Structure, dynamics and stability of a Mediterranean river food web
I. Peralta-Maraver A D , M. J. López-Rodríguez B and J. M. Tierno de Figueroa CA Department of Life Sciences, Roehampton University, Holybourne Avenue, SW15 4JJ, London, UK.
B Departamento de Ecología, Universidad de Granada, Campus Fuentenueva s/n, E-18071, Granada, Spain.
C Departamento de Zoología, Universidad de Granada, Campus Fuentenueva s/n, E-18071, Granada, Spain.
D Corresponding author. Email: nacho.peralta@roehampton.ac.uk
Marine and Freshwater Research 68(3) 484-495 https://doi.org/10.1071/MF15154
Submitted: 6 November 2014 Accepted: 15 February 2016 Published: 24 May 2016
Abstract
We present the results of a study of the food web of a Mediterranean river in the four seasons of the year. A high-resolution taxonomic description has been produced to characterise the different community components. We have also determined the trophic relationships among organisms by analysing their gut contents. From the network topology, we extracted several descriptors of structural complexity of the comunity in terms of number of nodes and links. We found a positive relationship between connectance and diversity (both biological and functional). Moreover, we developed and applied a quantitative approach to estimate the link strength, which showed that not all links constituting the network are equally important. In the present paper, we show that the strength of the food-web links vary over time, but there is a natural tendency to keep a small set of strong links throughout the year. However, the existence of two consecutive strong links is not common, meaning that trophic cascades are not promoted.
Additional keywords: biological diversity, freshwater, functional diversity, link density, macroinvertebrate community, nodes, omnivory, trophic web.
References
Allan, J. D., and Castillo, M. M. (2007). ‘Stream Ecology: Structure and Function of Running Waters’, 2nd edn. (Springer-Verlag: Dordrecht, Netherlands.)Allesina, S., and Pascual, M. (2008). Network structure, predator–prey modules, and stability in large food webs. Theoretical Ecology 1, 55–64.
| Network structure, predator–prey modules, and stability in large food webs.Crossref | GoogleScholarGoogle Scholar |
Anderson, N. H., and Cummins, K. W. (1979). Influences of diet on the life histories of aquatic insects. Journal of the Fisheries Board of Canada 36, 335–342.
| Influences of diet on the life histories of aquatic insects.Crossref | GoogleScholarGoogle Scholar |
Bascompte, J. (2009). Disentangling the web of life. Science 325, 416–419.
| Disentangling the web of life.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1MXovVCht7s%3D&md5=86efbe95fbf6de7af4e67cb16f69b207CAS | 19628856PubMed |
Bascompte, J., Melián, C. J., and Sala, E. (2005). Interaction strength combinations and the overfishing of a marine food web. Proceedings of the National Academy of Sciences of the United States of America 102, 5443–5447.
| Interaction strength combinations and the overfishing of a marine food web.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2MXjslaqsb0%3D&md5=8a6df0e0818d21bc54313ed61b07bc51CAS | 15802468PubMed |
Bello, C. L., and Alba-Tercedor, J. (2004). Efecto de la regulación de la cabecera del río Genil (Sierra Nevada, España) sobre la comunidad de macroinvertebrados acuáticos y la dieta larvaria de Rhyacophila nevada (Insecta: Trichoptera). Limnetica 23, 361–370.
Bello, C. L., and Cabrera, M. I. (1999). Uso de la técnica microhistológica de Cavender y Hansen en la identificación de insectos acuáticos. Boletín de Entomología Venezolana 14, 77–79.
Bo, T., Fenoglio, S., López-Rodríguez, M. J., and Tierno de Figueroa, J. M. (2008). Trophic behavior of two Perlidae species (Insecta, Plecoptera) in a river in southern Spain. International Review of Hydrobiology 93, 167–174.
| Trophic behavior of two Perlidae species (Insecta, Plecoptera) in a river in southern Spain.Crossref | GoogleScholarGoogle Scholar |
Bottová, K., Derka, T., Beracko, P., and Tierno de Figueroa, J. M. (2013). Life cycle, feeding and secondary production of Plecoptera community in a constant temperature stream in central Europe. Limnologica 43, 27–33.
| Life cycle, feeding and secondary production of Plecoptera community in a constant temperature stream in central Europe.Crossref | GoogleScholarGoogle Scholar |
Carpenter, S. R., and Kitchell, J. F. (1996). ‘The Trophic Cascade in Lakes.’ (Cambridge University Press: Cambridge, UK.)
Cohen, J. E., Beaver, R. A., Cousins, S. H., DeAngelis, D. L., Goldwasser, L., Heong, K. L., Holt, R. D., Kohn, A. J., Lawton, J. H., Martinez, N., O’Malley, R., Page, L. M., Patten, B. C., Pimm, S. L., Polis, G. A., Rejmánek, M., Schoener, T. W., Schoenly, K., Sprules, W. G., Teal, J. M., Ulanowicz, R. E., Warren, P. H., Wilbur, H. M., and Yodzis, P. (1993). Improving food webs. Ecology 74, 252–258.
| Improving food webs.Crossref | GoogleScholarGoogle Scholar |
Cummins, K. W., and Klug, M. J. (1979). Feeding ecology of stream invertebrates. Annual Review of Ecology and Systematics 10, 147–172.
| Feeding ecology of stream invertebrates.Crossref | GoogleScholarGoogle Scholar |
Dunne, J. A., Williams, R. J., and Martinez, N. D. (2002). Food-web structure and network theory: the role of connectance and size. Proceedings of the National Academy of Sciences of the United States of America 99, 12917–12922.
| Food-web structure and network theory: the role of connectance and size.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD38XnvFGht74%3D&md5=a98605411677d6a6522ba40df8d15bafCAS | 12235364PubMed |
Elton, C. S. (1927). ‘Animal Ecology.’ (Sidgwick & Jackson: London.)
Giller, P. S., and Malmqvist, B. (1998). ‘The Biology of Streams and Rivers.’ (Oxford University Press: Oxford, UK.)
Guimerà, R., Stouffer, D. B., Sales-Pardo, M., Leicht, E. A., Newman, M. E. J., and Amaral, L. A. N. (2010). Origin of compartmentalization in food webs. Ecology 91, 2941–2951.
| Origin of compartmentalization in food webs.Crossref | GoogleScholarGoogle Scholar | 21058554PubMed |
Hall, R. O., Likens, G. E., and Malcom, H. M. (2001). Trophic basis of invertebrate production in 2 streams at the Hubbard Brook Experimental Forest. Journal of the North American Benthological Society 20, 432–447.
| Trophic basis of invertebrate production in 2 streams at the Hubbard Brook Experimental Forest.Crossref | GoogleScholarGoogle Scholar |
Hooper, D. U., Chapin, F. S., Ewel, J. J., Hector, A., Inchausti, P., Lavorel, S., Lawton, J. H., Lodge, D. M., Loreau, M., Naeem, S., Schmid, B., Setälä, H., Symstad, A. J., Vandermeer, J., and Wardle, D. A. (2005). Effects of biodiversity on ecosystem functioning: a consensus of current knowledge. Ecological Monographs 75, 3–35.
| Effects of biodiversity on ecosystem functioning: a consensus of current knowledge.Crossref | GoogleScholarGoogle Scholar |
Hudson, L., Reuman, D., Emerson, R. (2015). Cheddar: analysis and visualisation of ecological communities. R package ver 0.1-630. Available at https://CRAN.R-project.org/web/packages/cheddar/index.html [Verified 12 May 2016].
Hurlbert, S. H. (1978). The measurement of niche overlap and some relatives. Ecology 59, 67–77.
| The measurement of niche overlap and some relatives.Crossref | GoogleScholarGoogle Scholar |
Huston, M. A. (1997). Hidden treatments in ecological experiments: re-evaluating the ecosystem function of biodiversity. Oecologia 110, 449–460.
| Hidden treatments in ecological experiments: re-evaluating the ecosystem function of biodiversity.Crossref | GoogleScholarGoogle Scholar |
Hynes, H. B. N. (1970). The ecology of stream insects. Annual Review of Entomology 15, 25–42.
| The ecology of stream insects.Crossref | GoogleScholarGoogle Scholar |
Krause, A. E., Frank, K. A., Mason, D. M., Ulanowicz, R. E., and Taylor, W. W. (2003). Compartments revealed in food-web structure. Nature 426, 282–285.
| Compartments revealed in food-web structure.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3sXptVOit74%3D&md5=ef3c75c94a93873d76c2cc45894318c6CAS | 14628050PubMed |
Lancaster, J., and Downes, B. J. (2013). ‘Aquatic Entomology.’ (Oxford University Press: Oxford, UK.)
Lancaster, J., Hildrew, A. G., and Townsend, C. R. (1990). Stream flow and predation effects on the spatial dynamics of benthic invertebrates. Hydrobiologia 203, 177–190.
| Stream flow and predation effects on the spatial dynamics of benthic invertebrates.Crossref | GoogleScholarGoogle Scholar |
Layer, K., Riede, J. O., Hildrew, A. G., and Woodward, G. (2010). Food web structure and stability in 20 streams across a wide ph gradient. Advances in Ecological Research 42, 265–299.
| Food web structure and stability in 20 streams across a wide ph gradient.Crossref | GoogleScholarGoogle Scholar |
May, R. M. (1972). Will a large complex system be stable? Nature 238, 413–414.
| Will a large complex system be stable?Crossref | GoogleScholarGoogle Scholar | 1:STN:280:DyaE383lvFSnsw%3D%3D&md5=5f5e54b0a79391f64a679572c917a7edCAS | 4559589PubMed |
Mayr, E. (1997). ‘This is Biology: the Science of the Living World.’ (Harvard University Press: Cambridge, MA, USA.)
McCann, K. S. (2000). The diversity–stability debate. Nature 405, 228–233.
| The diversity–stability debate.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3cXjsFyjs7k%3D&md5=11719df544cef6c3f7204410da4b8e22CAS | 10821283PubMed |
McCann, K., and Yodzis, P. (1998). On the stabilizing role of stage structure in piscene consumer–resource interactions. Theoretical Population Biology 54, 227–242.
| On the stabilizing role of stage structure in piscene consumer–resource interactions.Crossref | GoogleScholarGoogle Scholar | 1:STN:280:DyaK1M%2FpslChug%3D%3D&md5=c2a200cfd700d0bacb19b512de7d0988CAS | 9878602PubMed |
McCann, K., Hastings, A., and Huxel, G. R. (1998). Weak trophic interactions and the balance of nature. Nature 395, 794–798.
| Weak trophic interactions and the balance of nature.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK1cXmvFOmtrY%3D&md5=10250c111c4fe6729f5920c10516736bCAS |
McGrady-Steed, J., Harris, P. M., and Morin, P. J. (1997). Biodiversity regulates ecosystem predictability. Nature 390, 162–165.
| Biodiversity regulates ecosystem predictability.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK2sXnsVOhtb8%3D&md5=fd8e31e8f30f51d13f986c697f5a966bCAS |
Merritt, R. W., and Cummins, K. W. (Eds) (1996). ‘An Introduction to the Aquatic Insects of North America.’ (Kendall Hunt: Dubuque, IA, USA.)
Montoya, J. M., Pimm, S. L., and Solé, R. V. (2006). Ecological networks and their fragility. Nature 442, 259–264.
| Ecological networks and their fragility.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD28XmvF2jsrc%3D&md5=758bce8c2f555521aff9d74f0f047869CAS | 16855581PubMed |
Moore, J. C., and de Ruiter, P. C. (2012). ‘Energetic Food Webs. An Analysis of Real and Model Ecosystems.’ (Oxford University Press: Oxford, UK.)
Naeem, S. (1998). Species redundancy and ecosystem reliability. Conservation Biology 12, 39–45.
| Species redundancy and ecosystem reliability.Crossref | GoogleScholarGoogle Scholar |
Naeem, S., and Li, S. (1997). Biodiversity enhances ecosystem reliability. Nature 390, 507–509.
| Biodiversity enhances ecosystem reliability.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK2sXnvF2gur4%3D&md5=ba25cc657996e834e481d07cf54821feCAS |
Neutel, A. M., Heesterbeek, J. A., and de Ruiter, P. C. (2002). Stability in real food webs: weak links in long loops. Science 296, 1120–1123.
| Stability in real food webs: weak links in long loops.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD38Xjslamtr4%3D&md5=0b05a66b9d6a969e84c081024615f1baCAS | 12004131PubMed |
Neutel, A. M., Heesterbeek, J. A., van de Koppel, J., Hoenderboom, G., Vos, A., Kaldeway, C., Berendse, F., and de Routier, P. C. (2007). Reconciling complexity with stability in naturally assembling food webs. Nature 449, 599–602.
| Reconciling complexity with stability in naturally assembling food webs.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2sXhtFagtL7M&md5=1719532ed4b1773a8301bd6909878fd8CAS | 17914396PubMed |
O’Gorman, E. J., and Emmerson, M. C. (2009). Perturbations to trophic interactions and the stability of complex food webs. Proceedings of the National Academy of Sciences of the United States of America 106, 13 393–13 398.
| Perturbations to trophic interactions and the stability of complex food webs.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1MXhtVOitr3O&md5=b3a2123da2f8cbc8c204c9e041e8dd0fCAS |
Oksanen, J., Guillaume Blanchet, F., Kindt, R., Legendre, P., Minchin, P. R., O’Hara, R. B., Simpson, G. L., Solymos, P., Stevens, M. H. H., and Wagner, H. (2013). Vegan: community ecology package. R package, ver. 2.0-10. Available at http://CRAN.R-project.org/package=vegan [Verified 5 April 2016].
Pace, M. L., Cole, J. J., Carpenter, S. R., and Kitchell, J. F. (1999). Trophic cascades revealed in diverse ecosystems. Trends in Ecology & Evolution 14, 483–488.
| Trophic cascades revealed in diverse ecosystems.Crossref | GoogleScholarGoogle Scholar |
Peralta-Maraver, I., López-Rodríguez, M. J., Fenoglio, S., Bo, T., Luzón-Ortega, J. M., and Tierno de Figueroa, J. M. (2011). Macroinvertebrate colonization of two different tree species leaf packs (native vs. introduced) in a Mediterranean stream. Journal of Freshwater Ecology 26, 495–505.
Peralta-Maraver, I., López-Rodríguez, M. J., and Tierno de Figueroa, J. M. (2012). Life history of two aquatic insects in the Cacín stream (SE Spain): Leuctra geniculata (Plecoptera) and Serratella ignita (Ephemeroptera). Zoologica Baetica 23, 57–68.
Pimm, S. L. (1979). The structure of food webs. Theoretical Population Biology 16, 144–158.
| The structure of food webs.Crossref | GoogleScholarGoogle Scholar | 1:STN:280:DyaL3c7kvVCmsQ%3D%3D&md5=f7fd95e552870ca9e65f17161c61d350CAS | 538731PubMed |
Pimm, S. L. (1984). The complexity and stability of ecosystems. Nature 307, 321–326.
| The complexity and stability of ecosystems.Crossref | GoogleScholarGoogle Scholar |
Pimm, S. L., Lawton, J. H., and Cohen, J. E. (1991). Food web patterns and their consequences. Nature 350, 669–674.
| Food web patterns and their consequences.Crossref | GoogleScholarGoogle Scholar |
Polis, G. A. (1991). Complex trophic interactions in deserts: an empirical critique of food web theory. American Naturalist 138, 123–155.
| Complex trophic interactions in deserts: an empirical critique of food web theory.Crossref | GoogleScholarGoogle Scholar |
Sánchez-Carmona, R., Encina, L., Rodríguez-Ruiz, A., Rodríguez-Sánchez, M. V., and Granado-Lorencio, C. (2012). Food web structure in Mediterranean streams: exploring stabilizing forces in these ecosystems. Aquatic Ecology 46, 311–324.
| Food web structure in Mediterranean streams: exploring stabilizing forces in these ecosystems.Crossref | GoogleScholarGoogle Scholar |
Sánchez-Carmona, R., Rodríguez-Ruiz, A., Encina, L., Granado-Lorencio, C., and Rodríguez-Sánchez, M. (2013). Network structure of food webs in Mediterranean streams: a tool for conservation. Fundamental and Applied Limnology/Archiv für Hydrobiologie 183, 215–221.
| Network structure of food webs in Mediterranean streams: a tool for conservation. Crossref | GoogleScholarGoogle Scholar |
Stouffer, D. B., and Bascompte, J. (2011). Compartmentalization increases food-web persistence. Proceedings of the National Academy of Sciences of the United States of America 108, 3648–3652.
| Compartmentalization increases food-web persistence.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3MXivFKqsLg%3D&md5=875018db56d2c31995b33d6fac8cf482CAS | 21307311PubMed |
Strong, D. R. (1992). Are trophic cascades all wet? Differentiation and donor-control in speciose ecosystems. Ecology 73, 747–754.
| Are trophic cascades all wet? Differentiation and donor-control in speciose ecosystems.Crossref | GoogleScholarGoogle Scholar |
Tachet, H., Richoux, P., Bournaud, M., and Usseglio-Polatera, P. (2010). ‘Invertébrés d’eau douce. Systématique, biologie, écologie.’ (Centre National de la Recherche Scientifique éditions: Paris.)
Tavares-Cromar, A. F., and Williams, D. D. (1996). The importance of temporal resolution in food web analysis: evidence from a detritus-based stream. Ecological Monographs 66, 91–113.
| The importance of temporal resolution in food web analysis: evidence from a detritus-based stream.Crossref | GoogleScholarGoogle Scholar |
Teng, J., and McCann, K. S. (2004). Dynamics of compartmented and reticulate food webs in relation to energetic flows. American Naturalist 164, 85–100.
| Dynamics of compartmented and reticulate food webs in relation to energetic flows.Crossref | GoogleScholarGoogle Scholar | 15266373PubMed |
Thompson, R. M., and Starzomski, B. M. (2007). What does biodiversity actually do? A review for managers and policy makers. Biodiversity and Conservation 16, 1359–1378.
| What does biodiversity actually do? A review for managers and policy makers.Crossref | GoogleScholarGoogle Scholar |
Thompson, R. M., and Townsend, C. R. (2000). Is resolution the solution? The effect of taxonomic resolution on the calculated properties of three stream food webs. Freshwater Biology 44, 413–422.
| Is resolution the solution? The effect of taxonomic resolution on the calculated properties of three stream food webs.Crossref | GoogleScholarGoogle Scholar |
Thompson, R. M., and Townsend, C. R. (2005). Energy availability, spatial heterogeneity and ecosystem size predict food‐web structure in streams. Oikos 108, 137–148.
| Energy availability, spatial heterogeneity and ecosystem size predict food‐web structure in streams.Crossref | GoogleScholarGoogle Scholar |
Thompson, R. M., Dunne, J. A., and Woodward, G. (2012a). Freshwater food webs: towards a more fundamental understanding of biodiversity and community dynamics. Freshwater Biology 57, 1329–1341.
| Freshwater food webs: towards a more fundamental understanding of biodiversity and community dynamics.Crossref | GoogleScholarGoogle Scholar |
Thompson, R. M., Brose, U., Dunne, J. A., Hall, R. O., Hladyz, S., Kitching, R. L., Martinez, N. D., Rantala, H., Romanuk, T. N., Stouffer, D. B., and Tylianakis, J. M. (2012b). Food webs: reconciling the structure and function of biodiversity. Trends in Ecology & Evolution 27, 689–697.
| Food webs: reconciling the structure and function of biodiversity.Crossref | GoogleScholarGoogle Scholar |
Tilman, D., Knops, J., Wedin, D., Reich, P., Ritchie, M., and Siemann, E. (1997). The influence of functional diversity and composition on ecosystem processes. Science 277, 1300–1302.
| The influence of functional diversity and composition on ecosystem processes.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK2sXlslans7s%3D&md5=1f59c00fb9cfcedf1642720e50d20292CAS |
Ulanowicz, R. E. (2004). Quantitative methods for ecological network análisis. Computational Biology and Chemistry 28, 321–339.
| Quantitative methods for ecological network análisis.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2cXhtVejtLzL&md5=92b054bea5a594aab72e6cd728a9a48eCAS | 15556474PubMed |
Vannucchi, P. E., López-Rodríguez, M. J., Tierno de Figueroa, J. M., and Gaino, E. (2013). Structure and dynamics of a benthic trophic web in a Mediterranean seasonal stream. Journal of Limnology 72, 606–615.
| Structure and dynamics of a benthic trophic web in a Mediterranean seasonal stream.Crossref | GoogleScholarGoogle Scholar |
Vázquez, D. P., Melián, C. J., Williams, N. M., Blüthgen, N., Krasnov, B. R., and Poulin, R. (2007). Species abundance and asymmetric interaction strength in ecological networks. Oikos 116, 1120–1127.
| Species abundance and asymmetric interaction strength in ecological networks.Crossref | GoogleScholarGoogle Scholar |
Williams, R. J. (2010). ‘Network3D Software.’ (Microsoft Research: Cambridge, UK.)
Winemiller, K. O., Pianka, E. R., Vitt, L. J., and Joern, A. (2001). Food web laws or niche theory? Six independent empirical tests. American Naturalist 158, 193–199.
| Food web laws or niche theory? Six independent empirical tests.Crossref | GoogleScholarGoogle Scholar | 1:STN:280:DC%2BD1crjsVSqsA%3D%3D&md5=6071bc81aa9359d8852413f58e725062CAS | 18707347PubMed |
Yoon I. Williams R. J. Levine E. Yoon S. Dunne J. A. Martinez N. D. (2004 ).