Register      Login
Marine and Freshwater Research Marine and Freshwater Research Society
Advances in the aquatic sciences
RESEARCH ARTICLE

Algal composition and biomass in the tropical soda lake Chitu with focus on seasonal variability of Arthrospira fusiformis (Cyanophyta)

Tadesse Ogato A C , Demeke Kifle B and Brook Lemma B
+ Author Affiliations
- Author Affiliations

A Department of Biology, Debre Berhan University, PO Box 445, Debre Berhan, Ethiopia.

B Department of Zoological Sciences, Addis Ababa University, PO Box 1176, Addis Ababa, Ethiopia.

C Corresponding author. Email: tadesseogato@gmail.com

Marine and Freshwater Research 67(4) 483-491 https://doi.org/10.1071/MF14426
Submitted: 29 December 2014  Accepted: 25 March 2015   Published: 21 July 2015

Abstract

The vital ecological functions of the East African soda lakes are much dependent on Arthrospira, which forms a natural nearly monoalgal populations and serves as the main diet for the huge flocks of flamingos in the present study lake Chitu (Ethiopia). This study investigated algal taxonomic composition and biomass, and the seasonal variability in the abundance of Arthrospira fusiformis in response to some environmental drivers (e.g. rainfall, salinity and nutrients) using samples collected over an annual cycle. The algal community was composed of a few taxa (15 species), with exclusive dominance of A. fusiformis. Chlorophyll-a (Chl-a) and dry weight, and abundance of A. fusiformis were notably high and exhibited seasonal variations, with significantly (P < 0.05) higher levels of Chl-a and dry weight during the rainy season. The observed strong correlations of algal abundance and biomass with rainfall (positively) and alkalinity-salinity (negatively), probably suggest that hydrological control of the salinity is the major driving force for the seasonal variability of A. fusiformis in the lake. Further hydrological modifications that enhance salinisation may greatly affect A. fusiformis thereby causing instability of the flamingos with eventual impairment of the ecosystem values of the lake.

Additional keywords: anoxic, crater lake, flamingo, phytoplankton, salinity, Spirulina.


References

American Public Health Association (APHA), American Water Works Association (AWWA), and Water Environment Federation (WEF) (1995). ‘Standard Methods’, 19th edn. (APHA: Washington, DC.)

American Public Health Association (APHA), American Water Works Association (AWWA), and Water Environment Federation (WEF) (1999). ‘Standard Methods for the Examination of Water and Waste Water’, 20th edn. (APHA: Washington, DC.)

Ayenew, T., and Legesse, D. (2007). The changing face of the Ethiopian rift lakes and their environs: call of the time. Lakes and Reservoirs: Research and Management 12, 149–165.
The changing face of the Ethiopian rift lakes and their environs: call of the time.Crossref | GoogleScholarGoogle Scholar |

Ballot, A., Krienitz, L., Kotut, K., Wiegand, C., Metcalf, S. J., Codd, A. G., and Pflugmacher, S. (2004). Cyanobacteria and cyanobacterial toxins in three alkaline rift valley lakes of Kenya – Lakes Bogoria, Nakuru and Elmenteita. Journal of Plankton Research 26, 925–935.
Cyanobacteria and cyanobacterial toxins in three alkaline rift valley lakes of Kenya – Lakes Bogoria, Nakuru and Elmenteita.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2cXmtF2ntLY%3D&md5=9be086a4664d27539c99d6d62a88069eCAS |

Baumann, A., Forstner, U., and Rohde, R. (1975). Lake Shala: water chemistry, mineralogy and geochemistry of sediments in an Ethiopian Rift Lake. Geologische Rundschau 64, 593–609.
Lake Shala: water chemistry, mineralogy and geochemistry of sediments in an Ethiopian Rift Lake.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaE28XitVGjtg%3D%3D&md5=bb3088862a4bfb3620ce11be29bc1b34CAS |

Baxter, R. M., Presser, M. V., Talling, J. F., and Wood, R. B. (1965). Stratification in tropical African lakes at moderate altitudes (1500–2000). Limnology and Oceanography 10, 510–520.
Stratification in tropical African lakes at moderate altitudes (1500–2000).Crossref | GoogleScholarGoogle Scholar |

Belay, A., and Ota, Y. (1993). Current knowledge on potential health benefits of Spirulina. Journal of Applied Physiology 5, 235–241.

Belay, A., Kato, T., and Ota, Y. (1996). Spirulina (Arthrospira): potential application as an animal feed supplement. Journal of Applied Phycology 8, 303–311.
Spirulina (Arthrospira): potential application as an animal feed supplement.Crossref | GoogleScholarGoogle Scholar |

Bellinger, E. G., and Sigee, D. C. (2010). ‘Freshwater Algae: Identification and Use as Bioindicators.’ (Wiley: Chichester, UK).

Boussiba, S. (1989). Ammonia uptake in the alkalophilic cyanobactrium Spirulina platensis. Plant & Cell Physiology 30, 303–308.
| 1:CAS:528:DyaL1MXhslSjtrg%3D&md5=19cbbda581b6f9d746dc55d9826b315dCAS |

Carini, S. A., and Joye, S. B. (2008). Nitrification in Mono Lake, California: activity and community composition during contrasting hydrological regimes. Limnology and Oceanography 53, 2546–2557.
Nitrification in Mono Lake, California: activity and community composition during contrasting hydrological regimes.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1cXhsVOgu7nI&md5=26d375360a56127dd60e650b580cf451CAS |

Carpenter, S. R., Lathrop, R. C., and Muñoz-del-Rio, A. (1993). Comparison of dynamic models for edible phytoplankton. Canadian Journal of Fisheries and Aquatic Sciences 50, 1757–1767.
Comparison of dynamic models for edible phytoplankton.Crossref | GoogleScholarGoogle Scholar |

Chen, F., Zhang, Y., and Guo, S. (1996). Growth and phycocyanin formation of Spirulina platensis in photoheterotrophic culture. Biotechnology Letters 18, 603–608.
Growth and phycocyanin formation of Spirulina platensis in photoheterotrophic culture.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK28XjsFaqsLw%3D&md5=ef0064a2c954fb0c9af4774aa46c871cCAS |

Edmondson, W. T., and Winberg, G. C. (1971). ‘A Manual on Methods for the Assessment of Secondary Productivity in Fresh Waters’, 1BP hand book 17. (Blackwell Scientific Publications: Oxford, UK.)

Gamachu, D. (1977). ‘Aspects of Climate and Water Budget in Ethiopia.’ (Addis Ababa University Press: Addis Ababa.)

Gasse, F. (1986). ‘East African Diatoms Taxonomy and Ecological Distributions.’ (Gebruder Borntraeger: Berlin.)

Grant, W. D. (2006). Alkaline environments and biodiversity. In ‘Extremophiles’. (Eds E. C. Gerday and N. Glansdorff.) (UNESCO, EOLSS Publishers: Oxford.)

Hötzel, G., and Croome, R. (1999). ‘A Phytoplankton Counting Methods Manual for Australian Freshwaters.’ (Land and Water Resource Research Development Corporation: Canberra.)

Jones, B. E., and Grant, W. D. (1999). Microbial diversity and ecology of the Soda Lakes of East Africa. In ‘Microbial Biosystems: New Frontiers. Proceedings of the 8th International Symposium for Microbial Ecology’, 9–14 August 1998, Halifax, NS, Canada. (Eds C. R. Bell, M. Brylinsky, and J. P. Johnson-Green.) pp. 681–687. (Antic Canada Society for Microbial Ecology: Halifax, NS, Canada.)

Jones, B. E., Grant, W. D., Collins, N. C., and Mwatha, W. C. (1994). Alkaliphiles: diversity and identification. In ‘Bacterial Diversity and Systematics’. (Eds F. G. Priest, A. Ramos-Cormenzana, and B. J. Tindall.) pp. 195–230. (Plenum Press: New York.)

Kaggwa, M. N., Gruber, M., Oduor, S. M., and Schagerl, M. (2013). Detailed time series assessment of the diet of Lesser Flamingos: further explanation for their itinerant behavior. Hydrobiologia 710, 83–93.
Detailed time series assessment of the diet of Lesser Flamingos: further explanation for their itinerant behavior.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3sXms1ygurw%3D&md5=ccc64547849dc33b9451eafcbc3b4ad4CAS |

Kalff, J. (2002). ‘Limnology: Inland Water Ecosystems.’ (Prentice-Hall Inc.: Trenton, NJ, USA.)

Kebede, E. (1996). Phytoplankton in a salinity-alkalinity series of lakes in the Ethiopian Rift valley. Ph.D. Thesis, Uppsala University, Uppsala.

Kebede, E. (1997). Response of Spirulina platensis (Arthrospira fusiformis) from Lake Chitu, Ethiopia, to salinity stress from sodium salts. Journal of Applied Phycology 9, 551–558.
| 1:CAS:528:DyaK1cXislantbc%3D&md5=bf88c87499a15d5d9726c91b23657781CAS |

Kebede, E., Zinabu, G.-M., and Ahlgren, I. (1994). The Ethiopian Rift Valley lakes: chemical characteristics of a salinity–alkalinity series. Hydrobiologia 288, 1–12.
The Ethiopian Rift Valley lakes: chemical characteristics of a salinity–alkalinity series.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK2MXhslGjs7Y%3D&md5=474a542e6d64186a1680e71fe4ce5396CAS |

Kirk, J. T. (1994). ‘Light and Photosynthesis in Aquatic Ecosystems.’ (Cambridge University Press: Cambridge, UK.)

Klemperer, S. L., and Cash, M. D. (2007). Temporal geochemical variation in Ethiopian Lakes Shala, Arenguade, Awasa, and Beseka: possible environmental impacts from underwater and borehole detonations. Journal of African Earth Sciences 48, 174–198.
Temporal geochemical variation in Ethiopian Lakes Shala, Arenguade, Awasa, and Beseka: possible environmental impacts from underwater and borehole detonations.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2sXmtVegt70%3D&md5=6fc2e40a47ab0ab3ae442ea37faf1305CAS |

Komárek, J., and Kling, H. J. (1991). Variation in six planktonic cyanophyte genera in Lake Victoria (East Africa). Algological Studies 61, 21–45.

Komárek, J., Kling, H. J., and Komárková, J. (2003). Filamentous cyanobacteria. In ‘Freshwater Algae of North America, Ecology and Classification’. (Eds D. J. Wehr and R. G. Sheath.) pp. 117–191. (Academic Press: Boston, MA, USA.)

Krienitz, L., and Kotut, K. (2010). Fluctuating algal food populations and the occurrence of Lesser Flamingos (Phoeniconaias minor) in three Kenyan Rift Valley lakes. Journal of Phycology 46, 1088–1096.
Fluctuating algal food populations and the occurrence of Lesser Flamingos (Phoeniconaias minor) in three Kenyan Rift Valley lakes.Crossref | GoogleScholarGoogle Scholar |

Krienitz, L., Dadheech, P. K., and Kotut, K. (2013). Mass development of a small sized ecotype of Arthrospira fusiformis in Lake Oloidien, Kenya, a new feeding ground for Lesser Flamingos in East Africa. Fottea 13, 215–225.
Mass development of a small sized ecotype of Arthrospira fusiformis in Lake Oloidien, Kenya, a new feeding ground for Lesser Flamingos in East Africa.Crossref | GoogleScholarGoogle Scholar |

Lanzén, A., Simachew, A., Gessesse, A., Chmolowsk, D., Jonassen, I., and Øvreås, L. (2013). Surprising prokaryotic and eukaryotic diversity, community structure and biogeography of Ethiopian soda lakes. PLoS One 8, e72577.
Surprising prokaryotic and eukaryotic diversity, community structure and biogeography of Ethiopian soda lakes.Crossref | GoogleScholarGoogle Scholar | 24023625PubMed |

Larned, S. T. (1998). Nitrogen- versus phosphorus-limited growth and sources of nutrients for coral reef algae. Marine Biology 132, 409–421.
Nitrogen- versus phosphorus-limited growth and sources of nutrients for coral reef algae.Crossref | GoogleScholarGoogle Scholar |

Mari, C., and Collar, N. (2000). ‘Pink Africa.’ (Harvill: London.)

Melack, J. M., Kilham, M. P., and Fisher, T. R. (1982). Responses of phytoplankton to experimental fertilization with ammonium and phosphate in an African soda lake. Oecologia 55, 1–6.

Miller, M. W., Hay, M. E., Miller, S. L., Sotka, E., and Szmant, A. M. (1999). Effects of nutrients versus herbivores on reef algae: a new method for manipulating nutrients on coral reefs. Limnology and Oceanography 44, 1847–1861.
Effects of nutrients versus herbivores on reef algae: a new method for manipulating nutrients on coral reefs.Crossref | GoogleScholarGoogle Scholar |

Mussagy, A. (2006). The cyanophyte Arthrospira fusiformis in African waters – ecophysiology and potential use in tropical aquaculture. Ph.D. Thesis, Lund University, Lund.

Oduor, S. O., and Schagerl, M. (2007). Temporal trend of ion contents and nutrients in three Kenyan rift valley saline-alkaline lakes and their influence on phytoplankton biomass. Hydrobiologia 584, 59–68.
Temporal trend of ion contents and nutrients in three Kenyan rift valley saline-alkaline lakes and their influence on phytoplankton biomass.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2sXlsVeqtLw%3D&md5=6d519339f5fe772e72db2de9cd2273cdCAS |

Ogato, T., Kifle, D., Fetahi, T., and Sitotaw, B. (2014). Evaluation of growth and biomass production of Arthrospira (Spirulina) fusiformis in laboratory cultures using waters from the Ethiopian soda lakes Chitu and Shala. Journal of Applied Phycology 26, 2273–2282.
Evaluation of growth and biomass production of Arthrospira (Spirulina) fusiformis in laboratory cultures using waters from the Ethiopian soda lakes Chitu and Shala.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC2cXhvFSnur7F&md5=3836f2919e45857072fffc461a11b2a9CAS |

Okoth, O. E., Mucai, M., Shivoga, W. A., Miller, S. N., Rasowo, J., and Ngugi, C. C. (2009). Spatial and seasonal variations in phytoplankton community structure in alkaline-saline lake Nakuru, Kenya. Lakes and Reservoirs: Research and Management 14, 57–69.
Spatial and seasonal variations in phytoplankton community structure in alkaline-saline lake Nakuru, Kenya.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1MXksVWgs7o%3D&md5=b587737887afbc367c979f21608aa3a0CAS |

Reynolds, C. E. (1987). Cyanobacterial water blooms. In ‘Advances in Botanical Research’. (Ed. J. Callow.) pp. 67–143. (Academic Press: London.)

Schagerl, M., and Oduor, S. O. (2008). Phytoplankton community relationship to environmental variables in three Kenyan Rift Valley saline–alkaline lakes. Marine and Freshwater Research 59, 125–136.
Phytoplankton community relationship to environmental variables in three Kenyan Rift Valley saline–alkaline lakes.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1cXisVWitL0%3D&md5=cc5f8db7d3571e05ab7ffbebd82e045fCAS |

Stoyneva, P. M., Descy, J.-P., and Vyverman, W. (2007). Green algae in Lake Tanganyika: is morphological variation a response to seasonal changes? Hydrobiologia 578, 7–16.
Green algae in Lake Tanganyika: is morphological variation a response to seasonal changes?Crossref | GoogleScholarGoogle Scholar |

Talling, J. F. (2001). Environmental controls on the functioning of shallow tropical lakes. Hydrobiologia 458, 1–8.
Environmental controls on the functioning of shallow tropical lakes.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD38XhtFKmtbc%3D&md5=4180a66595c7de59bfc8797c57ba8cbaCAS |

Talling, J. F., and Driver, D. (1963). Some problems in the estimation of chlorophyll-a in phytoplankton. In ‘Proceedings of the Conference of Primary Productivity Measurements in Marine and Freshwater’, 21 August–6 September 1961, Hawaii, HI, USA. (Ed. M. S. Doty.) US Atomic Energy Commission, Division of Technical Information TID-7633, pp. 142–146. (US Atomic Energy Commission: Hawaii, HI, USA.)

Talling, J. F., and Talling, I. B. (1965). The chemical composition of African lake waters. Internationale Revue der Gesamten Hydrobiologie 50, 421–463.
The chemical composition of African lake waters.Crossref | GoogleScholarGoogle Scholar |

Talling, J. F., Wood, R. B., Prosser, M. V., and Baxter, R. M. (1973). The upper limit of photosynthetic productivity by phytoplankton: evidence from Ethiopian soda lakes. Freshwater Biology 3, 53–76.
The upper limit of photosynthetic productivity by phytoplankton: evidence from Ethiopian soda lakes.Crossref | GoogleScholarGoogle Scholar |

Taylor, J. C., Harding, W. R., and Archibald, C. G. M. (2007). ‘A Methods Manual for the Collection, Preparation and Analysis of Diatom Samples, version 1.’ (Water Research Commission: Pretoria, South Africa.)

UNESCO (1983). Algorithms for Computation of Fundamental Properties of Seawater. UNESCO Technical Papers in Marine Science, issue 44, Rome.

Vareschi, E. (1982). The ecology of Lake Nakuru. III. Abiotic factors and primary production. Oecologia 55, 81–101.
The ecology of Lake Nakuru. III. Abiotic factors and primary production.Crossref | GoogleScholarGoogle Scholar |

Vareschi, E., and Vareschi, A. (1984). Ecology of Lake Nakuru (Kenya). IV. Biomass and distribution of consumer organisms. Oecologia 61, 70–82.
Ecology of Lake Nakuru (Kenya). IV. Biomass and distribution of consumer organisms.Crossref | GoogleScholarGoogle Scholar |

Vonshak, A., Guy, R., and Guy, M. (1988). The response of the filamentous cyanobacterium Spirulina platensis to salt stress. Archives of Microbiology 150, 417–420.
The response of the filamentous cyanobacterium Spirulina platensis to salt stress.Crossref | GoogleScholarGoogle Scholar |

Williams, W. D. (1998). Salinity as a determinant of the structure of biological communities in salt lakes. Hydrobiologia 381, 191–201.
Salinity as a determinant of the structure of biological communities in salt lakes.Crossref | GoogleScholarGoogle Scholar |

Wood, R. B., and Talling, J. F. (1988). Chemical and algal relationships in a salinity series of Ethiopian inland waters. Hydrobiologia 158, 29–67.
Chemical and algal relationships in a salinity series of Ethiopian inland waters.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaL1cXitV2ksLg%3D&md5=1bd0e22adf371f1217f95c6c7d22cec2CAS |

Zeng, M. T., and Vonshak, A. (1998). Adaptation of Spirulina platensis to salinity-stress. Comparative Biochemistry and Physiology. Part A, Molecular & Integrative Physiology 120, 113–118.
Adaptation of Spirulina platensis to salinity-stress.Crossref | GoogleScholarGoogle Scholar |

Zinabu, G.-M. (2002). The effect of wet and dry seasons on the concentrations of solutes and phytoplankton biomass in seven Ethiopian Rift Valley lakes. Limnologica 32, 169–179.
The effect of wet and dry seasons on the concentrations of solutes and phytoplankton biomass in seven Ethiopian Rift Valley lakes.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD38XntVejsLc%3D&md5=bf66109ab85c335f697b8dcdc878765dCAS |