Register      Login
Marine and Freshwater Research Marine and Freshwater Research Society
Advances in the aquatic sciences
RESEARCH ARTICLE

Pseudomonas putida inoculation promotes submerged plant Vallisneria natans growth by carbon conversion in a plant–microbe interaction

Lin Gan A , Hui Zhao B , Aili Wang A , Sanshan Li A , Jia Liu C and Liuyan Yang A D
+ Author Affiliations
- Author Affiliations

A State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Xianlin Road 163, Nanjing, 210023, P.R. China.

B Nanjing University Research Institute (Changshu) Co. Ltd, Huanhunan Road 1, Changshu, 215500, P.R. China.

C State Key Laboratory of Pollution Control and Resource Reuse, College of Environmental Science and Engineering, Tongji University, Siping Road 1239, Shanghai, 200092, P.R. China.

D Corresponding author. Email: yangly@nju.edu.cn

Marine and Freshwater Research 69(5) 851-858 https://doi.org/10.1071/MF17117
Submitted: 29 April 2017  Accepted: 12 January 2018   Published: 16 April 2018

Abstract

Submerged plant growth is limited by the reduction of underwater photosynthesis attributed to low CO2 availability, as well as light limitation associated with underwater conditions. Heterotrophic bacteria and fungi play an important role in local aqueous dissolved inorganic carbon (DIC) content surrounding submerged plants. In order to investigate the effects of carbon conversion in plant–microbe interactions on plant growth, in the present study we inoculated the plant medium of Vallisneria natans with Pseudomonas putida KT2440 and measured carbon conversion in the system, as well as several indices of plant growth. The quantity of P. putida KT2440 increased twofold because of the availability of organic matter produced by V. natans. Similarly, P. putida KT2440 supplied DIC for V. natans, improving its photosynthetic rate. Moreover, the significantly higher leaf area, specific leaf area and fresh biomass of V. natans attributed to the presence of P. putida KT2440 demonstrated that the interaction between V. natans and P. putida enhanced the efficiency of nutrient and CO2 uptake by V. natans, promoting V. natans growth. Therefore, we suggest that the carbon and oxygen microcycle based on the protocooperation of V. natans and P. putida KT2440 may accelerate the transformation of carbon to increase carbon availability to promote the growth of both plant and microbe.

Additional keywords: chlorophyll content, pH, root : shoot ratio.


References

Armstrong, W. (1980). Aeration in higher plants. Advances in Botanical Research 7, 225–332.
Aeration in higher plants.Crossref | GoogleScholarGoogle Scholar |

Baranenko, V. I., Falkovskii, L. N., Kirov, V. S., Kurnyk, L. N., Musienko, A. N., and Piontkovskii, A. I. (1990). Solubility of oxygen and carbon dioxide in water. Atomic Energy 68, 342–346.
Solubility of oxygen and carbon dioxide in water.Crossref | GoogleScholarGoogle Scholar |

Cao, J., and Ruan, H. (2015). Responses of the submerged macrophyte Vallisneria natans to elevated CO2 and temperature. Aquatic Botany 23, 119–127.
Responses of the submerged macrophyte Vallisneria natans to elevated CO2 and temperature.Crossref | GoogleScholarGoogle Scholar |

Capone, D. G. (1983). N2 fixation in seagrass communities. Marine Technology Society Journal 17, 32–37.

Coci, M., Bodelier, P. L. E., and Laanbroek, H. J. (2008). Epiphyton as a niche for ammonia-oxidizing bacteria: detailed comparison with benthic and pelagic compartments in shallow freshwater lakes. Applied and Environmental Microbiology 74, 1963–1971.
Epiphyton as a niche for ammonia-oxidizing bacteria: detailed comparison with benthic and pelagic compartments in shallow freshwater lakes.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1cXks1antb0%3D&md5=c49f9ed8bb90eff2753de9767cefc321CAS |

Crump, B. C., and Koch, E. W. (2008). Attached bacterial populations shared by four species of aquatic angiosperms. Applied and Environmental Microbiology 74, 5948–5957.
Attached bacterial populations shared by four species of aquatic angiosperms.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1cXht1ektbzN&md5=82f9040e91975840a9c719fcfcef9587CAS |

Dey, R., Pal, K. K., Bhatt, D. M., and Chauhan, S. M. (2004). Growth promotion and yield enhancement of peanut (Arachis hypogaea L.) by application of plant growth-promoting rhizobacteria. Microbiological Research 159, 371–394.
Growth promotion and yield enhancement of peanut (Arachis hypogaea L.) by application of plant growth-promoting rhizobacteria.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2MXitVKitbk%3D&md5=11de90b2808c1441049c4d123057e53eCAS |

dos Santos, V. A. P. M., Heim, S., Moore, E. R. B., Strätz, M., and Timmis, K. N. (2004). Insights into the genomic basis of niche specificity of Pseudomonas putida KT2440. Environmental Microbiology 6, 1264–1286.
Insights into the genomic basis of niche specificity of Pseudomonas putida KT2440.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2MXivFOhtg%3D%3D&md5=3e1d776383ecdd7220006b478cba7183CAS |

Dou, Y., Wang, B., Chen, L., and Yin, D. (2013). Alleviating versus stimulating effects of bicarbonate on the growth of Vallisneria natans under ammonia stress. Environmental Science and Pollution Research International 20, 5281–5288.
Alleviating versus stimulating effects of bicarbonate on the growth of Vallisneria natans under ammonia stress.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3sXhtFWksLvN&md5=07bbd12585e02937473917f0541ab27aCAS |

Eusebio Malheiro, A. C., Jahns, P., and Hussner, A. (2013). CO2 availability rather than light and temperature determines growth and phenotypical responses in submerged Myriophyllum aquaticum. Aquatic Botany 110, 31–37.
CO2 availability rather than light and temperature determines growth and phenotypical responses in submerged Myriophyllum aquaticum.Crossref | GoogleScholarGoogle Scholar |

Evans, G. C. (1972). ‘The Quantitative Analysis of Plant Growth.’ (University of California Press: Berkerley, CA, USA.)

Fernández, M., Conde, S., Duque, E., and Ramos, J. (2013). In vivo gene expression of Pseudomonas putida KT2440 in the rhizosphere of different plants. Microbial Biotechnology 6, 307–313.
In vivo gene expression of Pseudomonas putida KT2440 in the rhizosphere of different plants.Crossref | GoogleScholarGoogle Scholar |

Granéli, W., Lindell, M., and Tranvik, L. (1996). Photo-oxidative production of dissolved inorganic carbon in lakes of different humic content. Limnology and Oceanography 41, 698–706.
Photo-oxidative production of dissolved inorganic carbon in lakes of different humic content.Crossref | GoogleScholarGoogle Scholar |

Hussner, A., Hofstra, D., Jahns, P., and Clayton, J. (2015). Response capacity to CO2 depletion rather than temperature and light effects explain the growth success of three alien Hydrocharitaceae compared with native Myriophyllum triphyllum in New Zealand. Aquatic Botany 120, 205–211.
Response capacity to CO2 depletion rather than temperature and light effects explain the growth success of three alien Hydrocharitaceae compared with native Myriophyllum triphyllum in New Zealand.Crossref | GoogleScholarGoogle Scholar |

Hussner, A., Mettler-Altmann, T., Weber, A. P. M., and Sand-Jensen, K. (2016). Acclimation of photosynthesis to supersaturated CO2 in aquatic plant bicarbonate users. Freshwater Biology 61, 1720–1732.
Acclimation of photosynthesis to supersaturated CO2 in aquatic plant bicarbonate users.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC28XhsVGitrfO&md5=04668c45bbc60513aa14353a0c3dcc21CAS |

Invers, O., Zimmerman, R. C., Alberte, R. S., Perez, M., and Romero, J. (2001). Inorganic carbon sources for seagrass photosynthesis: an experimental evaluation of bicarbonate use in species inhabiting temperature waters. Journal of Experimental Marine Biology and Ecology 265, 203–217.
Inorganic carbon sources for seagrass photosynthesis: an experimental evaluation of bicarbonate use in species inhabiting temperature waters.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3MXos1Orsb0%3D&md5=e2fc61c133a77970e013ff7c6f1a0e50CAS |

Joshi, H., Dave, R., and Venugopalan, V. P. (2014). Protein as chemical cue: non-nutritional growth enhancement by exogenous protein in Pseudomonas putida KT2440. PLoS One 9, e103730.
Protein as chemical cue: non-nutritional growth enhancement by exogenous protein in Pseudomonas putida KT2440.Crossref | GoogleScholarGoogle Scholar |

Ke, X. S., and Li, W. (2006). Germination requirement of Vallisneria natans seeds: implications for restoration in Chinese lakes. Hydrobiologia 559, 357–362.
Germination requirement of Vallisneria natans seeds: implications for restoration in Chinese lakes.Crossref | GoogleScholarGoogle Scholar |

Kortelainen, P., Rantakari, M., Huttunen, J. T., Mattsson, T., Alm, J., Juutinen, S., Larmola, T., Silvola, J., and Martikainen, P. J. (2006). Sediment respiration and lake trophic state are important predictors of large CO2 evasion from small boreal lakes. Global Change Biology 12, 1554–1567.
Sediment respiration and lake trophic state are important predictors of large CO2 evasion from small boreal lakes.Crossref | GoogleScholarGoogle Scholar |

Maberly, S. A., and Madsen, T. V. (1998). Affinity for CO2 in relation to the ability of freshwater macrophytes to use HCO3–. Functional Ecology 12, 99–106.
Affinity for CO2 in relation to the ability of freshwater macrophytes to use HCO3.Crossref | GoogleScholarGoogle Scholar |

Mackereth, F. J. H., Heron, J., and Talling, J. F. (1978). ‘Water Analysis: Some Revised Methods for Limnologists.’ (Freshwater Biological Association: Ambleside, UK.)

Madsen, T. V., and Breinholt, M. (1995). Effects of air contact on growth, inorganic carbon sources, and nitrogen uptake by an amphibious freshwater macrophyte. Plant Physiology 107, 149–154.
Effects of air contact on growth, inorganic carbon sources, and nitrogen uptake by an amphibious freshwater macrophyte.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK2MXjtVOmsL8%3D&md5=ee12da09e626a59d88d42ee6a0ddfacaCAS |

Madsen, T. V., and Maberly, S. C. (1991). Diurnal variation in light and carbon limitation of photosynthesis by two species of submerged freshwater macrophyte with a differential ability to use bicarbonate. Freshwater Biology 26, 175–187.
Diurnal variation in light and carbon limitation of photosynthesis by two species of submerged freshwater macrophyte with a differential ability to use bicarbonate.Crossref | GoogleScholarGoogle Scholar |

Madsen, T. V., and Sand-Jensen, K. A. J. (1991). Photosynthetic carbon assimilation in aquatic macrophytes. Aquatic Botany 41, 5–40.
Photosynthetic carbon assimilation in aquatic macrophytes.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK3MXmsFajtr8%3D&md5=2968d84eafc1c8bc39ea50a1d660762eCAS |

McConnaughay, K. D. M., and Coleman, J. S. (1999). Biomass allocation in plants: ontogeny or optimality? A test along three resource gradients. Ecology 80, 2581–2593.
Biomass allocation in plants: ontogeny or optimality? A test along three resource gradients.Crossref | GoogleScholarGoogle Scholar |

Nakazawa, T. (2002). Travels of a Pseudomonas, from Japan around the world. Environmental Microbiology 4, 782–786.
Travels of a Pseudomonas, from Japan around the world.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3sXkvVGkuw%3D%3D&md5=a905ad72decb42d0a24280701bf2d929CAS |

Nelson, K. E., Weinel, C., Paulsen, I. T., Dodson, R. J., Hilbert, H., Martins dos Santos, V. A. P., Fouts, D. E., Gill, S. R., Pop, M., Holmes, M., Brinkac, L., Beanan, M., DeBoy, R. T., Daugherty, S., Kolonay, J., Madupu, R., Nelson, W., White, O., Peterson, J., Khouri, H., Hance, I., Chris Lee, P., Holtzapple, E., Scanlan, D., Tran, K., Moazzez, A., Utterback, T., Rizzo, M., Lee, K., Kosack, D., Moestl, D., Wedler, H., Lauber, J., Stjepandic, D., Hoheisel, J., Straetz, M., Heim, S., Kiewitz, C., Eisen, J., Timmis, K. N., Düsterhöft, A., Tümmler, B., and Fraser, C. M. (2002). Complete genome sequence and comparative analysis of the metabolically versatile Pseudomonas putida KT2440. Environmental Microbiology 4, 799–808.
Complete genome sequence and comparative analysis of the metabolically versatile Pseudomonas putida KT2440.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3sXkvVGrsw%3D%3D&md5=03709aba1546be54ef7fcaf772ea2967CAS |

Nielsen, S. L., and Sand-Jensen, K. A. J. (1989). Regulation of photosynthetic rates of submerged rooted macrophytes. Oecologia 81, 364–368.
Regulation of photosynthetic rates of submerged rooted macrophytes.Crossref | GoogleScholarGoogle Scholar |

Nishihara, G. N., and Ackerman, J. D. (2006). The effect of hydrodynamics on the mass transfer of dissolved inorganic carbon to the freshwater macrophyte Vallisneria americana. Limnology and Oceanography 51, 2734–2745.
The effect of hydrodynamics on the mass transfer of dissolved inorganic carbon to the freshwater macrophyte Vallisneria americana.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD28XhtlWltbrK&md5=b5eb70dac7b5be80faa5ddb3c41c0c24CAS |

Nishihara, G. N., and Ackerman, J. D. (2007). The interaction of CO2 concentration and spatial location on O2 flux and mass transport in the freshwater macrophytes Vallisneria spiralis and V. americana. The Journal of Experimental Biology 210, 522–532.
The interaction of CO2 concentration and spatial location on O2 flux and mass transport in the freshwater macrophytes Vallisneria spiralis and V. americana.Crossref | GoogleScholarGoogle Scholar |

Pedersen, O., Sand-Jensen, K. A. J., and Revsbech, N. P. (1995). Diel pulses of O2 and CO2 in sandy lake sediments inhabited by Lobelia dortmanna. Ecology 76, 1536–1545.
Diel pulses of O2 and CO2 in sandy lake sediments inhabited by Lobelia dortmanna.Crossref | GoogleScholarGoogle Scholar |

Pedersen, O., Colmer, T. D., and Sand-Jensen, K. A. J. (2013). Underwater photosynthesis of submerged plants – recent advances and methods. Frontiers in Plant Science 4, 140.
Underwater photosynthesis of submerged plants – recent advances and methods.Crossref | GoogleScholarGoogle Scholar |

Planchamp, C., Glauser, G., and Mauch-Mani, B. (2015). Root inoculation with Pseudomonas putida KT2440 induces transcriptional and metabolic changes and systemic resistance in maize plants. Frontiers in Plant Science 5, 719.
Root inoculation with Pseudomonas putida KT2440 induces transcriptional and metabolic changes and systemic resistance in maize plants.Crossref | GoogleScholarGoogle Scholar |

Prins, H. B. A., Snel, J. F. H., Zanstra, P. E., and Helder, R. J. (1982). The mechanism of bicarbonate assimilation by the polar leaves of Potamogeton and Elodea. CO2 concentrations at the leaf surface. Plant, Cell & Environment 5, 207–214.
The mechanism of bicarbonate assimilation by the polar leaves of Potamogeton and Elodea. CO2 concentrations at the leaf surface.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaL38XkvV2js70%3D&md5=4ebad253b6b26a62acf79f9c3a995d95CAS |

Raven, J. A. (1970). Exogenous inorganic carbon sources in plant photosynthesis. Biological Reviews of the Cambridge Philosophical Society 45, 167–220.
Exogenous inorganic carbon sources in plant photosynthesis.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaE3cXltFOis7w%3D&md5=3281d02ed1a9f174935184ec7b0abba5CAS |

Raven, J. A., and Hurd, C. L. (2012). Ecophysiology of photosynthesis in macroalgae. Photosynthesis Research 113, 105–125.
Ecophysiology of photosynthesis in macroalgae.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC38Xht1KmurzJ&md5=a6b1bdaf0c3f31a05c113445ff52f943CAS |

Ribaudo, C., Bartoli, M., Racchetti, E., Longhi, D., and Viaroli, P. (2011). Seasonal fluxes of O2, DIC and CH4 in sediments with Vallisneria spiralis: indications for radial oxygen loss. Aquatic Botany 94, 134–142.
Seasonal fluxes of O2, DIC and CH4 in sediments with Vallisneria spiralis: indications for radial oxygen loss.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3MXjs1SltrY%3D&md5=4f9db7c82278de9c1933a532317b99e4CAS |

Sand-Jensen, K. A. J. (1989). Environmental variables and their effect on photosynthesis of aquatic plant communities. Aquatic Botany 34, 5–25.
Environmental variables and their effect on photosynthesis of aquatic plant communities.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaL1MXltlSltL0%3D&md5=0ecbb1f84e7bfc7662e39460ad46ce02CAS |

Sartory, D. P., and Grobbelaar, J. U. (1984). Extraction of chlorophyll a from freshwater phytoplankton for spectrophotometric analysis. Hydrobiologia 114, 177–187.
Extraction of chlorophyll a from freshwater phytoplankton for spectrophotometric analysis.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaL2cXlvVOgs7k%3D&md5=266a71ac09bdf0c49b64083b0cf93bd5CAS |

Segura, A., Rodríguez-Conde, S., Ramos, C., and Ramos, J. L. (2009). Bacterial responses and interactions with plants during rhizoremediation. Microbial Biotechnology 2, 452–464.
Bacterial responses and interactions with plants during rhizoremediation.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3cXlslWksrY%3D&md5=d68bffdd48f3156c73a80cbfd1f7b9d9CAS |

Smith, F. A., and Walker, N. A. (1980). Photosynthesis by aquatic plants: effects of unstirred layers in relation to assimilation of CO2 and HCO3– and to isotopic discrimination. New Phytologist 86, 245–259.
Photosynthesis by aquatic plants: effects of unstirred layers in relation to assimilation of CO2 and HCO3 and to isotopic discrimination.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaL3MXlt12htbY%3D&md5=0659229bdf124bec2e841363f6dfbeaaCAS |

Titus, J. E., and Wendlberger, S. J. (2016). Gauging submersed plant response to CO2 enrichment: pot size matters. Aquatic Botany 134, 82–86.
Gauging submersed plant response to CO2 enrichment: pot size matters.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC28Xht1ekurbP&md5=897cbff61dee0cdbc55df270d1bfc7ebCAS |

Vadstrup, M., and Madsen, T. V. (1995). Growth limitation of submerged aquatic macrophytes by inorganic carbon. Freshwater Biology 34, 411–419.
Growth limitation of submerged aquatic macrophytes by inorganic carbon.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK28Xht1Ggsr0%3D&md5=4bf36a0845575e4365dd98c2dac7ac3cCAS |

Wang, J., and Yu, D. (2007). Influence of sediment fertility on morphological variability of Vallisneria spiralis L. Aquatic Botany 87, 127–133.
Influence of sediment fertility on morphological variability of Vallisneria spiralis L.Crossref | GoogleScholarGoogle Scholar |

Weyens, N., van der Lelie, D., Taghavi, S., and Vangronsveld, J. (2009). Phytoremediation: plant–endophyte partnerships take the challenge. Current Opinion in Biotechnology 20, 248–254.
Phytoremediation: plant–endophyte partnerships take the challenge.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1MXms1Srsb4%3D&md5=7590eeb0f0acd273328bd62b22290bf3CAS |

Winkel, A., and Borum, J. (2009). Use of sediment CO2 by submersed rooted plants. Annals of Botany 103, 1015–1023.
Use of sediment CO2 by submersed rooted plants.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1MXmsFWgtbc%3D&md5=b6f2616be737d3e75cf33e1d3383088eCAS |

Wu, X., Monchy, S., Taghavi, S., Zhu, W., Ramos, J., and Van der Lelie, D. (2011). Comparative genomics and functional analysis of niche-specific adaptation in Pseudomonas putida. FEMS Microbiology Reviews 35, 299–323.
Comparative genomics and functional analysis of niche-specific adaptation in Pseudomonas putida.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3MXjtVaitbg%3D&md5=1c13569b808d848458224d438f538411CAS |

Xie, Y., An, S., and Wu, B. (2005). Resource allocation in the submerged plant Vallisneria natans related to sediment type, rather than water-column nutrients. Freshwater Biology 50, 391–402.
Resource allocation in the submerged plant Vallisneria natans related to sediment type, rather than water-column nutrients.Crossref | GoogleScholarGoogle Scholar |

Xing, W., Wu, H., Hao, B., Huang, W., and Liu, G. (2013). Bioaccumulation of heavy metals by submerged macrophytes: looking for hyperaccumulators in eutrophic lakes. Environmental Science & Technology 47, 4695–4703.
Bioaccumulation of heavy metals by submerged macrophytes: looking for hyperaccumulators in eutrophic lakes.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3sXlvVKjurY%3D&md5=72677deb1038f5478d0a34c0dfe950d1CAS |

Yong, X., Chen, Y., Liu, W., Xu, L., Zhou, J., Wang, S., Chen, P., Ouyang, P., and Zheng, T. (2014). Enhanced cadmium resistance and accumulation in Pseudomonas putida KT2440 expressing the phytochelatin synthase gene of Schizosaccharomyces pombe. Letters in Applied Microbiology 58, 255–261.
Enhanced cadmium resistance and accumulation in Pseudomonas putida KT2440 expressing the phytochelatin synthase gene of Schizosaccharomyces pombe.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC2cXislekurk%3D&md5=cf35f2d2113282945b99705548f8e237CAS |

Zhang, S., Pang, S., Wang, P., Wang, C., Guo, C., Addo, F. G., and Li, Y. (2016). Responses of bacterial community structure and denitrifying bacteria in biofilm to submerged macrophytes and nitrate. Scientific Reports 6, 36178.
Responses of bacterial community structure and denitrifying bacteria in biofilm to submerged macrophytes and nitrate.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC28XhslKns7nF&md5=8a423fc4c318133cba6474edbcd57262CAS |