestic dogs.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD38Xosl2ktbg%3D&md5=7fe0eb0093c9dd8af87a20f9e3963712CAS |

Shi, Z., Wang, J., Gao, L., and Ling, J. (2005). Advances on the studies of reproductive biology and artificial breeding technology in silver pomfret Pampus argenteus. Marine Fisheries 27, 246–250.

Song, N., Jia, N., Yanagimoto, T., Lin, L., and Gao, T. (2013). Genetic differentiation of Trachurus japonicus from the Northwestern Pacific based on the mitochondrial DNA control region. Mitochondrial DNA 24, 705–712.
Genetic differentiation of Trachurus japonicus from the Northwestern Pacific based on the mitochondrial DNA control region.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3sXhslCntr7O&md5=92d3e29f6b909241f8ab96081bb2dc7bCAS |

Song, N., Liu, M., Yanagimoto, T., Sakurai, Y., Han, Z., and Gao, T. (2016). Restricted gene flow for Gadus macrocephalus from Yellow Sea based on microsatellite markers: geographic block of Tsushima Current. International Journal of Molecular Sciences 17, 467–477.
Restricted gene flow for Gadus macrocephalus from Yellow Sea based on microsatellite markers: geographic block of Tsushima Current.Crossref | GoogleScholarGoogle Scholar |

Sukumaran, S., Sebastian, W., and Gopalakrishnan, A. (2017). Genetic population structure and historic demography of Indian mackerel, Rastrelliger kanagurta from Indian peninsular waters. Fisheries Research 191, 1–9.
Genetic population structure and historic demography of Indian mackerel, Rastrelliger kanagurta from Indian peninsular waters.Crossref | GoogleScholarGoogle Scholar |

Sun, P. (2015). Comparison of genetic difference in cultured Pampus populations between China and Kuwait based on COI partial sequences. Marine Science 39, 53–58.
| 1:CAS:528:DC%2BC2MXitV2ls7bJ&md5=95fa405b822ee433d5e86ae9ece003e2CAS |

Tamura, K., Peterson, D., Peterson, N., Stecher, G., Nei, M., and Kumar, S. (2011). MEGA5: molecular evolutionary genetics analysis using maximum likelihood, evolutionary distance, and maximum parsimony methods. Molecular Biology and Evolution 28, 2731–2739.
MEGA5: molecular evolutionary genetics analysis using maximum likelihood, evolutionary distance, and maximum parsimony methods.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3MXht1eiu73K&md5=0f8f87e83a39ee9a22a09b15d9943cf4CAS |

Van Oosterhout, C., Hutehinson, W. F., Wills, D. P. M., and Shipley, P. (2004). Micro-checker: software for identifying and correcting genotyping errors in microsatellite data. Molecular Ecology Notes 4, 535–538.
Micro-checker: software for identifying and correcting genotyping errors in microsatellite data.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2cXnvFOktb8%3D&md5=8c9bc3a82e4d9d73e1be97e57c6e8d07CAS |

Williams, S. M., Bennett, M. B., Pepperell, J. G., Morgan, J. A. T., and Ovenden, J. R. (2016). Spatial genetic subdivision among populations of the highly migratory black marlin Istiompax indica within the central Indo-Pacific. Marine and Freshwater Research 67, 1205–1214.
Spatial genetic subdivision among populations of the highly migratory black marlin Istiompax indica within the central Indo-Pacific.Crossref | GoogleScholarGoogle Scholar |

Wu, R., He, X., Zhuang, Z., and Liu, S. (2012). Mitochondrial COI sequence variation of silver pomfret (Pampus argenteus) from Chinese coastal waters. Acta Zootaxonomica Sinica 37, 480–488.

Yamada, U., Tokimura, M., Hoshino, K., Deng, S., Dheng, Y., Li, S., Kim, Y., and Kim, J. (2009). Morphological features and distribution. In ‘Name and Illustrations of Fish from the East China Sea and the Yellow Sea’. (Eds U. Yamada, M. Tokimura, and K. Hoshino.) pp. 525–528. (Overseas Fishery Cooperation Foundation of Japan: Tokyo, Japan.)

Yang, W., Li, J., and Yue, G. (2006). Multiplex genotyping of novel microsatellites from silver pomfret (Pampus argenteus) and cross-amplification in other pomfret species. Molecular Ecology Notes 6, 1073–1075.
Multiplex genotyping of novel microsatellites from silver pomfret (Pampus argenteus) and cross-amplification in other pomfret species.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2sXmsl2qsQ%3D%3D&md5=de763297299cf7e291ae5a9b3595dbd1CAS |

Zeng, L., Cheng, Q., and Chen, X. (2012). Microsatellite analysis reveals the population structure and migration patterns of Scomber japonicus (Scombridae) with continuous distribution in the East and South China Seas. Biochemical Systematics and Ecology 42, 83–93.
Microsatellite analysis reveals the population structure and migration patterns of Scomber japonicus (Scombridae) with continuous distribution in the East and South China Seas.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC38XlvFOhtLk%3D&md5=999f4fa0268a2056c2def8ee08bcbee9CAS |

Zhang, J., and Hanner, R. (2012). Molecular approach to the identification of fish in the South China Sea. PLoS One 7, e30621.
Molecular approach to the identification of fish in the South China Sea.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC38Xjt1Klu7c%3D&md5=e13cc924a135d507f6355b47b04c12aeCAS |

Zhang, Q., Cheng, J., and Xu, H. (2007). The resources dynamics of main fishery species. In ‘Fishery Resources and Sustainable Utilization in East China Sea’. (Eds F. Ding, Q. Dai, and F. Hu.) pp. 183–200. (Fudan University Press: Shanghai, China.)

Zhang, H., Zhang, Y., Zhang, X., Song, N., and Gao, T. (2013). Special structure of mitochondrial DNA control region and phylogenetic relationship among individuals of the black rockfish, Sebastes schlegelii. Mitochondrial DNA 24, 151–157.
Special structure of mitochondrial DNA control region and phylogenetic relationship among individuals of the black rockfish, Sebastes schlegelii.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3sXjsFakur8%3D&md5=515e6e715b4ba9d4a28ee97e5f9d64f1CAS |

Zhao, F., Shi, Z., and Zhuang, P. (2010). Advances on reproductive biology and artificial breeding technology of silver pomfret, Pampus argenteus. Marine Science 34, 90–96.

Zhao, F., Dong, Y., Zhuang, P., and Shi, Z. (2011). Genetic diversity of silver pomfret (Pampus argenteus) in the Southern Yellow and East China Seas. Biochemical Systematics and Ecology 39, 145–150.
Genetic diversity of silver pomfret (Pampus argenteus) in the Southern Yellow and East China Seas.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3MXjsV2gsrg%3D&md5=b14de5489fe184b5759ba3008ff4eb55CAS |

Zheng, Y., Chen, X., and Cheng, J. (2003). Species composition, density distribution and resource evaluation of fishery resources. In ‘Biological Resources and Environment in the Continental Shelf of East China Sea’. (Eds S. Li, J. Cheng, and Y. Zheng.) pp. 379–388. (Shanghai Science and Technology Press: Shanghai, China.) [In Chinese].

Zhu, Y., Wu, H., Jin, X., Meng, Q., Zhang, Q., and Qiu, S. (1985). Stromateoidei. In ‘Fish of Fujian (II)’. (Eds H. Wu.) pp. 431–435. (Fujian Science and Technology Press: Fujian, China.) [In Chinese].