Register      Login
Marine and Freshwater Research Marine and Freshwater Research Society
Advances in the aquatic sciences
RESEARCH ARTICLE

Range and habitat associations of the native macroalga Caulerpa filiformis in New South Wales, Australia

Tim M. Glasby A D , Peter. T. Gibson A , Gregory West A , Peter Davies B and Sofietje Voerman C
+ Author Affiliations
- Author Affiliations

A New South Wales Department of Primary Industries, Port Stephens Fisheries Institute, Locked Bag 1, Nelson Bay, NSW 2315 Australia.

B Office of Environment and Heritage, NSW Department of Premier and Cabinet, Sydney, NSW 2000, Australia.

C School of the Environment and Plant Functional Biology and Climate Change Cluster, University of Technology, Sydney, NSW 2007, Australia.

D Corresponding author. Email: tim.glasby@dpi.nsw.gov.au

Marine and Freshwater Research 66(11) 1018-1026 https://doi.org/10.1071/MF14282
Submitted: 12 September 2014  Accepted: 30 November 2014   Published: 9 April 2015

Abstract

Caulerpa filiformis is a green seaweed found in New South Wales (NSW, Australia), South Africa, Mozambique and Peru. It has been suggested that the abundance of the species has increased in NSW over recent decades. Extensive aerial and diver surveys identified a 500-km northerly extension to the range of C. filiformis in NSW (to 28°21′S) compared with previous records. The alga has a disjunct distribution with small isolated populations around rocky headlands in far northern NSW, but then no apparent populations for 350 km southwards. The far northern populations could be the result of recent human-mediated transport (a species introduction), or were simply not detected previously. The increased distribution around the previous northerly limit is likely a natural range expansion. The distribution of C. filiformis in NSW and globally seems confined to a temperature range of ~16–23°C. We found no relationship between abundance of C. filiformis and human population or oceanic chlorophyll-a (a surrogate for nutrient availability). We demonstrate that C. filiformis is predominately subtidal, being found along sections of coastline where there is a mixture of rocky reefs and beaches. It is argued that sand movement may have facilitated increases in abundance of C. filiformis.

Additional keywords: biogeography, Chlorophyta, distribution, seaweed, sedimentation, temperature.


References

Airoldi, L. (2003). The effects of sedimentation on rocky coastal assemblages. Oceanography and Marine Biology – an Annual Review 41, 161–236.

Airoldi, L., and Beck, M. W. (2007). Loss, status and trends for coastal marine habitats of Europe. Oceanography and Marine Biology – an Annual Review 45, 345–405.

Arrontes, J. (2002). Mechanisms of range expansion in the intertidal brown alga Fucus serratus in northern Spain. Marine Biology 141, 1059–1067.
Mechanisms of range expansion in the intertidal brown alga Fucus serratus in northern Spain.Crossref | GoogleScholarGoogle Scholar |

Australian Bureau of Statistics (2011). Data & Analysis: Quick Stats. Available at www.abs.gov.au/websitedbs/censushome.nsf/home/quickstats [Verified September 2012].

Balata, D., Piazzi, L., and Benedetti-Cecchi, L. (2007). Sediment disturbance and loss of beta diversity on subtidal rocky reefs. Ecology 88, 2455–2461.
Sediment disturbance and loss of beta diversity on subtidal rocky reefs.Crossref | GoogleScholarGoogle Scholar | 18027747PubMed |

Belleza, D. F. C., and Liao, L. M. (2007). Taxonomic inventory of the marine green algal genus Caulerpa (Chlorophyta, Bryopsidales) at the University of San Carlos (Cebu) herbarium. Philippine Scientist 44, 71–104.

Bolton, J. J., and Anderson, R. J. (1990). Correlations between intertidal seaweed community composition and sea water temperature patterns on a geographical scale. Botanica Marina 33, 447–457.
Correlations between intertidal seaweed community composition and sea water temperature patterns on a geographical scale.Crossref | GoogleScholarGoogle Scholar |

Bolton, J. J., Leliaert, F., De Clerck, O., Anderson, R. J., Stegenga, H., Engledow, H. E., and Coppejans, E. (2004). Where is the western limit of the tropical Indian Ocean seaweed flora? An analysis of intertidal seaweed biogeography on the east coast of South Africa. Marine Biology 144, 51–59.
Where is the western limit of the tropical Indian Ocean seaweed flora? An analysis of intertidal seaweed biogeography on the east coast of South Africa.Crossref | GoogleScholarGoogle Scholar |

Carey, M. P., Sanderson, B. L., Barnas, K. A., and Olden, J. D. (2012). Native invaders – challenges for science, management, policy, and society. Frontiers in Ecology and the Environment 10, 373–381.
Native invaders – challenges for science, management, policy, and society.Crossref | GoogleScholarGoogle Scholar |

Chisholm, J. R. M., Dauga, C., Ageron, E., Grimont, P. A. D., and Jaubert, J. M. (1996). ‘Roots’ in mixotrophic algae. Nature 381, 382.
‘Roots’ in mixotrophic algae.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK28XjsVWgsLg%3D&md5=54343cab32315fc7bdcbf2852e12c3baCAS |

Coleman, M. A., Kelaher, B. P., Steinberg, P. D., and Millar, A. (2008). Absence of a large brown macroalga on urbanized rocky reefs around Sydney, Australia, and evidence for historical decline. Journal of Phycology 44, 897–901.
Absence of a large brown macroalga on urbanized rocky reefs around Sydney, Australia, and evidence for historical decline.Crossref | GoogleScholarGoogle Scholar |

Connell, S. D., Russell, B. D., Turner, D. J., Shepherd, S. A., Kildea, T., Miller, D., Airoldi, L., and Cheshire, A. (2008). Recovering a lost baseline: missing kelp forests from a metropolitan coast. Marine Ecology Progress Series 360, 63–72.
Recovering a lost baseline: missing kelp forests from a metropolitan coast.Crossref | GoogleScholarGoogle Scholar |

Coppejans, E., Leliaert, F., and Verbruggen, H. (2005). Green Algae. Chlorophyceae. In ‘Guide to the seaweeds of KwaZulu-Natal. Scripta Botanica Belgica, Vol. 33’. (Eds O. De Clerck, J. J. Bolton, R. J. Anderson, and E. Coppejans.) pp. 39–93. (National Botanic Garden of Belgium: Meise.)

Cummings, D. O., and Williamson, J. E. (2008). The role of herbivory and fouling on the invasive green alga Caulerpa filiformis in temperate Australian waters. Marine and Freshwater Research 59, 279–290.
The role of herbivory and fouling on the invasive green alga Caulerpa filiformis in temperate Australian waters.Crossref | GoogleScholarGoogle Scholar |

D’Antonio, C. M. (1986). Role of sand in the domination of hard substrata by the intertidal alga Rhodomela larix. Marine Ecology Progress Series 27, 263–275.
Role of sand in the domination of hard substrata by the intertidal alga Rhodomela larix.Crossref | GoogleScholarGoogle Scholar |

Davis, A. R., Benkendorff, K., and Ward, D. W. (2005). Response of common SE Australian herbivores to three suspected invasive Caulerpa spp. Marine Biology 146, 859–868.
Response of common SE Australian herbivores to three suspected invasive Caulerpa spp.Crossref | GoogleScholarGoogle Scholar |

Dowdy, A. J., Mills, G. A., Timbal, B., and Wang, Y. (2014). Fewer large waves projected for eastern Australia due to decreasing storminess. Nature Climate Change 4, 283–286.
Fewer large waves projected for eastern Australia due to decreasing storminess.Crossref | GoogleScholarGoogle Scholar |

Engledow, H. R., and Bolton, J. J. (1994). Seaweed α-diversity within the lower eulittoral zone in Namibia: the effects of wave action, sand inundation, mussels and limpets. Botanica Marina 37, 267–276.
Seaweed α-diversity within the lower eulittoral zone in Namibia: the effects of wave action, sand inundation, mussels and limpets.Crossref | GoogleScholarGoogle Scholar |

Gaston, K. J. (2009). Geographic range limits: achieving synthesis. Proceedings. Biological Sciences 276, 1395–1406.
Geographic range limits: achieving synthesis.Crossref | GoogleScholarGoogle Scholar |

Glasby, T. M. (2013). Caulerpa taxifolia in seagrass meadows: killer or opportunistic weed? Biological Invasions 15, 1017–1035.
Caulerpa taxifolia in seagrass meadows: killer or opportunistic weed?Crossref | GoogleScholarGoogle Scholar |

Glasby, T. M., Gibson, P. T., and Kay, S. (2005). Tolerance of the invasive alga Caulerpa taxifolia to burial by sediment. Aquatic Botany 82, 71–81.
Tolerance of the invasive alga Caulerpa taxifolia to burial by sediment.Crossref | GoogleScholarGoogle Scholar |

Goodwin, I. D., Stables, M. A., and Olley, J. M. (2006). Wave climate, sand budget and shoreline alignment evolution of the Iluka–Woody Bay sand barrier, northern New South Wales, Australia, since 3000 yr BP. Marine Geology 226, 127–144.
Wave climate, sand budget and shoreline alignment evolution of the Iluka–Woody Bay sand barrier, northern New South Wales, Australia, since 3000 yr BP.Crossref | GoogleScholarGoogle Scholar |

Harley, C. D. G., Anderson, K. M., Demes, K. W., Jorve, J. P., Kordas, R. L., Coyle, T. A., and Graham, M. H. (2012). Effects of climate change on global seaweed communities. Journal of Phycology 48, 1064–1078.
Effects of climate change on global seaweed communities.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC38XhvVSnt7jK&md5=16bf39b19dbbe2b1cbfe73943578929bCAS |

Khou, M., Paul, N. A., Wright, J. T., and Steinberg, P. D. (2007). Intrinsic factors influence the attachment of fragments of the green alga Caulerpa filiformis. Journal of Experimental Marine Biology and Ecology 352, 331–342.
Intrinsic factors influence the attachment of fragments of the green alga Caulerpa filiformis.Crossref | GoogleScholarGoogle Scholar |

Klemas, V. (2011). Remote sensing techniques for studying coastal ecosystems: an overview. Journal of Coastal Research 27, 2–17.
Remote sensing techniques for studying coastal ecosystems: an overview.Crossref | GoogleScholarGoogle Scholar |

Kohler, K. E., and Gill, S. M. (2006). Coral Point Count with Excel extensions (CPCe): a visual basic program for the determination of coral and substrate coverage using random point count methodology. Computers & Geosciences 32, 1259–1269.
Coral Point Count with Excel extensions (CPCe): a visual basic program for the determination of coral and substrate coverage using random point count methodology.Crossref | GoogleScholarGoogle Scholar |

Leliaert, F., Anderson, R. J., Bolton, J. J., and Coppejans, E. (2000). Subtidal understorey algal community structure in kelp beds around the Cape Peninsula (Western Cape, South Africa). Botanica Marina 43, 359–366.
Subtidal understorey algal community structure in kelp beds around the Cape Peninsula (Western Cape, South Africa).Crossref | GoogleScholarGoogle Scholar |

Lima, F. P., Ribeiro, P. A., Queiroz, N., Hawkins, S. J., and Santos, A. M. (2007). Do distributional shifts of northern and southern species of algae match the warming pattern? Global Change Biology 13, 2592–2604.
Do distributional shifts of northern and southern species of algae match the warming pattern?Crossref | GoogleScholarGoogle Scholar |

Littler, M. M., Martz, D. R., and Littler, D. S. (1983). Effects of recurrent sand deposition on rocky intertidal organisms: importance of substrate heterogeneity in a fluctuating environment. Marine Ecology Progress Series 11, 129–139.
Effects of recurrent sand deposition on rocky intertidal organisms: importance of substrate heterogeneity in a fluctuating environment.Crossref | GoogleScholarGoogle Scholar |

Lucas, A. H. S. (1927). Notes on Australian marine algae. V. Proceedings of the Linnean Society of New South Wales 52, 555–570.

Maritorena, S., Siegel, D., and Peterson, A. (2002). Optimization of a semianalytical ocean color model for global-scale applications. Applied Optics 41, 2705–2714.
Optimization of a semianalytical ocean color model for global-scale applications.Crossref | GoogleScholarGoogle Scholar | 12027157PubMed |

May, V. (1976). Changing dominance of an algal species (Caulerpa filiformis (Suhr) Hering). Telopea 1, 136–138.

Mead, A., Griffiths, C. L., Branch, G. M., McQuaid, C. D., Blamey, L. K., Bolton, J. J., Anderson, R. J., Dufois, F., Rouault, M., Froneman, P. W., Whitfield, A. K., Harris, L. R., Nel, R., Pillay, D., and Adams, J. B. (2013). Human-mediated drivers of change – impacts on coastal ecosystems and marine biota of South Africa. African Journal of Marine Science 35, 403–425.
Human-mediated drivers of change – impacts on coastal ecosystems and marine biota of South Africa.Crossref | GoogleScholarGoogle Scholar |

Millar, A. J. K. (2007). The Flindersian and Peronian Provinces. In ‘Algae of Australia: Introduction’. (Eds P. M. McCarthy and A. E. Orchard.) pp. 554–559. (CSIRO Publishing: Melbourne.)

Millar, A. K., and Kraft, G. T. (1994). Catalogue of marine benthic algae (Chlorophyta) of New South Wales, including Lord Howe Island, south-western Pacific. Australian Systematic Botany 7, 419–453.
Catalogue of marine benthic algae (Chlorophyta) of New South Wales, including Lord Howe Island, south-western Pacific.Crossref | GoogleScholarGoogle Scholar |

Phillips, J. A., and Blackshaw, J. K. (2011). Extirpation of macroalgae (Sargassum spp.) on the subtropical east Australian coast. Conservation Biology 25, 913–921.
Extirpation of macroalgae (Sargassum spp.) on the subtropical east Australian coast.Crossref | GoogleScholarGoogle Scholar | 21902718PubMed |

Piazzi, L., Balata, D., Foresi, L., Cristaudo, C., and Cinelli, F. (2007). Sediment as a constituent of Mediterranean benthic communities dominated by Caulerpa racemosa var. cylindracea. Scientia Marina 71, 129–135.
Sediment as a constituent of Mediterranean benthic communities dominated by Caulerpa racemosa var. cylindracea.Crossref | GoogleScholarGoogle Scholar |

Pillmann, A., Woolcott, G. W., Olsen, J. L., Stam, W. T., and King, R. J. (1997). Inter- and intraspecific genetic variation in Caulerpa (Chlorophyta) based on nuclear rDNA ITS sequences. European Journal of Phycology 32, 379–386.
Inter- and intraspecific genetic variation in Caulerpa (Chlorophyta) based on nuclear rDNA ITS sequences.Crossref | GoogleScholarGoogle Scholar |

Rabalais, N. N. (2002). Nitrogen in aquatic ecosystems. Ambio 31, 102–112.
| 12077998PubMed |

Ramírez, M. E., and Santelices, B. (1991). ‘Catálogo de las algas marinas bentónicas de la costa temperada del Pacífico de Sudamérica. Monografías Biológicas, Vol. 5.’ (Pontificia Universidad Católica de Chile: Santiago.)

Roughan, M., Macdonald, H. S., Baird, M. E., and Glasby, T. M. (2011). Modelling coastal connectivity in a western boundary current: seasonal and inter-annual variability. Deep-sea Research. Part II, Topical Studies in Oceanography 58, 628–644.
Modelling coastal connectivity in a western boundary current: seasonal and inter-annual variability.Crossref | GoogleScholarGoogle Scholar |

Sánchez-Moyano, J. E., García-Asencio, I., and García-Gómez, J. C. (2007). Effects of temporal variation of the seaweed Caulerpa prolifera cover on the associated crustacean community. Marine Ecology (Berlin) 28, 324–337.
Effects of temporal variation of the seaweed Caulerpa prolifera cover on the associated crustacean community.Crossref | GoogleScholarGoogle Scholar |

Smale, D. A., and Wernberg, T. (2013). Extreme climatic event drives range contraction of a habitat-forming species. Proceedings of the Royal Society B: Biological Sciences 280, .
Extreme climatic event drives range contraction of a habitat-forming species.Crossref | GoogleScholarGoogle Scholar | 23325774PubMed |

Sorte, C. J. B., Williams, S. L., and Carlton, J. T. (2010). Marine range shifts and species introductions: comparative spread rates and community impacts. Global Ecology and Biogeography 19, 303–316.
Marine range shifts and species introductions: comparative spread rates and community impacts.Crossref | GoogleScholarGoogle Scholar |

West, E. J., Barnes, P. B., Wright, J. T., and Davis, A. R. (2007). Anchors aweigh: fragment generation of invasive Caulerpa taxifolia by boat anchors and its resistance to desiccation. Aquatic Botany 87, 196–202.
Anchors aweigh: fragment generation of invasive Caulerpa taxifolia by boat anchors and its resistance to desiccation.Crossref | GoogleScholarGoogle Scholar |

Williams, S. L. (1984). Uptake of sediment ammonium and translocation in a marine green macroalga Caulerpa cupressoides. Limnology and Oceanography 29, 374–379.
Uptake of sediment ammonium and translocation in a marine green macroalga Caulerpa cupressoides.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaL2cXitVKmtLY%3D&md5=74b20a4f6f2a365068da8c94a7e4b234CAS |

Williams, S. L., and Smith, J. E. (2007). A global review of the distribution, taxonomy, and impacts of introduced seaweeds. Annual Review of Ecology Evolution and Systematics 38, 327–359.
A global review of the distribution, taxonomy, and impacts of introduced seaweeds.Crossref | GoogleScholarGoogle Scholar |

Williams, S. L., Breda, V. A., Anderson, T. W., and Nyden, B. B. (1985). Growth and sediment disturbances of Caulerpa spp. (Chlorophyta) in a submarine canyon. Marine Ecology Progress Series 21, 275–281.
Growth and sediment disturbances of Caulerpa spp. (Chlorophyta) in a submarine canyon.Crossref | GoogleScholarGoogle Scholar |

Zhang, D., Glasby, T. M., Ralph, P. J., and Gribben, P. E. (2014). Mechanisms influencing the spread of a native marine alga. PLoS ONE 9, e94647.
Mechanisms influencing the spread of a native marine alga.Crossref | GoogleScholarGoogle Scholar | 24722520PubMed |