Register      Login
Marine and Freshwater Research Marine and Freshwater Research Society
Advances in the aquatic sciences
REVIEW

The distribution, significance and vulnerability of Australian rhodolith beds: a review

A. S. Harvey A C , R. M. Harvey A and E. Merton B
+ Author Affiliations
- Author Affiliations

A Department of Ecology, Environment and Evolution, La Trobe University, Bundoora, Vic. 3083, Australia.

B Centre for Water Policy and Management, La Trobe University, Bundoora, Vic. 3083, Australia.

C Corresponding author. Email: a.harvey@latrobe.edu.au

Marine and Freshwater Research 68(3) 411-428 https://doi.org/10.1071/MF15434
Submitted: 17 November 2015  Accepted: 4 February 2016   Published: 16 May 2016

Abstract

Rhodolith beds are major marine benthic macrophyte communities, comparable in size and significance to kelp beds, seagrass meadows and coralline reefs. Rhodolith beds are currently ‘at risk’, both around the world and in Australia, from anthropogenic disturbances such as ocean acidification, coastal degradation and sedimentation. However, knowledge of rhodolith distribution in Australia is limited and beds are currently largely considered to be uncommon and isolated. An extensive review was undertaken using herbarium collections, and relevant scientific and grey literature (journal publications, marine surveys, ships’ logs, reference books and websites) for references to rhodoliths and rhodolith beds. Our study has shown that rhodoliths are common throughout 70% of Australia’s coastline, ranging from tropical to cold-temperate waters, down to 117 m, forming a vast natural resource in terms of area covered, biodiversity and carbonate production. This review has created a solid foundation for future rhodolith research in Australia by documenting the extent of known rhodolith distribution. It will help inform and influence future research and policy planning on these largely unexplored, highly diverse marine ecosystems.

Additional keywords: biogeography, coralline red algae, marine resource management.


References

Aguado-Giménez, F., and Ruiz-Fernández, J. M. (2012). Influence of an experimental fish farm on the spatio-temporal dynamic of a Mediterranean maërl algae community. Marine Environmental Research 74, 47–55.
Influence of an experimental fish farm on the spatio-temporal dynamic of a Mediterranean maërl algae community.Crossref | GoogleScholarGoogle Scholar | 22209704PubMed |

Aguilar, R., Pastor, X., de la Torriente, A., and Garcia, S. (2009). Images from ROV dives on the seamounts in the study (different stages of coralligenous concretions and species found on the seamounts researched). In ‘The first Mediterranean Symposium on the Coralligenous and other Calcareous Bio-concretions’, Tabarka, Tunisia, January 2009. (Eds R. Aguilar, X. Pastor, A. de la Torriente, and S. Garcia.) pp. 1–18. (Oceana, Madrid, Spain.)

Althaus, F., Hill, N., Edwards, L., Ferrari, R., Case, M., and Colquhoun, J. (2013). CATAMI Classification Scheme for scoring marine biota and substrata in underwater imagery – a pictorial guide to the collaborative and annotation tools for analysis of marine imagery and video (CATAMI) classification scheme. (Version 1). Available at http://catami.org/classification [Verified 1 October 2015].

Amado-Filho, G. M., Moura, R. L., Basto, A. C., Salgado, L. T., Sumida, P., Guth, A. Z., Francini-Fihlo, R. B., Pereira-Filho, G. H., Abrantes, D. P., Brasileiro, P. S., Bahia, R. G., Leal, R. N., Kaufman, L., Kleypas, F. A., Farina, M., and Thompson, F. L. (2012). Rhodolith beds are major CaCO3 biofactories in the tropical South West Atlantic. PLoS One 7, e35171.
Rhodolith beds are major CaCO3 biofactories in the tropical South West Atlantic.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC38XmslOkt7k%3D&md5=b04237595810ee01f92b3ca9f71a7103CAS | 22536356PubMed |

Avila, E., Riosmena-Rodriguez, R., and Hinojosa-Arango, G. (2013). Sponge–rhodolith interactions in a subtropical estuarine system. Helgolaender Meeresuntersuchungen 67, 349–357.

Bahia, R. G., Abrantes, D. P., Brasileiro, P. S., Pereira Filho, G. H., and Amado Filho, G. M. (2010). Rhodolith bed structure along a depth gradient on the northern coast of Bahia State, Brazil. Brazilian Journal of Oceanography 58, 323–337.
Rhodolith bed structure along a depth gradient on the northern coast of Bahia State, Brazil.Crossref | GoogleScholarGoogle Scholar |

Ball, D., Blake, S., and Plummer, A. (2006). Review of marine habitat classification systems. Parks Victoria Technical series, number 26. Parks Victoria, Melbourne.

Ballesteros, E. (2003). The coralligenous in the Mediterranean Sea. Definition of the coralligenous assemblage in the Mediterranean, its main builders, its richness and key role in benthic ecology as well as its threats. Project for the preparation of a Strategic Action Plan for the Conservation of the Biodiversity in the Mediterranean Region (SAP BIO), UNEP-MAP-RAC/SPA. (RAC/SPA – Regional Activity Centre for Specially Protected Areas.) Available at http://sapbio.rac-spa.org/b1eng.pdf [Verified 16 March 2016].

Barton, J., Pope, A., and Howe, S. (2012). Marine natural values study summary. Parks Victoria. Melbourne.

Basso, D. (2012). Carbonate production by calcareous red algae and global change. Geodiversitas 34, 13–33.
Carbonate production by calcareous red algae and global change.Crossref | GoogleScholarGoogle Scholar |

Bax, N. J., and Williams, A. (2001). Seabed habitat on the south-eastern Australian continental shelf: context, vulnerability and monitoring. Marine and Freshwater Research 52, 491–512.
Seabed habitat on the south-eastern Australian continental shelf: context, vulnerability and monitoring.Crossref | GoogleScholarGoogle Scholar |

Blake, C., and Maggs, C. A. (2003). Comparative growth rates and internal banding periodicity of maerl species (Corallinales, Rhodophyta) from northern Europe. Phycologia 42, 606–612.
Comparative growth rates and internal banding periodicity of maerl species (Corallinales, Rhodophyta) from northern Europe.Crossref | GoogleScholarGoogle Scholar |

Boreen, T., James, N., Wilson, C., and Heggie, D. (1993). Surficial cool-water carbonate sediments on the Otway continental margin, southeastern Australia. Marine Geology 112, 35–56.
Surficial cool-water carbonate sediments on the Otway continental margin, southeastern Australia.Crossref | GoogleScholarGoogle Scholar |

Borissova, I., Kennard, J., Lech, M., Wang, L., Johnston, S., Lewis, C., and Southby, C. (2013). Integrated approach to CO2 storage assessment in the offshore South Perth basin, Australia. Energy Procedia 37, 4872–4878.
Integrated approach to CO2 storage assessment in the offshore South Perth basin, Australia.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3sXhs1OjtrzL&md5=6c657da39d851742d951f612775107cbCAS |

Bosence, D., and Wilson, J. (2003). Maerl growth, carbonate rates and accumulation rates in the northeast Atlantic. Aquatic Conservation: Marine and Freshwater Ecosystems 13, S21–S31.
Maerl growth, carbonate rates and accumulation rates in the northeast Atlantic.Crossref | GoogleScholarGoogle Scholar |

Bridge, T. C. L., Done, T. J., Beaman, R. J., Friedman, A., Williams, S. B., Pizarro, O., and Webster, J. M. (2011). Topography, substratum and benthic macrofaunal relationships on a tropical mesophotic shelf margin, central Great Barrier Reef, Australia. Coral Reefs 30, 143–153.
Topography, substratum and benthic macrofaunal relationships on a tropical mesophotic shelf margin, central Great Barrier Reef, Australia.Crossref | GoogleScholarGoogle Scholar |

Brooke, B., Nichols, S., Hughes, M., McArthur, M., Anderson, T., Przeslawski, R., Siwabessy, J., Heyward, A., Battersill, C., Colquhoun, J., and Doherty, P. (2008). Carnarvon shelf survey post-survey report, 12 August–15 September 2008. Geoscience Australia, Canberra.

Brooke, B. P., Woodroffe, C. D., Linklater, M., McArthur, M. A., Nichol, S. L., Jones, B. G., Kennedy, D. M., Buchanan, C., Spinoccia, M., Mleczko, R., Cortese, A., Atkinson, I., and Sexton, M. (2010). Geomorphology of the Lord Howe Island shelf and submarine volcano. Geoscience Australia, Canberra.

Bruno, J. F., and Bertness, M. D. (2001). Habitat modification and facilitation in benthic marine communities. In ‘Marine Community Ecology’. (Eds M. D. Bertness, S. D. Gaines and M. E. Hay.) pp. 201–218. (Sinauer: Sunderland, MA.)

Carannante, G., Esteban, M., Milliman, J. D., and Simone, L. (1988). Carbonate lithofacies as paleolatitude indicators: problems and limitations. Sedimentary Geology 60, 333–346.
Carbonate lithofacies as paleolatitude indicators: problems and limitations.Crossref | GoogleScholarGoogle Scholar |

Carro, B., Lopez, L., Pena, V., Barbara, I., and Barreiro, R. (2014). DNA barcoding allows the accurate assessment of European maerl diversity: a proof-of-concept study. Phytotaxa 190, 176–189.
DNA barcoding allows the accurate assessment of European maerl diversity: a proof-of-concept study.Crossref | GoogleScholarGoogle Scholar |

Chidgey, S., and Crockett, P. (2010). The Canberra. Marine ecosystem monitoring program. 6-months post scuttling. CEE Consultants Pty Ltd, Melbourne. Available at http://parkweb.vic.gov.au/explore/parks/ex-hmas-canberra-recreation-reserve [Verified 6 March 2016].

Chisholm, J. R. M. (2000). Calcification by crustose coralline algae on the northern Great Barrier Reef, Australia. Limnology and Oceanography 45, 1476–1484.
Calcification by crustose coralline algae on the northern Great Barrier Reef, Australia.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3cXosFymtrY%3D&md5=c70f24595e97aea11f6a9f1ecf14e5dbCAS |

Chisholm, J. R. M. (2003). Primary productivity of reef-building crustose coralline algae. Limnology and Oceanography 48, 1376–1387.

Clarke, J. D. A., Bone, Y., and James, N. P. (1996). Cool-water carbonates in an Eocene palaeoestuary, Norseman Formation, Western Australia. Sedimentary Geology 101, 213–226.
Cool-water carbonates in an Eocene palaeoestuary, Norseman Formation, Western Australia.Crossref | GoogleScholarGoogle Scholar |

Collins, L. B. (1988). Sediments and history of the Rottnest Shelf, southwest Australia: a swell-dominated, non-tropical carbonate margin. Sedimentary Geology 60, 15–49.
Sediments and history of the Rottnest Shelf, southwest Australia: a swell-dominated, non-tropical carbonate margin.Crossref | GoogleScholarGoogle Scholar |

Collins, L. B., France, R. E., Zhu, Z. R., and Wyrwoll, K. (1997). Warm-water platform and cool-water shelf carbonates on the Abrolhos Shelf, Southwest Australia. In ‘Cool-Water Carbonates’. (Eds N. P. James and J. A. D. Clarke.) Special Publication 56, pp. 23–36. (Society for Sedimentary Geology.)

Council of the European Commission (1992). Council directive 92/43/EEC of 21 May 1992 on the conservation of natural habitats and of wild fauna and flora. Official Journal of the European Communities – Legislation 206, 7–49.

Currie, D. R., Dixon, C. D., Roberts, S. D., Hooper, G. E., Sorokin, S. J., and Ward, T. M. (2009). Fisheries-independent by-catch survey to inform risk assessment of the Spencer Gulf Prawn Trawl Fishery. SARDI publication number F2009/000369-1. SARDI research report series, number 390. Report to PIRSA Fisheries. South Australian Research and Development Institute (Aquatic Sciences), Adelaide.

Daume, S., Brand-Gardner, S., and Woelkerling, W. J. (1999a). Settlement of abalone larvae (Haliotis laevigata Donovan) in response to non-geniculate coralline red algae (Corallinales, Rhodophyta). Journal of Experimental Marine Biology and Ecology 234, 125–143.
Settlement of abalone larvae (Haliotis laevigata Donovan) in response to non-geniculate coralline red algae (Corallinales, Rhodophyta).Crossref | GoogleScholarGoogle Scholar |

Daume, S., Brand-Gardner, S., and Woelkerling, W. J. (1999b). Preferential settlement of abalone larvae: diatom films vs. non-geniculate coralline red algae. Aquaculture 174, 243–254.
Preferential settlement of abalone larvae: diatom films vs. non-geniculate coralline red algae.Crossref | GoogleScholarGoogle Scholar |

Demers, M. A., Davis, A. R., and Knott, N. A. (2013). A comparison of the impact of ‘seagrass-friendly’ boat mooring systems on Posidonia australis. Marine Environmental Research 83, 54–62.
A comparison of the impact of ‘seagrass-friendly’ boat mooring systems on Posidonia australis.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3sXjvVChsw%3D%3D&md5=96fa7e900d197e00c4333712ed9ef6e9CAS |

Edmunds, M., Mustoe, S., Stewart, K., Sheedy, E., and Ong, J. (2010). VNPA nature conservation review: marine conservation priorities and issues for Victoria. Appendices. Report to Victoria National Parks Association. Australian marine ecology report 405, Melbourne.

Fabricius, K. E., Langdon, C., Uthicke, S., Humphrey, C., Noonan, S., De’ath, G., Okazaki, R., Muehllehner, N., Glas, M. S., and Lough, J. M. (2011). Losers and winners in coral reefs acclimatized to elevated carbon dioxide concentrations. Nature Climate Change 1, 165–169.
Losers and winners in coral reefs acclimatized to elevated carbon dioxide concentrations.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3MXmvFOktrg%3D&md5=799b95450e6d030b0e516587ef8474b9CAS |

Felder, D. L., Thoma, B. P., Schmidt, W. E., Sauvage, T., Self-Krayesky, S. L., Chistoserdov, A., Bracken-Grissom, H. D., and Fredericq, S. (2014). Seaweeds and decapod crustaceans on gulf deep banks after the Macondo oil spill. Bioscience 64, 808–819.
Seaweeds and decapod crustaceans on gulf deep banks after the Macondo oil spill.Crossref | GoogleScholarGoogle Scholar |

Ferns, L. W., and Hough, D. (2002). ‘High Resolution Marine Habitat Mapping of the Bunurong Coast (Victoria), Including the Bunurong Marine and Coastal Park.’ (Flora and Fauna Division, Department of Natural Resources and Environment: Melbourne.)

Foster, M. S. (2001). Rhodoliths: between rocks and soft places. Journal of Phycology 37, 659–667.
Rhodoliths: between rocks and soft places.Crossref | GoogleScholarGoogle Scholar |

Foster, M. S., Fihlo, M. A., Kamenos, N. A., Riosmenos-Rodriguez, R., and Steller, D. (2014). Rhodoliths and rhodolith Beds. In ‘Research and Discoveries: the Revolution of Science through SCUBA. Vol. 39’. (Eds M. A. Lang, R. L. Marinelli, S. J. Roberts, and P. R. Taylor.) Smithsonian Contributions to Marine Sciences Series 39, pp. 143–155. (Smithsonian Institution Scholarly Press: Washington, DC.)

Frantz, B. R., Kashgarian, M., Coale, K. H., and Foster, M. S. (2000). Growth rate and potential climate record from a rhodolith using 14C accelerator mass spectrometry. Limnology and Oceanography 45, 1773–1777.
Growth rate and potential climate record from a rhodolith using 14C accelerator mass spectrometry.Crossref | GoogleScholarGoogle Scholar |

Fredericq, S., Arakaki, N., Camacho, O., Gabriel, D., Krayesky, D., Self-Krayesky, S., Rees, G., Richards, J., Sauvage, T., Venera-Ponton, D., and Schmidt, W. (2014). A dynamic approach to the study of rhodoliths: a case study for the northwestern Gulf of Mexico. Cryptogamie. Algologie 35, 77–98.
A dynamic approach to the study of rhodoliths: a case study for the northwestern Gulf of Mexico.Crossref | GoogleScholarGoogle Scholar |

Freiwald, A. (1998). Modern nearshore cold-temperate calcareous sediments in the Troms district, Northern Norway. Journal of Sedimentary Research. Section A, Sedimentary Petrology and Processes 68, 763–776.
Modern nearshore cold-temperate calcareous sediments in the Troms district, Northern Norway.Crossref | GoogleScholarGoogle Scholar |

Fuller, M. K., Bone, Y., Gostin, V. A., and Von Der Borch, C. C. (1994). Holocene cool-water carbonate and terrigenous sediments from southern Spencer Gulf, South Australia. Australian Journal of Earth Sciences 41, 353–363.
Holocene cool-water carbonate and terrigenous sediments from southern Spencer Gulf, South Australia.Crossref | GoogleScholarGoogle Scholar |

Goldberg, N. (2006a). Age estimates and description of rhodoliths from Esperance Bay, Western Australia. Journal of the Marine Biological Association of the United Kingdom 86, 1291–1296.
Age estimates and description of rhodoliths from Esperance Bay, Western Australia.Crossref | GoogleScholarGoogle Scholar |

Goldberg, N. (2006b). Ecological and historical processes maintaining macroalgal diversity in the Recherche Archipelago, Western Australia. In ‘Strategic Research Fund for the Marine Environment Final Report. Vol. 1: the SRFME Initiative and Collaborative Linkages Program’. (Eds J. K. Keesing and J. N. Heine.) pp. 22–28. (Strategic Research Fund for the Marine Environment, CSIRO: Wembley, WA.)

Goldberg, N., and Heine, J. N. (2008). Age estimates of Sporolithon durum (Corallinales, Rhodophyta) from Rottnest Island, Western Australia, based on radiocarbon-dating methods. Journal of the Royal Society of Western Australia 91, 27–30.

Goldberg, N. A., and Kendrick, G. A. (2005). A catalogue of the marine plants found in the western islands of the Recherche Archipelago (Western Australia), with notes on their distribution in relation to island location, depth, and exposure to wave energy. WA Museum, Perth.

Gostin, V. A., Belperio, A. O., and Cann, J. H. (1988). The Holocene non-tropical coastal and shelf carbonate province of southern Australia. Sedimentary Geology 60, 51–70.
The Holocene non-tropical coastal and shelf carbonate province of southern Australia.Crossref | GoogleScholarGoogle Scholar |

Halfar, J., and Riegl, B. (2013). From coral framework to rhodolith bed: sedimentary footprint of the 1982/1983 ENSO in the Galapagos. Coral Reefs 32, 985.
From coral framework to rhodolith bed: sedimentary footprint of the 1982/1983 ENSO in the Galapagos.Crossref | GoogleScholarGoogle Scholar |

Hall-Spencer, J. M., Grall, J., Moore, P. G., and Atkinson, R. J. A. (2003). Bivalve fishing and maerl-bed conservation in France and the UK: retrospect and prospect. Aquatic Conservation: Marine and Freshwater Ecosystems 13, S33–S41.
Bivalve fishing and maerl-bed conservation in France and the UK: retrospect and prospect.Crossref | GoogleScholarGoogle Scholar |

Hall-Spencer, J. M., Rodolfo-Metalpa, R., Martin, S., Ransome, E., Fine, M., Turner, S. M., Rowley, S. J., Tedesco, D., and Buia, M. (2008). Volcanic carbon dioxide vents show ecosystem effects of ocean acidification. Nature 454, 96–99.
Volcanic carbon dioxide vents show ecosystem effects of ocean acidification.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1cXotVertLc%3D&md5=be8b0396a62a75fdde556dc30f86ad6eCAS | 18536730PubMed |

Hamilton, L. J., and Parnum, I. (2011). Acoustic seabed segmentation from direct statistical clustering of entire multibeam sonar backscatter curves. Continental Shelf Research 31, 138–148.
Acoustic seabed segmentation from direct statistical clustering of entire multibeam sonar backscatter curves.Crossref | GoogleScholarGoogle Scholar |

Harrington, L., Fabricius, K., Eaglessham, G., and Negri, A. (2005). Synergistic effects of diuron and sedimentation on photosynthesis and survival of crustose coralline algae. Marine Pollution Bulletin 51, 415–427.
Synergistic effects of diuron and sedimentation on photosynthesis and survival of crustose coralline algae.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2MXitF2gurc%3D&md5=d2ad1543ff298e3207c428fcdc0c7e34CAS | 15757740PubMed |

Harris, P. T., Tsuhi, Y., Marshall, J. F., Davies, P. J., Honda, N., and Matsuda, H. (1996). Sand and rhodolith-gravel entrainmant on the mid- to outer-shelf under a western boundary current: Fraser Island continental shelf, eastern Australia. Marine Geology 129, 313–330.
Sand and rhodolith-gravel entrainmant on the mid- to outer-shelf under a western boundary current: Fraser Island continental shelf, eastern Australia.Crossref | GoogleScholarGoogle Scholar |

Hart, D. E., and Kench, P. S. (2007). Carbonate production of an emergent reef platform, Warraber Island, Torres Strait, Australia. Coral Reefs 26, 53–68.
Carbonate production of an emergent reef platform, Warraber Island, Torres Strait, Australia.Crossref | GoogleScholarGoogle Scholar |

Harvey, A., and Bird, F. L. (2008). Community structure of a rhodolith bed from cold-temperate waters (southern Australia). Australian Journal of Botany 56, 437–450.
Community structure of a rhodolith bed from cold-temperate waters (southern Australia).Crossref | GoogleScholarGoogle Scholar |

Harvey, A., and Woelkerling, W. (2007). A guide to nongeniculate coralline red algal (Corallinales, Rhodophyta) rhodolith identification. Ciencias Marinas 33, 411–426.

Harvey, A., Woelkerling, W., Farr, T., Neill, K., and Nelson, W. (2005). Coralline algae of central New Zealand: an identification guide to common ‘crustose’ species. NIWA Information Series number 57. National Institute of Water & Atmospheric Research, Wellington, New Zealand.

Harvey, A., Phillips, L. E., Woelkerling, W., and Millar, A. J. K. (2006). The Corallinaceae, subfamily Mastophoroideae (Corallinales, Rhodophyta) in south-eastern Australia. Australian Systematic Botany 19, 387–429.
The Corallinaceae, subfamily Mastophoroideae (Corallinales, Rhodophyta) in south-eastern Australia.Crossref | GoogleScholarGoogle Scholar |

Harvey, A. S., Woelkerling, W. J., and Millar, A. J. K. (2009). The genus Lithophyllum (Lithophylloideae, Corallinaceae, Rhodophyta) in south-eastern Australia, with the description of L. riosmenae, sp. nov. Australian Systematic Botany 22, 296–317.
The genus Lithophyllum (Lithophylloideae, Corallinaceae, Rhodophyta) in south-eastern Australia, with the description of L. riosmenae, sp. nov.Crossref | GoogleScholarGoogle Scholar |

Harvey, E. S., Butler, J. J., McLean, D. L., and Shand, J. (2012). Contrasting habitat use of diurnal and nocturnal fish assemblages in temperate Western Australia. Journal of Experimental Marine Biology and Ecology 426–427, 78–86.
Contrasting habitat use of diurnal and nocturnal fish assemblages in temperate Western Australia.Crossref | GoogleScholarGoogle Scholar |

Haskoning UK Ltd (2006). Investigation into the impact of marine fish farm deposition on maerl beds. Scottish Natural Heritage commissioned report number 213, ROAME number AHLA10020348, Scottish Natural Heritage, Perth, UK.

Hauton, C., Hall-Spencer, J. M., and Moore, P. G. (2003). An experimental study of the ecological impacts of hydraulic bivalve dredging on maerl. ICES Journal of Marine Science 60, 381–392.
An experimental study of the ecological impacts of hydraulic bivalve dredging on maerl.Crossref | GoogleScholarGoogle Scholar |

Hetzinger, S., Halfar, J., Riegl, B., and Godinez-Orta, L. (2006). Sedimentology and acoustic mapping of modern rhodolith beds on a non-tropical carbonate shelf (Gulf of California, Mexico). Journal of Sedimentary Research 76, 670–682.
Sedimentology and acoustic mapping of modern rhodolith beds on a non-tropical carbonate shelf (Gulf of California, Mexico).Crossref | GoogleScholarGoogle Scholar |

Holmes, K. W., Grove, S. L., Van Niel, K. P., and Kendrick, G. A. (2007). Point Addis Marine National Park. Mapping the Benthos in Victoria’s Marine National Parks number 42. Parks Victoria, Melbourne.

Hopley, D. (1982). ‘The Geomorphology of the Great Barrier Reef: Quaternary Development of Coral Reefs.’ (Wiley: Brisbane.)

Ierodiaconou, D., Monk, J., Rattray, A., Laureson, L., and Versace, V. L. (2011). Comparison of automated classification techniques for predicting benthic biological communities using hydroacoustics and video observations. Continental Shelf Research 31, S28–S38.
Comparison of automated classification techniques for predicting benthic biological communities using hydroacoustics and video observations.Crossref | GoogleScholarGoogle Scholar |

Irving, A. D., Connell, S. D., and Elsdon, T. S. (2004). Effects of kelp canopies on bleaching and photosynthetic activity of encrusting coralline algae. Journal of Experimental Marine Biology and Ecology 310, 1–12.
Effects of kelp canopies on bleaching and photosynthetic activity of encrusting coralline algae.Crossref | GoogleScholarGoogle Scholar |

James, N. P., and Bone, Y. (2011). Carbonate production and deposition in a warm-temperate macroalgal environment, Investigator Strait, South Australia. Sedimentary Geology 240, 41–53.
Carbonate production and deposition in a warm-temperate macroalgal environment, Investigator Strait, South Australia.Crossref | GoogleScholarGoogle Scholar |

James, N. P., Bone, Y., Von Der Borch, C. C., and Gostin, V. A. (1992). Modern carbonate and terrigenous clastic sediments on a cool water, high energy, mid-latitude shelf: Lacepede, southern Australia. Sedimentology 39, 877–903.
Modern carbonate and terrigenous clastic sediments on a cool water, high energy, mid-latitude shelf: Lacepede, southern Australia.Crossref | GoogleScholarGoogle Scholar |

James, N. P., Boreen, T. D., Bone, Y., and Feary, D. A. (1994). Holocene carbonate sedimentation on the west Eucla Shelf, Great Australian Bight: a shaved shelf. Sedimentary Geology 90, 161–177.
Holocene carbonate sedimentation on the west Eucla Shelf, Great Australian Bight: a shaved shelf.Crossref | GoogleScholarGoogle Scholar |

James, N. P., Bone, Y., Hageman, S. J., Feary, D. A., and Gostin, V. A. (1997). Cool-water carbonate sedimentation during the terminal quaternary sea-level cycle: Lincoln Shelf, southern Australia. In ‘Cool-water Carbonates’. (Eds N. P. James and J. A. D. Clarke.) SEPM Special Publication 56, pp. 53–75. (Society for Sedimentary Geology.)

James, N. P., Collins, L. B., Bone, Y., and Hallcock, P. (1999). Subtropical carbonates in a temperate realm: modern sediments on the southwest Australian shelf. Journal of Sedimentary Research 69, 1297–1321.
Subtropical carbonates in a temperate realm: modern sediments on the southwest Australian shelf.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK1MXotVSnurs%3D&md5=1831c489b83cfaafd78ccb27d07b6eefCAS |

James, N. P., Collins, L. B., and Kyser, T. K. (2001). Surficial sediments of the Great Australian Bight: facies dynamics and oceanography on a vast cold-water carbonate shelf. Journal of Sedimentary Research 71, 549–567.
Surficial sediments of the Great Australian Bight: facies dynamics and oceanography on a vast cold-water carbonate shelf.Crossref | GoogleScholarGoogle Scholar |

James, N. P., Bone, Y., Kyser, K. T., Dix, G. R., and Collins, L. B. (2004). The importance of changing oceanography in controlling late Quaternary carbonate sedimentation on a high-energy, tropical, oceanic ramp: north-western Australia. Sedimentology 51, 1179–1205.
The importance of changing oceanography in controlling late Quaternary carbonate sedimentation on a high-energy, tropical, oceanic ramp: north-western Australia.Crossref | GoogleScholarGoogle Scholar |

James, N. P., Bone, Y., Brown, K. M., and Cheshire, A. (2012). Calcareous epiphyte production in cool-water carbonate seagrass depositional environments – Southern Australia. In ‘Perspectives in Carbonate Geology: A Tribute to the Career of Robert Nathan Ginsburg’. (Eds P. K. Swart, G. P. Eberli, and J. A. McKenzie.) Special Publication 41 of the International Association of Sedimentologists, pp. 123–148. (Wiley: Chichester, UK.)10.1002/9781444312065.CH9

James, N. P., Reid, C. M., Bone, Y., Levings, A., and Malcolm, I. (2013). The macroalgal carbonate factory at a cool-to-warm temperate marine transition, southern Australia. Sedimentary Geology 291, 1–26.
The macroalgal carbonate factory at a cool-to-warm temperate marine transition, southern Australia.Crossref | GoogleScholarGoogle Scholar |

Jenkins, G., Kenner, T., and Brown, A. (2013). ‘Determining the Specificity of Fish–Habitat Relationships in Western Port.’ (Melbourne Water: Melbourne.)

Kamenos, N. A., Moore, P. G., and Hall-Spencer, J. M. (2003). Substratum heterogeneity of dredged vs un-dredged maerl grounds. Journal of the Marine Biological Association of the United Kingdom 83, 411–413.
Substratum heterogeneity of dredged vs un-dredged maerl grounds.Crossref | GoogleScholarGoogle Scholar |

Kamenos, N. A., Moore, P. G., and Hall-Spencer, J. M. (2004). Attachment of the juvenile queen scallop (Aequipecten opercularis L.) to maerl in mesocosm conditions; juvenile habitat selection. Journal of Experimental Marine Biology and Ecology 306, 139–155.
Attachment of the juvenile queen scallop (Aequipecten opercularis L.) to maerl in mesocosm conditions; juvenile habitat selection.Crossref | GoogleScholarGoogle Scholar |

Keene, J., Baker, C., Tran, M., and Potter, A. (2008). Geomorphology and Sedimentology of the East Marine Region of Australia. Geoscience Australia, Record 2008/10, Canberra.

Kendrick, G. A., and Brearley, A. (1997). Influence of Sargassum spp. attached to rhodoliths on sampling effort and demographic analyses of Sargassum spp. (Sargassaceae, Phaeophyta) attached to a reef. Botanica Marina 40, 517–521.
Influence of Sargassum spp. attached to rhodoliths on sampling effort and demographic analyses of Sargassum spp. (Sargassaceae, Phaeophyta) attached to a reef.Crossref | GoogleScholarGoogle Scholar |

Kendrick, G., Harvey, E., McDonald, J., Pattiaratchi, C., Cappo, M., Fromont, J., Shortis, M., Grove, S., Bickers, A., Baxter, K., Goldberg, N., Kletczkowski, M., and Bulter, J. (2005). Characterising the fish habitats of the Recherche Archipelago. Fisheries Research and Development Corporation report project number 2001/060. Available at http://frdc.com.au/research/Documents/Final_reports/2001-060-DLD.pdf [Verified 11 March 2016].

Kennedy, D. M. (1999). Reef growth and lagoonal sedimentation at high latitudes, Lord Howe Island. Ph.D. Thesis, University of Wollongong, NSW. Available at http://ro.uow.edu.au/theses/1980 [Verified 11 March 2016].

Kennedy, D. M., and Woodroffe, C. D. (2000). Holocene lagoonal sedimentation at the latitudinal limits of reef growth, Lord Howe Island, Tasman Sea. Marine Geology 169, 287–304.
Holocene lagoonal sedimentation at the latitudinal limits of reef growth, Lord Howe Island, Tasman Sea.Crossref | GoogleScholarGoogle Scholar |

Kennedy, D. M., Woodroffe, C. D., Jones, B. G., Dickson, M. E., and Phipps, C. V. G. (2002). Carbonate sedimentation on subtropical shelves around Lord Howe Island and Balls Pyramid, Southwest Pacific. Marine Geology 188, 333–349.
Carbonate sedimentation on subtropical shelves around Lord Howe Island and Balls Pyramid, Southwest Pacific.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD38XmvVGrt74%3D&md5=1d472c3da0fa26f52da474f40f39a38dCAS |

Kline, D. I., Teneva, L., Schneider, K., Miard, T., Chai, A., Marker, M., Headley, K., Opdyke, B., Nash, M., Valetich, M., Caves, J. K., Russell, B. D., Connell, S. D., Kirkwood, B. J., Brewer, P., Peltzer, E. J., Silverman, J., Caldeira, K., Dunbar, R. B., Koseff, J. R., Monismith, S. G., Mitchell, B. G., Dove, S., and Hoegh-Guldberg, O. (2012). A short-term in situ CO2 enrichment experiment on Heron Island (GBR). Scientific Reports 2, 413.
A short-term in situ CO2 enrichment experiment on Heron Island (GBR).Crossref | GoogleScholarGoogle Scholar | 22639723PubMed |

Littler, M. M., Littler, D. S., and Hanisak, M. D. (1991). Deep-water rhodolith distribution, productivity, and growth history at sites of formation and subsequent degradation. Journal of Experimental Marine Biology and Ecology 150, 163–182.
Deep-water rhodolith distribution, productivity, and growth history at sites of formation and subsequent degradation.Crossref | GoogleScholarGoogle Scholar |

Lund, M., Davies, P. J., and Braga, J. C. (2000). Coralline algal nodules off Fraser Island, eastern Australia. Facies 42, 25–34.
Coralline algal nodules off Fraser Island, eastern Australia.Crossref | GoogleScholarGoogle Scholar |

MacDiarmid, A., Bowden, D., Cummings, V., Morrison, M., Jones, E., Kelly, M., Neil, H., Nelson, W., and Rowden, A. (2013). Sensitive marine benthic habitats defined. NIWA client report number WLG2013-18. National Institute of Water and Atmospheric Research, Wellington, New Zealand.

Marrack, E. C. (1999). The relationship between water motion and living rhodolith beds in southwestern Gulf of California, Mexico. Palaios 14, 159–171.
The relationship between water motion and living rhodolith beds in southwestern Gulf of California, Mexico.Crossref | GoogleScholarGoogle Scholar |

Marshall, J. F., and Davies, P. J. (1978). Skeletal carbonate variation on the continental shelf of eastern Australia. Bureau of Mineral Resources, Geology and Geophysics 3, 85–92.
Skeletal carbonate variation on the continental shelf of eastern Australia.Crossref | GoogleScholarGoogle Scholar |

Marshall, J. F., Tsuji, Y., Matsuda, H., Davies, P. J., Iryu, Y., Honda, N., and Satoh, Y. (1998). Quaternary and Tertiary subtropical carbonate platform development on the continental margin of southern Queensland, Australia. In ‘Reefs and Carbonate Platforms in the Pacific and Indian Oceans’. (Eds G. F. Camoin and P. J. Davies.) Special Publication 25 of the International Association of Sedimentologists, pp. 163–195. (Blackwell: Oxford, UK.)10.1002/9781444304879.CH9

Martín, J. M., Braga, J. C., Konishi, K., and Pigram, C. (1993). A model for the development of rhodoliths on platforms influenced by storms: the Middle-Miocene carbonates of the Marion Plateau (northeastern Australia). In ‘Proceedings Ocean Drilling Program, Volume 133: Scientific Results – Northeast Australian Margin’. (Eds J. A. McKenzie, P. J. Davies, A. Palmer-Julson, C. G. Betzler, T. C. Brachert, M.-P. P. Chen, J.-P. Crumière, G. R. Dix, A. W. Droxler, D. A. Feary, S. Gartner, C. R. Glenn, A. Isern, P. D. Jackson, R. D. Jarrard, M. E. Katz, K. Konishi, D. Kroon, J. W. Ladd, J. Manuel Martin, D. F. McNeill, L. F. Montaggioni, D. W. Muller, S. Khan Omarzai, C. J. Pigram, P. K. Swart, P. A. Symonds, K. F. Watts, and W. Wei.) pp. 455–460. (Ocean Drilling Program, Texas A&M University.)10.2973/ODP.PROC.SR.133.1993

Martin, S., Rodolfo-Metalpa, R., Ransome, E., Rowley, S. J., Buia, M., Gattuso, J., and Hall-Spencer, J. (2008). Effects of naturally acidified seawater on seagrass calcareous epibionts. Biology Letters 4, 689–692.
Effects of naturally acidified seawater on seagrass calcareous epibionts.Crossref | GoogleScholarGoogle Scholar | 18782731PubMed |

Martone, P. T., Alyono, M., and Stites, S. (2010). Bleaching of an intertidal coralline alga: untangling the effects of light, temperature, and desiccation. Marine Ecology Progress Series 416, 57–67.
Bleaching of an intertidal coralline alga: untangling the effects of light, temperature, and desiccation.Crossref | GoogleScholarGoogle Scholar |

Mathis, B. J., Kohn, A. J., and Goldberg, N. A. (2005). ‘Rhodoliths: the Inside Story.’ (Western Australian Museum: Perth.)

McArthur, M. A., Brooke, B. P., Przeslawski, R., Ryan, D. A., Lucieer, V. L., Nichol, S., McCallum, A. W., Melli, C., Cresswell, I. D., and Radke, L. C. (2010). On the use of abiotic surrogates to describe marine benthic biodiversity. Estuarine, Coastal and Shelf Science 88, 21–32.
On the use of abiotic surrogates to describe marine benthic biodiversity.Crossref | GoogleScholarGoogle Scholar |

McConnico, L. A., Foster, M. S., Stellar, D. L., and Riosmena-Rodriguez, R. (2014). Population biology of a long-lived rhodolith: the consequences of becoming old and large. Marine Ecology Progress Series 504, 109–118.
Population biology of a long-lived rhodolith: the consequences of becoming old and large.Crossref | GoogleScholarGoogle Scholar |

McCoy, S., and Kamenos, N. A. (2015). Coralline algae (Rhodophyta) in a changing world: integrating ecological, physiological and geochemical responses to global change. Journal of Phycology 51, 6–24.
Coralline algae (Rhodophyta) in a changing world: integrating ecological, physiological and geochemical responses to global change.Crossref | GoogleScholarGoogle Scholar | 26986255PubMed |

Melville, A. J., and Connell, S. D. (2001). Experimental effects of kelp canopies on subtidal coralline algae. Austral Ecology 26, 102–108.

Monk, J., Ierodiaconou, D., Bellgrove, A., Harvey, E., and Laurenson, L. (2011). Remotely sensed hydroacoustics and observation data for predicting fish habitat suitability. Continental Shelf Research 31, S17–S27.
Remotely sensed hydroacoustics and observation data for predicting fish habitat suitability.Crossref | GoogleScholarGoogle Scholar |

Nash, M. C., Opdyke, B. N., Troitzsch, U., Russell, B. D., Adey, W. H., Kato, A., Diaz-Pulido, G., Brent, C., Gardiner, M., Pritchard, J., and Kline, D. J. (2012). Dolomite-rich coralline algae in reefs resist dissolution in acidified conditions. Nature Climate Change 3, 268–272.
Dolomite-rich coralline algae in reefs resist dissolution in acidified conditions.Crossref | GoogleScholarGoogle Scholar |

Nelson, C. S. (1988). An introductory perspective on non-tropical shelf carbonates. Sedimentary Geology 60, 3–12.
An introductory perspective on non-tropical shelf carbonates.Crossref | GoogleScholarGoogle Scholar |

Nelson, W. A. (2009). Calcified macroalgae: critical to coastal ecosystems and vulnerable to change. Marine and Freshwater Research 60, 787–801.
Calcified macroalgae: critical to coastal ecosystems and vulnerable to change.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1MXhtVGju7jL&md5=6a4905475ec1ef738e46b684cb82dd13CAS |

Nelson, W. A., Neill, K., Farr, T., Barr, N., D’Archino, R., Miller, S., and Stewart, R. (2012). Rhodolith beds in northern New Zealand: characterisation of associated biodiversity and vulnerability to environmental stressors. Number 99. Ministry for Primary Industries, Wellington, New Zealand.

Nicholas, W. A., Borissova, I., Radke, L., Tran, M., Bemardel, G., Jorgenson, D., Siwabessy, J., Carroll, A., and Whiteway, T. (2013). Marine data for the investigation of the geological storage of CO2 GA0334 post-survey report. Seabed environments and shallow geology of the Vlaming sub-basin, Western Australia. Record 2013/09 GeoCat 74626. Geoscience Australia, Canberra.

Nicholas, W. A., Howard, F., Carroll, A., Siwabessy, J., Tran, M., Radke, L., Picard, K., and Przeslawski, R. (2014). Seabed environments and shallow sub-surface geology of the Vlaming sub-basin, offshore Perth basin: summary results from marine survey GA0334. Record 2014/49. Geoscience Australia, Canberra.

OSPAR (2010). ‘Background Document for Maerl Beds.’ (OSPAR Commission: London.)

Pardo, C., Lopez, L., Pena, V., Hernandez-Kantun, J., Le Gall, L., Barbara, I., and Barreiro, R. (2014). A multilocus species delimitation reveals a striking number of species of coralline algae forming maerl in the OSPAR Maritime Area. PLoS One 9, e104073.
A multilocus species delimitation reveals a striking number of species of coralline algae forming maerl in the OSPAR Maritime Area.Crossref | GoogleScholarGoogle Scholar | 25111057PubMed |

Pedley, M., and Carannante, G. (2006). Cool-water carbonate ramps: a review. Geological Society of London, Special Publications 255, 1–9.
Cool-water carbonate ramps: a review.Crossref | GoogleScholarGoogle Scholar |

Peña, V., Bárbara, I., Grall, J., Maggs, C., and Hall-Spencer, J. (2014). The diversity of seaweeds on maerl in the NE Atlantic. Marine Biodiversity 44, 533–551.
The diversity of seaweeds on maerl in the NE Atlantic.Crossref | GoogleScholarGoogle Scholar |

Penrose, D. L. (1992). Neogoniolithon fosliei (Corallinaceae, Rhodophyta), the type species of Neogoniolithon, in southern Australia. Phycologia 31, 338–350.
Neogoniolithon fosliei (Corallinaceae, Rhodophyta), the type species of Neogoniolithon, in southern Australia.Crossref | GoogleScholarGoogle Scholar |

Pereira-Filho, G. H., Francini-Filho, R. B., Perozzi-Jr, I., Pinheiro, H. T., Bastos, A. C., de Moura, R. L., Moraes, F. C., Matheus, Z., da Gama Bahia, R., and Amado-Filho, G. M. (2015). Sponges and fish facilitate succession from rhodolith beds to reefs. Bulletin of Marine Science 91, 45–46.
Sponges and fish facilitate succession from rhodolith beds to reefs.Crossref | GoogleScholarGoogle Scholar |

Pérès, J. M., and Picard, J. (1952). Les corniches calcaires d’origine biologique en Mediterrane occidentale. Recueil des Travaux de la Station Marine d’Endoume 4, 2–33.

Perry, C. T., Edinger, E. N., Kench, P. S., Murphy, G. N., Smithers, S. G., Steneck, R. S., and Mumby, P. J. (2012). Estimating rates of biologically driven coral reef framework production and erosion: a new census-based carbonate budget methodology and applications to the reefs of Bonaire. Coral Reefs 31, 853–868.
Estimating rates of biologically driven coral reef framework production and erosion: a new census-based carbonate budget methodology and applications to the reefs of Bonaire.Crossref | GoogleScholarGoogle Scholar |

Pitcher, C. R., Doherty, P., Arnold, P., Hooper, J., Gribble, N., Bartlett, C., Browne, M., Campbell, N., Cannard, T., Cappo, M., Carini, G., Chalmers, S., Cheers, S., Chetwynd, D., Colefax, A., Coles, R., Cook, S., Davie, P., De’ath, G., Devereux, D., Done, B., Donovan, T., Ehrke, B., Ellis, N., Ericson, G., Fellegara, I., Forcey, K., Furey, M., Gledhill, D., Good, N., Gordon, S., Haywood, M., Hendriks, P., Jacobsen, I., Johnson, J., Jones, M., Kinninmoth, S., Kistle, S., Last, P., Leite, A., Marks, S., McLeod, I., Oczkowicz, S., Robinson, M., Rose, C., Seabright, D., Sheils, J., Sherlock, M., Skelton, P., Smith, D., Smith, G., Speare, P., Stowar, M., Strickland, C., Van der Geest, C., Venables, W., Walsh, C., Wassenberg, T., Welna, A., and Yearsley, G. (2007). Seabed biodiversity on the continental shelf of the Great Barrier Reef World Heritage Area. Final report. AIMS/CSIRO/QM/QDPI CRC Reef Research Task. CSIRO Marine and Atmospheric Research. Cleveland, Qld, Australia.

Porzio, L., Buia, M. C., and Hall-Spencer, J. M. (2011). Effects of ocean acidification on macroalgal communities. Journal of Experimental Marine Biology and Ecology 400, 278–287.
Effects of ocean acidification on macroalgal communities.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3MXltFymu70%3D&md5=344d51c21b91cf7c8cc713c3d6f059f6CAS |

Potin, P., Floc’h, J. Y., Augris, C., and Cabioch, J. (1990). Annual growth rate of the calcareous red alga Lithothamnion corallioides (Corallinales, Rhodophyta) in the Bay of Brest, France. Hydrobiologia 204–205, 263–267.
Annual growth rate of the calcareous red alga Lithothamnion corallioides (Corallinales, Rhodophyta) in the Bay of Brest, France.Crossref | GoogleScholarGoogle Scholar |

Richards, Z. T., Bryce, M., and Bryce, C. (2013). New records of atypical coral reef habitat in the Kimberley, Australia. Journal of Marine Biology 2013, 1–8.
New records of atypical coral reef habitat in the Kimberley, Australia.Crossref | GoogleScholarGoogle Scholar |

Richardson, L., Mathews, E., and Heap, A. (2005). Geomorphology and Sedimentology of the South Western Planning Area of Australia: review and synthesis of relevant literature in support of Regional Marine Planning. Record 2005(17). Geoscience Australia, Canberra.

Riosmena-Rodríguez, R., Woelkerling, W., and Foster, M. S. (1999). Taxonomic reassessment of rhodolith-forming species of Lithophyllum (Corallinales, Rhodophyta) in the Gulf of California, Mexico. Phycologia 38, 401–417.
Taxonomic reassessment of rhodolith-forming species of Lithophyllum (Corallinales, Rhodophyta) in the Gulf of California, Mexico.Crossref | GoogleScholarGoogle Scholar |

Rivera, M. G., Riosmena-Rodríguez, R., and Foster, M. S. (2004). Age and growth of Lithothamnion muelleri (Corallinales, Rhodophyta) in the southwestern Gulf of California, Mexico. Ciencias Marinas 30, 235–249.

Ryan, D. A., Brooke, B. P., Collins, L. B., Kendrick, G. A., Baxter, K. J., Bickers, A. N., Siwabessy, P. J. W., and Pattiaratchi, C. B. (2007). The influence of geomorphology and sedimentary processes on shallow-water benthic habitat distribution: Esperance Bay, Western Australia. Estuarine, Coastal and Shelf Science 72, 379–386.
The influence of geomorphology and sedimentary processes on shallow-water benthic habitat distribution: Esperance Bay, Western Australia.Crossref | GoogleScholarGoogle Scholar |

Ryan, D. A., Brooke, B. P., Collins, L. B., Spooner, M. I., Siwabessy, P. J. W., and Pattiaratchi, C. B. (2008). Formation, morphology and preservation of a high-energy carbonate lithofacies: evolution of the cool-water Recherche Archipelago inner shelf, south-western Australia. Sedimentary Geology 207, 41–55.
Formation, morphology and preservation of a high-energy carbonate lithofacies: evolution of the cool-water Recherche Archipelago inner shelf, south-western Australia.Crossref | GoogleScholarGoogle Scholar |

Scientific Working Group (2011). ‘The Vulnerability of Coastal and Marine Habitats in South Australia.’ (Marine Parks, Department of Environment, Water and Natural Resources: Adelaide, SA.)

Shepherd, S. A. (2011) Rhodolith habitats. In ‘The Vulnerability of Coastal and Marine Habitats in South Australia’. (Ed. Marine Parks Scientific Working Group.) pp. 51–58. (Marine Parks, Department of Environment, Water and Natural Resources: Adelaide, SA.)

Shepherd, S. A., and Edgar, G. (2013). ‘Ecology of Australian Temperate Reefs.’ (CSIRO Publishing: Melbourne.)

Steller, D. L., and Caceres-Martinez, C. (2009). Coralline algal rhodoliths enhance larval settlement and early growth of the Pacific calico scallop Argopecten ventricosus. Marine Ecology Progress Series 396, 49–60.
Coralline algal rhodoliths enhance larval settlement and early growth of the Pacific calico scallop Argopecten ventricosus.Crossref | GoogleScholarGoogle Scholar |

Steller, D. L., Riosmena-Rodríguez, R., Foster, M. S., and Roberts, C. A. (2003). Rhodolith bed diversity in the Gulf of California: the importance of rhodolith structure and consequences of disturbance. Aquatic Conservation: Marine and Freshwater Ecosystems 13, S5–S20.
Rhodolith bed diversity in the Gulf of California: the importance of rhodolith structure and consequences of disturbance.Crossref | GoogleScholarGoogle Scholar |

Steller, D. L., Foster, M., and Riosmena-Rodriguez, R. (2007). Section 21. Sampling and monitoring rhodolith beds. In ‘Sampling Biodiversity in Coastal Communities. NaGISA Protocols for Seagrass and Macroalgal Habitats’. (Eds P.R. Rigby, K. Lken and Y. Shirayama.) pp. 93–97. (Kyoto University Press: Japan; and NUS Press: Singapore.)

Steneck, R. S. (1986). The ecology of coralline algal crusts: convergent patterns and adaptive strategies. Annual Review of Ecology and Systematics 17, 273–303.
The ecology of coralline algal crusts: convergent patterns and adaptive strategies.Crossref | GoogleScholarGoogle Scholar |

Svane, I., Hammett, Z., and Lauer, P. (2009). Impacts of trawling on benthic macro-fauna and -flora of the Spencer Gulf prawn fishing grounds. Estuarine, Coastal and Shelf Science 82, 621–631.
Impacts of trawling on benthic macro-fauna and -flora of the Spencer Gulf prawn fishing grounds.Crossref | GoogleScholarGoogle Scholar |

Tanner, J. E. (2005). Three decades of habitat change in Gulf St Vincent, South Australia. Transactions of the Royal Society of South Australia 129, 65–73.

Teichert, S. (2014). Hollow rhodoliths increase Svalbard’ shelf biodiversity. Scientific Reports 4, 6972.
Hollow rhodoliths increase Svalbard’ shelf biodiversity.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC2cXhvFeisbfE&md5=09b0395e352d46b3948bc8fdb9ac66b7CAS | 25382656PubMed |

Tompkins, P. A. (2011). Distribution, growth, and disturbance of Catalina Island rhodolith. M.Sc. Thesis, paper 4077. San Jose State University, San Jose, CA. Available at http://scholarworks.sjsu.edu/etd_theses/4077 [Verified 11 March 2016].

Townsend, R. A., Woelkerling, W. J., Harvey, A. S., and Borowitzka, M. (1995). An account of the red algal genus Sporolithon (Sporolithaceae, Corallinales) in southern Australia. Australian Systematic Botany 8, 85–121.
An account of the red algal genus Sporolithon (Sporolithaceae, Corallinales) in southern Australia.Crossref | GoogleScholarGoogle Scholar |

Walker, D. I., and Woelkerling, W. J. (1988). Quantitative study of sediment contribution by epiphytic coralline red algae in seagrass meadows in Shark Bay, Western Australia. Marine Ecology Progress Series 43, 71–77.
Quantitative study of sediment contribution by epiphytic coralline red algae in seagrass meadows in Shark Bay, Western Australia.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaL1cXit1Knsb0%3D&md5=1236d5b397c1a4a8ffbcdae186116d1aCAS |

Walker, D. I., Lukatelich, R. J., Bastyan, G., and McComb, A. J. (1989). Effects of boat moorings on seagrass beds near Perth, Western Australia. Aquatic Botany 36, 69–77.
Effects of boat moorings on seagrass beds near Perth, Western Australia.Crossref | GoogleScholarGoogle Scholar |

Ward, T. M., Sorokin, S. J., Rogers, P. J., McLeay, L. M., and Turner, D. J. (2003). ‘Benthic Protection Zone of the Great Australian Bight Marine Park: 3 Pilot Study for Performance Assessment.’ (South Australian Research and Development Institute: Adelaide.)

Webster, J. M., and Davies, P. J. (2003). Coral variation in two deep drill cores: significance for the Pleistocene development of the Great Barrier Reef. Sedimentary Geology 159, 61–80.
Coral variation in two deep drill cores: significance for the Pleistocene development of the Great Barrier Reef.Crossref | GoogleScholarGoogle Scholar |

Webster, N. S., Uthicke, S., Botte, E. S., Flores, F., and Negri, A. P. (2013). Ocean acidification reduces induction of coral settlement by crustose coralline algae. Global Change Biology 19, 303–315.
Ocean acidification reduces induction of coral settlement by crustose coralline algae.Crossref | GoogleScholarGoogle Scholar | 23504741PubMed |

Wilson, B., and Blake, S. (2011). Notes on the origins and biogeomorphology of Montgomery Reef, Kimberley, Western Australia. Journal of the Royal Society of Western Australia 94, 107–119.

Wilson, S., Blake, C., Berges, J. A., and Maggs, C. A. (2004). Environmental tolerances of free-living coralline algae (maerl): implications for European marine conservation. Biological Conservation 120, 279–289.
Environmental tolerances of free-living coralline algae (maerl): implications for European marine conservation.Crossref | GoogleScholarGoogle Scholar |

Wilson, B., Blake, S., Ryan, D., and Hacker, J. (2011). Reconnaissance of species-rich coral reefs in a muddy, macro-tidal, enclosed embayment: Talbot Bay, Kimberley, Western Australia. Journal of the Royal Society of Western Australia 94, 251–265.

Woelkerling, W. J., and Campbell, S. J. (1992). An account of southern Australian species of Lithophyllum (Corallinaceae, Rhodophyta). Bulletin of the British Museum (Natural History) – Botany 22, 1–107.

Woelkerling, W. J., Irvine, L. M., and Harvey, A. S. (1993). Growth-forms in non-geniculate coralline red algae (Corallinales, Rhodophyta). Australian Systematic Botany 6, 277–293.
Growth-forms in non-geniculate coralline red algae (Corallinales, Rhodophyta).Crossref | GoogleScholarGoogle Scholar |

Womersley, H. B. S. (1996). ‘The Marine Benthic Flora of Southern Australia: Rhodophyta. Part IIIB. Gracilariales, Rhodymeniales, Corallinales and Bonnemaisoniales.’ (Australian Biological Resources Study: Canberra.)