Register      Login
Marine and Freshwater Research Marine and Freshwater Research Society
Advances in the aquatic sciences
RESEARCH ARTICLE

Measuring niche overlap between co-occurring Plectropomus spp. using acoustic telemetry and stable isotopes

J. K. Matley A D , M. R. Heupel A B , A. T. Fisk C , C. A. Simpfendorfer A and A. J. Tobin A
+ Author Affiliations
- Author Affiliations

A Centre for Sustainable Tropical Fisheries and Aquaculture & College of Science and Engineering, James Cook University, Building 34, 1 James Cook University Drive, Townsville, Qld 4811, Australia.

B Australian Institute of Marine Science, PMB 3, 1526 Cape Cleveland Road, Cape Cleveland, Qld 4810, Australia.

C Great Lakes Institute for Environmental Research, University of Windsor, 401 Sunset Avenue, Windsor, ON, N9B 3P4, Canada.

D Corresponding author. Email: jordan.matley@my.jcu.edu.au

Marine and Freshwater Research 68(8) 1468-1478 https://doi.org/10.1071/MF16120
Submitted: 8 April 2016  Accepted: 22 September 2016   Published: 10 November 2016

Abstract

Investigating niche overlap in exploited fish species can reveal behavioural information necessary to improve conservation and fisheries management at a species level. The present study examined spatial and dietary overlap between two co-occurring reef fish, namely Plectropomus leopardus and P. maculatus, at an inshore reef in the Great Barrier Reef Marine Park using acoustic telemetry and stable isotopes. Movements of tagged fish within an acoustic array of 19 receivers deployed along a narrow reef portion of Orpheus Island were monitored for up to 3 years. Although space use was similar between species, spatial overlap was rare and P. maculatus (n = 30) was consistently deeper than P. leopardus (n = 32). Dietary overlap between species was high based on overlapping δ15N and δ13C isotopic niches in muscle tissue (n = 20). The complementary stable isotope and acoustic telemetry data revealed these species had similar isotopic niches but distinct space use patterns, which may be a product of competition for resources. These findings show species-specific behaviours within a genus commonly managed or reported as a single entity, and provide new information on partitioning of resources by Plectropomus spp. in inshore reef environments.

Additional keywords: conservation, coral reefs, ecology, fisheries, Great Barrier Reef.


References

Adams, S. (2002).The reproductive biology of three species of Plectropomus (Serranidae) and effects of fishing. Ph.D. Thesis, James Cook University, Townsville, Qld, Australia.

Afonso, P., Abecasis, D., Santos, R. S., and Fontes, J. (2016). Contrasting movements and residency of two serranids in a small Macaronesian MPA. Fisheries Research 177, 59–70.
Contrasting movements and residency of two serranids in a small Macaronesian MPA.Crossref | GoogleScholarGoogle Scholar |

Boaden, A. E., and Kingsford, M. J. (2015). Predators drive community structure in coral reef fish assemblages. Ecosphere 6, art46.
Predators drive community structure in coral reef fish assemblages.Crossref | GoogleScholarGoogle Scholar |

Bode, M., Sanchirico, J. N., and Armsworth, P. R. (2016). Returns from matching management resolution to ecological variation in a coral reef fishery. Proceedings of the Royal Society of London – B. Biological Sciences 283, 20152828.
Returns from matching management resolution to ecological variation in a coral reef fishery.Crossref | GoogleScholarGoogle Scholar |

Bornt, K. R., McLean, D. L., Langlois, T. J., Harvey, E. S., Bellchambers, L. M., Evans, S. N., and Newman, S. J. (2015). Targeted demersal fish species exhibit variable responses to long-term protection from fishing at the Houtman Abrolhos Islands. Coral Reefs 34, 1297–1312.
Targeted demersal fish species exhibit variable responses to long-term protection from fishing at the Houtman Abrolhos Islands.Crossref | GoogleScholarGoogle Scholar |

Botsford, L., Castilla, J., and Peterson, C. (1997). The management of fisheries and marine ecosystems. Science 277, 509–515.
The management of fisheries and marine ecosystems.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK2sXkvVektbw%3D&md5=a956af08e0946a02512ab0074bbc285cCAS |

Bunt, C., and Kingsford, M. (2014). Movement, habitat utilization and behaviour of coral trout Plectropomus leopardus during and after the reproductive period on the southern Great Barrier Reef. Marine Ecology Progress Series 496, 33–45.
Movement, habitat utilization and behaviour of coral trout Plectropomus leopardus during and after the reproductive period on the southern Great Barrier Reef.Crossref | GoogleScholarGoogle Scholar |

Carlisle, A. B., Goldman, K. J., Litvin, S. Y., Madigan, D. J., Bigman, J. S., Swithenbank, A. M., Kline, T. C., and Block, B. A. (2014). Stable isotope analysis of vertebrae reveals ontogenetic changes in habitat in an endothermic pelagic shark. Proceedings of the Royal Society of London – B. Biological Sciences 282, 20141446.
Stable isotope analysis of vertebrae reveals ontogenetic changes in habitat in an endothermic pelagic shark.Crossref | GoogleScholarGoogle Scholar |

Carter, A. B., Carton, A. G., McCormick, M. I., Tobin, A. J., and Williams, A. J. (2015). Maternal size, not age, influences egg quality of a wild, protogynous coral reef fish Plectropomus leopardus. Marine Ecology Progress Series 529, 249–263.
Maternal size, not age, influences egg quality of a wild, protogynous coral reef fish Plectropomus leopardus.Crossref | GoogleScholarGoogle Scholar |

Connell, S. D., and Kingsford, M. J. (1998). Spatial, temporal and habitat-related variation in the abundance of large predatory fish at One Tree Reef, Australia. Coral Reefs 17, 49–57.
Spatial, temporal and habitat-related variation in the abundance of large predatory fish at One Tree Reef, Australia.Crossref | GoogleScholarGoogle Scholar |

Cunjak, R. A., Roussel, J.-M., Gray, M. A., Dietrich, J. P., Cartwright, D. F., Munkittrick, K. R., and Jardine, T. D. (2005). Using stable isotope analysis with telemetry or mark–recapture data to identify fish movement and foraging. Oecologia 144, 636–646.
Using stable isotope analysis with telemetry or mark–recapture data to identify fish movement and foraging.Crossref | GoogleScholarGoogle Scholar | 1:STN:280:DC%2BD2MvmsFKiuw%3D%3D&md5=1bd6b04ebf09c5ed443c81235acb8f97CAS |

Currey, L. M., Heupel, M. R., Simpfendorfer, C. A., and Williams, A. J. (2014). Sedentary or mobile? Variability in space and depth use of an exploited coral reef fish. Marine Biology 161, 2155–2166.
Sedentary or mobile? Variability in space and depth use of an exploited coral reef fish.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC2cXht1ait7rK&md5=1a38eaf30b4b740ea09a5a7a36b9f970CAS |

Davis, W. T., Drymon, J. M., and Powers, S. P. (2015). Spatial and dietary overlap creates potential for competition between red snapper (Lutjanus campechanus) and vermilion snapper (Rhomboplites aurorubens). PLoS One 10, e0144051.
Spatial and dietary overlap creates potential for competition between red snapper (Lutjanus campechanus) and vermilion snapper (Rhomboplites aurorubens).Crossref | GoogleScholarGoogle Scholar |

Duong, T. (2007). ks: kernel density estimation and kernel discriminant analysis for multivariate data in R. Journal of Statistical Software 21, 1–16.
ks: kernel density estimation and kernel discriminant analysis for multivariate data in R.Crossref | GoogleScholarGoogle Scholar |

Eldøy, S. H., Davidsen, J. G., Thorstad, E. B., and Whoriskey, F. (2015). Marine migration and habitat use of anadromous brown trout Salmo trutta. Canadian Journal of Fisheries and Aquatic Sciences 72, 1366–1378.
Marine migration and habitat use of anadromous brown trout Salmo trutta.Crossref | GoogleScholarGoogle Scholar |

Emslie, M. J., Logan, M., Williamson, D. H., Ayling, A. M., MacNeil, A. M., Ceccarelli, D., Cheal, A. J., Evans, R. D., Johns, K. A., Jonker, M. J., Miller, I. R., Osborne, K., Russ, G. R., and Sweatman, H. P. (2015). Expectations and outcomes of reserve network performance following re-zoning of the Great Barrier Reef Marine Park. Current Biology 25, 983–992.
Expectations and outcomes of reserve network performance following re-zoning of the Great Barrier Reef Marine Park.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC2MXlsVOju7s%3D&md5=b3d76a1572762860ec05d8856661b004CAS |

Espinoza, M., Lédée, E. J. I., Simpfendorfer, C. A., Tobin, A. J., and Heupel, M. R. (2015). Contrasting movements and connectivity of reef-associated sharks using acoustic telemetry: implications for management. Ecological Applications 25, 2101–2118.
Contrasting movements and connectivity of reef-associated sharks using acoustic telemetry: implications for management.Crossref | GoogleScholarGoogle Scholar |

Evans, R. D., and Russ, G. R. (2004). Larger biomass of targeted reef fish in no-take marine reserves on the Great Barrier Reef, Australia. Aquatic Conservation: Marine and Freshwater Ecosystems 14, 505–519.
Larger biomass of targeted reef fish in no-take marine reserves on the Great Barrier Reef, Australia.Crossref | GoogleScholarGoogle Scholar |

Farmer, N. A., and Ault, J. S. (2011). Grouper and snapper movements and habitat use in Dry Tortugas, Florida. Marine Ecology Progress Series 433, 169–184.
Grouper and snapper movements and habitat use in Dry Tortugas, Florida.Crossref | GoogleScholarGoogle Scholar |

Ferreira, B. P. (1995). Reproduction of the common coral trout Plectropomus leopardus (Serranidae: Epinephlinae) from the central and northern Great Barrier Reef, Australia. Bulletin of Marine Science 56, 653–669.

Ferreira, B. P., and Russ, G. R. (1992). Age, growth and mortality of the inshore coral trout Plectropomus maculatus (Perciformes: Serranidae) from the central Great Barrier Reef, Australia. Marine and Freshwater Research 43, 1301–1312.
Age, growth and mortality of the inshore coral trout Plectropomus maculatus (Perciformes: Serranidae) from the central Great Barrier Reef, Australia.Crossref | GoogleScholarGoogle Scholar |

Ferreira, B. P., and Russ, G. R. (1994). Age validation and estimation of growth rate of the coral trout, Plectropomus leopardus, (Lacepede 1802) from Lizard Island, northern Great Barrier Reef. Fishery Bulletin 92, 46–57.

Finke, D. L., and Denno, R. F. (2005). Predator diversity and the functioning of ecosystems: the role of intraguild predation in dampening trophic cascades. Ecology Letters 8, 1299–1306.
Predator diversity and the functioning of ecosystems: the role of intraguild predation in dampening trophic cascades.Crossref | GoogleScholarGoogle Scholar |

Frias-Torres, S. (2006). Habitat use of juvenile goliath grouper Epinephelus itajara on the Florida Keys, USA. Endangered Species Research 2, 1–6.
Habitat use of juvenile goliath grouper Epinephelus itajara on the Florida Keys, USA.Crossref | GoogleScholarGoogle Scholar |

Frisch, A. J., Ireland, M., and Baker, R. (2014). Trophic ecology of large predatory reef fishes: energy pathways, trophic level, and implications for fisheries in a changing climate. Marine Biology 161, 61–73.
Trophic ecology of large predatory reef fishes: energy pathways, trophic level, and implications for fisheries in a changing climate.Crossref | GoogleScholarGoogle Scholar |

Frisch, A. J., Cameron, D. S., Pratchett, M. S., Williamson, D. H., Williams, A. J., Reynolds, A. D., Hoey, A. S., Rizzari, J. R., Evans, L., Kerrigan, B., Muldoon, G., Welch, D. J., and Hobbs, J.-P. A. (2016a). Key aspects of the biology, fisheries and management of coral grouper. Reviews in Fish Biology and Fisheries 26, 303–325.
Key aspects of the biology, fisheries and management of coral grouper.Crossref | GoogleScholarGoogle Scholar |

Frisch, A. J., Ireland, M., Rizzari, J. R., Lönnstedt, O. M., Magnenat, K. A., Mirbach, C. E., and Hobbs, J.-P. A. (2016b). Reassessing the trophic role of reef sharks as apex predators on coral reefs. Coral Reefs 35, 459–472.
Reassessing the trophic role of reef sharks as apex predators on coral reefs.Crossref | GoogleScholarGoogle Scholar |

Guzzo, M. M., Blanchfield, P. J., Chapelsky, A. J., and Cott, P. A. (2016). Resource partitioning among top-level piscivores in a sub-Arctic lake during thermal stratification. Journal of Great Lakes Research 42, 276–285.
Resource partitioning among top-level piscivores in a sub-Arctic lake during thermal stratification.Crossref | GoogleScholarGoogle Scholar |

Harmon, L. J., Matthews, B., Des Roches, S., Chase, J. M., Shurin, J. B., and Schluter, D. (2009). Evolutionary diversification in stickleback affects ecosystem functioning. Nature 458, 1167–1170.
Evolutionary diversification in stickleback affects ecosystem functioning.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1MXjvV2ksbY%3D&md5=bdcff7549926687b5083a3e66a1b17f8CAS |

Heithaus, M. R., Frid, A., Wirsing, A. J., and Worm, B. (2008). Predicting ecological consequences of marine top predator declines. Trends in Ecology & Evolution 23, 202–210.
Predicting ecological consequences of marine top predator declines.Crossref | GoogleScholarGoogle Scholar |

Heupel, M., and Simpfendorfer, C. (2014). Importance of environmental and biological drivers in the presence and space use of a reef-associated shark. Marine Ecology Progress Series 496, 47–57.
Importance of environmental and biological drivers in the presence and space use of a reef-associated shark.Crossref | GoogleScholarGoogle Scholar |

Heupel, M., and Simpfendorfer, C. (2015). Long-term movement patterns of a coral reef predator. Coral Reefs 34, 679–691.
Long-term movement patterns of a coral reef predator.Crossref | GoogleScholarGoogle Scholar |

Heupel, M. R., Knip, D. M., Simpfendorfer, C. A., and Dulvy, N. K. (2014). Sizing up the ecological role of sharks as predators. Marine Ecology Progress Series 495, 291–298.
Sizing up the ecological role of sharks as predators.Crossref | GoogleScholarGoogle Scholar |

Hobson, K. A., Ambrose, W. G., and Renaud, P. E. (1995). Sources of primary production, benthic-pelagic coupling, and trophic relationships within the Northeast Water Polynya: insights from δ13C and δ15N analysis. Marine Ecology Progress Series 128, 1–10.
Sources of primary production, benthic-pelagic coupling, and trophic relationships within the Northeast Water Polynya: insights from δ13C and δ15N analysis.Crossref | GoogleScholarGoogle Scholar |

Hussey, N. E., MacNeil, M. A., McMeans, B. C., Olin, J. A., Dudley, S. F. J., Cliff, G., Wintner, S. P., Fennessy, S. T., and Fisk, A. T. (2014). Rescaling the trophic structure of marine food webs. Ecology Letters 17, 239–250.
Rescaling the trophic structure of marine food webs.Crossref | GoogleScholarGoogle Scholar |

Hutchinson, N., and Rhodes, K. L. (2010). Home range estimates for squaretail coralgrouper, Plectropomus areolatus (Rüppell 1830). Coral Reefs 29, 511–519.
Home range estimates for squaretail coralgrouper, Plectropomus areolatus (Rüppell 1830).Crossref | GoogleScholarGoogle Scholar |

Huveneers, C., Simpfendorfer, C. A., Kim, S., Semmens, J., Hobday, A. J., Pederson, H., Stieglitz, T., Vallee, R., Webber, D., Heupel, M. R., Peddemors, V., and Harcourt, R. (2016). The influence of environmental parameters on the performance and detection range of acoustic receivers. Methods in Ecology and Evolution 7, 825–835.
The influence of environmental parameters on the performance and detection range of acoustic receivers.Crossref | GoogleScholarGoogle Scholar |

Jackson, A. L., Inger, R., Parnell, A. C., and Bearhop, S. (2011). Comparing isotopic niche widths among and within communities: SIBER – stable isotope Bayesian ellipses in R. Journal of Animal Ecology 80, 595–602.
Comparing isotopic niche widths among and within communities: SIBER – stable isotope Bayesian ellipses in R.Crossref | GoogleScholarGoogle Scholar |

Johansen, J. L., Messmer, V., Coker, D. J., Hoey, A. S., and Pratchett, M. S. (2014). Increasing ocean temperatures reduce activity patterns of a large commercially important coral reef fish. Global Change Biology 20, 1067–1074.
Increasing ocean temperatures reduce activity patterns of a large commercially important coral reef fish.Crossref | GoogleScholarGoogle Scholar | 1:STN:280:DC%2BC2c3htVCltQ%3D%3D&md5=445204c41f3b1656875443f21b3af538CAS |

Johansen, J. L., Pratchett, M. S., Messmer, V., Coker, D. J., Tobin, A. J., and Hoey, A. S. (2015). Large predatory coral trout species unlikely to meet increasing energetic demands in a warming ocean. Scientific Reports 5, 13830.
Large predatory coral trout species unlikely to meet increasing energetic demands in a warming ocean.Crossref | GoogleScholarGoogle Scholar | 1:STN:280:DC%2BC283gtF2gtg%3D%3D&md5=cebbcc2a526fadaf2b49fcabe0115542CAS |

Johnson, J. E., and Welch, D. J. (2016). Climate change implications for Torres Strait fisheries: assessing vulnerability to inform adaptation. Climatic Change 135, 611–624.
Climate change implications for Torres Strait fisheries: assessing vulnerability to inform adaptation.Crossref | GoogleScholarGoogle Scholar |

Kessel, S. T., Cooke, S. J., Heupel, M. R., Hussey, N. E., Simpfendorfer, C. A., Vagle, S., and Fisk, A. T. (2014). A review of detection range testing in aquatic passive acoustic telemetry studies. Reviews in Fish Biology and Fisheries 24, 199–218.
A review of detection range testing in aquatic passive acoustic telemetry studies.Crossref | GoogleScholarGoogle Scholar |

Kessel, S. T., Hussey, N. E., Crawford, R. E., Yurkowski, D. J., O’Neill, C. V., and Fisk, A. T. (2016). Distinct patterns of Arctic cod (Boreogadus saida) presence and absence in a shallow high Arctic embayment, revealed across open-water and ice-covered periods through acoustic telemetry. Polar Biology 39, 1057–1068.
Distinct patterns of Arctic cod (Boreogadus saida) presence and absence in a shallow high Arctic embayment, revealed across open-water and ice-covered periods through acoustic telemetry.Crossref | GoogleScholarGoogle Scholar |

Knip, D. M., Heupel, M. R., and Simpfendorfer, C. A. (2012). Evaluating marine protected areas for the conservation of tropical coastal sharks. Biological Conservation 148, 200–209.
Evaluating marine protected areas for the conservation of tropical coastal sharks.Crossref | GoogleScholarGoogle Scholar |

Kronfeld-Schor, N., and Dayan, T. (2003). Partitioning of time as an ecological resource. Annual Review of Ecology Evolution and Systematics 34, 153–181.
Partitioning of time as an ecological resource.Crossref | GoogleScholarGoogle Scholar |

Layman, C. A., Araujo, M. S., Boucek, R., Hammerschlag-Peyer, C. M., Harrison, E., Jud, Z. R., Matich, P., Rosenblatt, A. E., Vaudo, J. J., Yeager, L. A., Post, D. M., and Bearhop, S. (2012). Applying stable isotopes to examine food-web structure: an overview of analytical tools. Biological Reviews of the Cambridge Philosophical Society 87, 545–562.
Applying stable isotopes to examine food-web structure: an overview of analytical tools.Crossref | GoogleScholarGoogle Scholar |

Lédée, E. J., Heupel, M. R., Tobin, A. J., and Simpfendorfer, C. A. (2015). Movements and space use of giant trevally in coral reef habitats and the importance of environmental drivers. Animal Biotelemetry 3, 6.
Movements and space use of giant trevally in coral reef habitats and the importance of environmental drivers.Crossref | GoogleScholarGoogle Scholar |

Leigh, G. M., Campbell, A. B., Lunow, C. P., and O’Neill, M. F. (2014). Stock assessment of the Queensland east coast common coral trout (Plectropomus leopardus) fishery. Queensland Government, Brisbane, Qld, Australia.

López, N., Navarro, J., Barría, C., Albo-Puigserver, M., Coll, M., and Palomera, I. (2016). Feeding ecology of two demersal opportunistic predators coexisting in the northwestern Mediterranean Sea. Estuarine, Coastal and Shelf Science 175, 15–23.
Feeding ecology of two demersal opportunistic predators coexisting in the northwestern Mediterranean Sea.Crossref | GoogleScholarGoogle Scholar |

Mapstone, B. D., Little, L. R., Punt, A. E., Davies, C. R., Smith, A. D. M., Pantus, F., McDonald, A. D., Williams, A. J., and Jones, A. (2008). Management strategy evaluation for line fishing in the Great Barrier Reef: balancing conservation and multi-sector fishery objectives. Fisheries Research 94, 315–329.
Management strategy evaluation for line fishing in the Great Barrier Reef: balancing conservation and multi-sector fishery objectives.Crossref | GoogleScholarGoogle Scholar |

Matich, P., and Heithaus, M. R. (2014). Multi-tissue stable isotope analysis and acoustic telemetry reveal seasonal variability in the trophic interactions of juvenile bull sharks in a coastal estuary. Journal of Animal Ecology 83, 199–213.
Multi-tissue stable isotope analysis and acoustic telemetry reveal seasonal variability in the trophic interactions of juvenile bull sharks in a coastal estuary.Crossref | GoogleScholarGoogle Scholar |

Matley, J. K., Heupel, M. R., and Simpfendorfer, C. A. (2015). Depth and space use of leopard coralgrouper Plectropomus leopardus using passive acoustic tracking. Marine Ecology Progress Series 521, 201–216.
Depth and space use of leopard coralgrouper Plectropomus leopardus using passive acoustic tracking.Crossref | GoogleScholarGoogle Scholar |

Matley, J. K., Tobin, A. J., Lédée, E. J. I., Heupel, M. R., and Simpfendorfer, C. A. (2016a). Contrasting patterns of vertical and horizontal space use of two sympatric coral reef fish: implications for multispecies fisheries. Marine Biology 163, 253.
Contrasting patterns of vertical and horizontal space use of two sympatric coral reef fish: implications for multispecies fisheries.Crossref | GoogleScholarGoogle Scholar |

Matley, J. K., Fisk, A. T., Tobin, A. J., Heupel, M. R., and Simpfendorfer, C. A. (2016b). Diet–tissue discrimination factors and turnover of carbon and nitrogen stable isotopes in tissues of an adult predatory coral reef fish, Plectropomus leopardus. Rapid Communications in Mass Spectrometry 30, 29–44.
Diet–tissue discrimination factors and turnover of carbon and nitrogen stable isotopes in tissues of an adult predatory coral reef fish, Plectropomus leopardus.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC2MXitVWrurzN&md5=d0e5211739368c2cc2139fe8cb7e791fCAS |

Matley, J. K., Tobin, A. J., Simpfendorfer, C. A., Fisk, A. T., and Heupel, M. R. (2017). Niche specialisation and spatio-temporal comparisons of feeding ecology in sympatric coral trout (Plectropomus leopardus and P. laevis) Marine Ecology Progress Series 563, 197–210.
Niche specialisation and spatio-temporal comparisons of feeding ecology in sympatric coral trout (Plectropomus leopardus and P. laevis)Crossref | GoogleScholarGoogle Scholar |

Mellin, C., Mouillot, D., Kulbicki, M., McClanahan, T., Vigliola, L., Bradshaw, C., Brainard, C. J. A., Brainard, R. E., Cabanet, P., Egar, G. J., Fordham, D. A., Friedlander, A. M., Parravicini, V., Sequeira, A. M. M., Stuart-Smith, R. D., Wantiez, L., and Caley, M. (2016). Humans and seasonal climate variability threaten large-bodied coral reef fish with small ranges. Nature Communications 7, 10491.
Humans and seasonal climate variability threaten large-bodied coral reef fish with small ranges.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC28XitFahsbY%3D&md5=af04b34ad50e36f4da2b8ab97132c6a2CAS |

Montoya, J. P. (2007). Natural abundance of 15N in marine planktonic ecosystems. In ‘Stable Isotopes in Ecology and Environmental Science’. (Eds R. Michener and K. Lajtha.) pp. 176–200. (Blackwell Publishing: Oxford, UK.)

Mueller, A.-K., Chakarov, N., Heseker, H., and Krüger, O. (2016). Intraguild predation leads to cascading effects on habitat choice, behaviour and reproductive performance. Journal of Animal Ecology 85, 774–784.
Intraguild predation leads to cascading effects on habitat choice, behaviour and reproductive performance.Crossref | GoogleScholarGoogle Scholar |

Munroe, S. E. M., Simpfendorfer, C. A., and Heupel, M. R. (2016). Variation in blacktip shark movement patterns in a tropical coastal bay. Environmental Biology of Fishes 99, 377–389.
Variation in blacktip shark movement patterns in a tropical coastal bay.Crossref | GoogleScholarGoogle Scholar |

Nash, K. L., Welsh, J. Q., Graham, N. A. J., and Bellwood, D. R. (2015). Home-range allometry in coral reef fishes: comparison to other vertebrates, methodological issues and management implications. Oecologia 177, 73–83.
Home-range allometry in coral reef fishes: comparison to other vertebrates, methodological issues and management implications.Crossref | GoogleScholarGoogle Scholar |

Newsome, S. D., Clementz, M. T., and Koch, P. L. (2010). Using stable isotope biogeochemistry to study marine mammal ecology. Marine Mammal Science 26, 509–572.
| 1:CAS:528:DC%2BC3cXhtVaksrzJ&md5=bc73a497ecad9bb72801d9093e90185fCAS |

Papastamatiou, Y. P., Friedlander, A. M., Caselle, J. E., and Lowe, C. G. (2010). Long-term movement patterns and trophic ecology of blacktip reef sharks (Carcharhinus melanopterus) at Palmyra Atoll. Journal of Experimental Marine Biology and Ecology 386, 94–102.
Long-term movement patterns and trophic ecology of blacktip reef sharks (Carcharhinus melanopterus) at Palmyra Atoll.Crossref | GoogleScholarGoogle Scholar |

Parnell, A. C., Inger, R., Bearhop, S., and Jackson, A. L. (2010). Source partitioning using stable isotopes: coping with too much variation. PLoS One 5, e9672.
Source partitioning using stable isotopes: coping with too much variation.Crossref | GoogleScholarGoogle Scholar |

Pastor, J., Verdoit-Jarraya, M., Astruch, P., Dalias, N., Nelva Pasqual, J.-S., Saragoni, G., and Lenfant, P. (2009). Acoustic telemetry survey of the dusky grouper (Epinephelus marginatus) in the Marine Reserve of Cerbère-Banyuls: informations on the territoriality of this emblematic species. Ecology 332, 732–740.

Rizzari, J. R., Frisch, A. J., Hoey, A. S., and McCormick, M. I. (2014). Not worth the risk: apex predators suppress herbivory on coral reefs. Oikos 123, 829–836.
Not worth the risk: apex predators suppress herbivory on coral reefs.Crossref | GoogleScholarGoogle Scholar |

Sadovy, Y. (2005). Trouble on the reef: the imperative for managing vulnerable and valuable fisheries. Fish and Fisheries 6, 167–185.
Trouble on the reef: the imperative for managing vulnerable and valuable fisheries.Crossref | GoogleScholarGoogle Scholar |

Sadovy de Mitcheson, Y., Craig, M. T., Bertoncini, A. A., Carpenter, K. E., Cheung, W. W., Choat, J. H., Cornish, A. S., Fennessy, S. T., Ferreira, B. P., Heemstra, P. C., and Liu, M. (2013). Fishing groupers towards extinction: a global assessment of threats and extinction risks in a billion dollar fishery. Fish and Fisheries 14, 119–136.
Fishing groupers towards extinction: a global assessment of threats and extinction risks in a billion dollar fishery.Crossref | GoogleScholarGoogle Scholar |

Scales, H., Balmford, A., and Manica, A. (2007). Impacts of the live reef fish trade on populations of coral reef fish off northern Borneo. Proceedings of the Royal Society of London – B. Biological Sciences 274, 989–994.
Impacts of the live reef fish trade on populations of coral reef fish off northern Borneo.Crossref | GoogleScholarGoogle Scholar |

Simpfendorfer, C. A., Heupel, M. R., and Hueter, R. E. (2002). Estimation of short-term centers of activity from an array of omnidirectional hydrophones and its use in studying animal movements. Canadian Journal of Fisheries and Aquatic Sciences 59, 23–32.
Estimation of short-term centers of activity from an array of omnidirectional hydrophones and its use in studying animal movements.Crossref | GoogleScholarGoogle Scholar |

Speed, C. W., Meekan, M. G., Field, I. C., McMahon, C. R., Abrantes, K., and Bradshaw, C. J. A. (2012). Trophic ecology of reef sharks determined using stable isotopes and telemetry. Coral Reefs 31, 357–367.
Trophic ecology of reef sharks determined using stable isotopes and telemetry.Crossref | GoogleScholarGoogle Scholar |

Speed, C. W., Meekan, M. G., Field, I. C., McMahon, C. R., Harcourt, R. G., Stevens, J. D., Babcock, R. C., Pillans, R. D., and Bradshaw, C. J. A. (2016). Reef shark movements relative to a coastal marine protected area. Regional Studies in Marine Science 3, 58–66.
Reef shark movements relative to a coastal marine protected area.Crossref | GoogleScholarGoogle Scholar |

St John, J. (2001). Temporal variation in the diet of a coral reef piscivore (Pisces: Serranidae) was not seasonal. Coral Reefs 20, 163–170.
Temporal variation in the diet of a coral reef piscivore (Pisces: Serranidae) was not seasonal.Crossref | GoogleScholarGoogle Scholar |

Sun, Z., Xia, S., Feng, S., Zhang, Z., Rahman, M. M., Rajkumar, M., and Jiang, S. (2015). Effects of water temperature on survival, growth, digestive enzyme activities, and body composition of the leopard coral grouper Plectropomus leopardus. Fisheries Science 81, 107–112.
Effects of water temperature on survival, growth, digestive enzyme activities, and body composition of the leopard coral grouper Plectropomus leopardus.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC2cXitVeqsr7F&md5=93a6e23da863900c1fd95bd0e31f5fa1CAS |

Vander Zanden, M. J., and Rasmussen, J. B. (1999). Primary consumer δ13C and δ15N and the trophic position of aquatic consumers. Ecology 80, 1395–1404.
Primary consumer δ13C and δ15N and the trophic position of aquatic consumers.Crossref | GoogleScholarGoogle Scholar |

Vander Zanden, M. J., and Rasmussen, J. B. (2001). Variation in δ15N and δ13C trophic fractionation: implications for aquatic food web studies. Limnology and Oceanography 46, 2061–2066.
Variation in δ15N and δ13C trophic fractionation: implications for aquatic food web studies.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD38Xht12ltA%3D%3D&md5=e94c4c6c4d14eea38723f5dee650a74eCAS |

Waldie, P. A., Almany, G. R., Sinclair-Taylor, T. H., Hamilton, R. J., Potuku, T., Priest, M. A., Rhodes, K. L., Robinson, J., Cinner, J. E., and Berumen, M. L. (2016). Restricted grouper reproductive migrations support community-based management. Royal Society Open Science 3, 150694.
Restricted grouper reproductive migrations support community-based management.Crossref | GoogleScholarGoogle Scholar |

Welsh, J. Q., Fox, R. J., Webber, D. M., and Bellwood, D. R. (2012). Performance of remote acoustic receivers within a coral reef habitat: implications for array design. Coral Reefs 31, 693–702.
Performance of remote acoustic receivers within a coral reef habitat: implications for array design.Crossref | GoogleScholarGoogle Scholar |

Wen, C. K. C., Pratchett, M. S., Almany, G. R., and Jones, G. P. (2013). Patterns of recruitment and microhabitat associations for three predatory coral reef fishes on the southern Great Barrier Reef, Australia. Coral Reefs 32, 389–398.
Patterns of recruitment and microhabitat associations for three predatory coral reef fishes on the southern Great Barrier Reef, Australia.Crossref | GoogleScholarGoogle Scholar |

Williams, D. M., and Russ, G. R. (1994). Review of data on fishes of commercial and recreational fishing interest on the Great Barrier Reef. Research Publication number 33, Great Barrier Reef Marine Park Authority, Townsville, Qld, Australia.

Williams, A. J., Currey, L. M., Begg, G. A., Murchie, C. D., and Ballagh, A. C. (2008). Population biology of coral trout species in the eastern Torres Strait: implications for fishery management. Continental Shelf Research 28, 2129–2142.
Population biology of coral trout species in the eastern Torres Strait: implications for fishery management.Crossref | GoogleScholarGoogle Scholar |

Williamson, D. H., Ceccarelli, D. M., Evans, R. D., Jones, G. P., and Russ, G. R. (2014). Habitat dynamics, marine reserve status, and the decline and recovery of coral reef fish communities. Ecology and Evolution 4, 337–354.
Habitat dynamics, marine reserve status, and the decline and recovery of coral reef fish communities.Crossref | GoogleScholarGoogle Scholar |

Wolfe, B. W., and Lowe, C. G. (2015). Movement patterns, habitat use and site fidelity of the white croaker (Genyonemus lineatus) in the Palos Verdes Superfund Site, Los Angeles, California. Marine Environmental Research 109, 69–80.
Movement patterns, habitat use and site fidelity of the white croaker (Genyonemus lineatus) in the Palos Verdes Superfund Site, Los Angeles, California.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC2MXhtVWqsrbL&md5=4a4a6e0840965c404468bcbc889f7278CAS |

Zeller, D. (1997). Home range and activity patterns of the coral trout Plectropomus leopardus (Serranidae). Marine Ecology Progress Series 154, 65–77.
Home range and activity patterns of the coral trout Plectropomus leopardus (Serranidae).Crossref | GoogleScholarGoogle Scholar |

Zuur, A. F., Ieno, E. N., Walker, N., Saveliev, A. A., and Smith, G. M. (2009). ‘Mixed Effects Models and Extensions in Ecology with R.’ (Springer: New York.)