Barcoding deep-water chondrichthyans from mainland Portugal
T. Moura A C , M. C. Silva B and I. Figueiredo AA Divisão de Modelação e Gestão de Recursos da Pesca, Instituto Português do Mar e da Atmosfera, Avenida Brasília, PT-1449-006 Lisbon, Portugal.
B Centro de Biologia Ambiental, Faculdade de Ciências, Universidade de Lisboa, PT-1749-016 Lisboa, Portugal.
C Corresponding author. Email: tmoura@ipma.pt
Marine and Freshwater Research 66(6) 508-517 https://doi.org/10.1071/MF14095
Submitted: 7 April 2014 Accepted: 24 July 2014 Published: 30 January 2015
Abstract
Most deep-water chondrichthyans occurring off mainland Portugal are distributed worldwide. There are many closely related species with similar morphology, and the lack of diagnostic characters that unambiguously allow species discrimination has led to extensive identification problems. Here, DNA barcodes were used to evaluate the suitability of cytochrome c oxidase I (COI) to identify deep-water chondrichthyans and to further contribute to the worldwide molecular databases currently in use. The sample was composed of 40 individuals from the families Chimaeridae, Centrophoridae, Somniosidae, Etmopteridae, Oxynotidae, Dalatiidae, Scyliorhinidae, Mitsukurinidae, Chlamydoselachidae and Hexanchidae. COI proved to be adequate for species identification, with almost all putative species recovered as well supported monophyletic clades, with low intraspecific variation. Sequence matches against the BOLD database provided evidence for the existence of identification problems particularly within the genera Hydrolagus, Galeus and Centrophorus. Present results suggest that three different Centrophorus species occur off the Portuguese mainland, C. squamosus, C. granulosus and C. uyato. The sample also included an albino Deania calcea and a C. squamosus specimen without dermal denticles. This study updates the current knowledge on diversity and distribution of deep-water chondrichthyans occurring along the Portuguese coast, and provides an essential tool for species identification and consistency of taxonomic designations worldwide.
Additional keywords: albinism, Centrophorus lusitanicus, deep-sea, DNA barcoding, taxonomy.
References
Armstrong, K. F., and Ball, S. L. (2005). DNA barcodes for biosecurity: invasive species identification. Philosophical Transactions of the Royal Society of London – B. Biological Sciences 360, 1813–1823.| DNA barcodes for biosecurity: invasive species identification.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2MXhtlSjsrjN&md5=07fa5c474c6358e156c3566cc1f75b09CAS |
Bigelow, H. B., and Schroeder, W. C. (1957). A study of the sharks of the suborder Squaloidea. Bulletin of the Museum of Comparative Zoology 117, 1–150.
Bloch, M. E., and Schneider, J. G. (1801). ‘Systema ichthyologiae iconibus ex illustratum. Vol.2.’ (Berolini-Sumtibus auctoris impressum et Bibliopolio Sanderiano commissum: Berlin, Germany).
Bocage, J. V. B., and Capello, F. B. (1864). Sur quelques espèces inédites de Squalidae de la tribu Acanthiana, Gray, qui fréquentent les côtes du Portugal. Proceedings of the Zoological Society of London 1864, 260–263.
Bonfil, R. (1994). Overview of world elasmobranch fisheries. FAO Fisheries Technical Paper 341. Food and Agriculture Organization, Rome, Italy.
Bornatowski, H., and Abilhoa, V. (2009). Record of an anomalous embryo of Rhinobatos percellens (Elasmobranchii: Rhinobatidae) in the southern coast of Brazil. Marine Biodiversity Records 2, e36.
| Record of an anomalous embryo of Rhinobatos percellens (Elasmobranchii: Rhinobatidae) in the southern coast of Brazil.Crossref | GoogleScholarGoogle Scholar |
Bottaro, M., Ferrando, S., Gallus, L., Girosi, L., and Vacchi, M. (2008). First record of albinism in the deep water shark Dalatias licha. Marine Biodiversity Records 1, e10.
| First record of albinism in the deep water shark Dalatias licha.Crossref | GoogleScholarGoogle Scholar |
Camhi, M., Fowler, S., Musick, J., Bräutigam, A., and Fordham, S. (1998). Sharks and their Relatives: Ecology and Conservation. Occasional Paper of the IUCN Species Survival Commission 20. IUCN, Gland, Switzerland and Cambridge, UK.
Capapé, C. (1985). Nouvelle description de Centrophorus granulosus (Schneider, 1801) (Pisces, Squalidae). Données sur la biologie de la reproduction et le régime alimentaire des spécimens des côtes tunisiennes. Bulletin de l’Institut National Scientifique et Technique d’Océanographie et de Pêche de Salammbô 12, 97–141.
Castilho, R., Freitas, M., Silva, G., Fernandez‐Carvalho, J., and Coelho, R. (2007). Morphological and mitochondrial DNA divergence validates blackmouth, Galeus melastomus, and Atlantic sawtail catsharks, Galeus atlanticus, as separate species. Journal of Fish Biology 70, 346–358.
| Morphological and mitochondrial DNA divergence validates blackmouth, Galeus melastomus, and Atlantic sawtail catsharks, Galeus atlanticus, as separate species.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2sXotFahsrw%3D&md5=16a9e0aa3a5f65ba273482bab0241c77CAS |
Castro, J. I., Woodley, C. M., and Brudek, R. L. (1999). A preliminary evaluation of the status of shark species. FAO Fisheries Technical Paper 380. Food and Agriculture Organization, Rome, Italy.
Chan, R. W. K., Dixon, P. I., Pepperell, J. G., and Reid, D. D. (2003). Application of DNA-based techniques for the identification of whaler sharks (Carcharhinus spp.) caught in protective beach meshing and by recreational fisheries off the coast of New South Wales. Fishery Bulletin 101, 910–914.
Chase, M. R., Etter, R. J., Rex, M. A., and Quattro, J. M. (1998). Extraction and amplification of mitochondrial DNA from formalin-fixed deep-sea mollusks. BioTechniques 24, 243–247.
| 1:CAS:528:DyaK1cXhtFeisr0%3D&md5=d12b1abfa57c8bd39ed3f5c83e0d9813CAS | 9494724PubMed |
Clark, S. (2002). First report of albinism in the white-spotted bamboo shark, Chiloscyllium plagiosum (Orectolobiformes: Hemiscyllidae), with a review of reported color aberrations in elasmobranchs. Zoo Biology 21, 519–524.
| First report of albinism in the white-spotted bamboo shark, Chiloscyllium plagiosum (Orectolobiformes: Hemiscyllidae), with a review of reported color aberrations in elasmobranchs.Crossref | GoogleScholarGoogle Scholar |
Coelho, R., and Erzini, K. (2008). Effects of fishing methods on deep water shark species caught as by-catch off southern Portugal. Hydrobiologia 606, 187–193.
| Effects of fishing methods on deep water shark species caught as by-catch off southern Portugal.Crossref | GoogleScholarGoogle Scholar |
Collins, R. A., Armstrong, K. F., Meier, R., Yi, Y., Brown, S. D. J., Cruickshank, R. H., Keeling, S., and Johnston, C. (2012). Barcoding and border biosecurity: identifying cyprinid fishes in the aquarium trade. PLoS ONE 7, e28381.
| Barcoding and border biosecurity: identifying cyprinid fishes in the aquarium trade.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC38XitVGht7c%3D&md5=2a0fd65cd9818be5ac33debb1c310743CAS | 22276096PubMed |
Compagno, L. J. V. (1973). Interrelationships of living elasmobranchs. Zoological Journal of the Linnean Society 53, 15–61.
| Interrelationships of living elasmobranchs.Crossref | GoogleScholarGoogle Scholar |
Compagno, L., Dando, M., and Fowler, S. (2005) ‘Sharks of the World. Collins Field Guide.’ (Harper Collins Publishers: London.)
Costa, F. O., and Carvalho, G. R. (2007). The Barcode of Life Initiative: synopsis and prospective societal impacts of DNA barcoding of fish. Genomics. Social Policy 3, 29–40.
Costa, F. O., and Carvalho, G. R. (2010). New insights into molecular evolution: prospects from the Barcode of Life Initiative (BOLI). Theory in Biosciences 129, 149–157.
| New insights into molecular evolution: prospects from the Barcode of Life Initiative (BOLI).Crossref | GoogleScholarGoogle Scholar | 20502980PubMed |
Costa, F. O., Landi, M., Martins, R., Costa, M. H., Costa, M. E., Carneiro, M., Alves, M. J., Steinke, D., and Carvalho, G. R. (2012). A ranking system for reference libraries of DNA barcodes: application to marine fish species from Portugal. PLoS ONE 7, e35858.
| A ranking system for reference libraries of DNA barcodes: application to marine fish species from Portugal.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC38XmvFSmsr4%3D&md5=269044d87198ebc85dbeba34fbb34006CAS | 22558244PubMed |
Craft, K. J., Pauls, S. U., Darrow, K., Miller, S. E., Hebert, P. D. N., Helgen, L. E., Novotny, V., and Weiblena, G. D. (2010). Population genetics of ecological communities with DNA barcodes: an example from New Guinea Lepidoptera. Proceedings of the National Academy of Sciences of the United States of America 107, 5041–5046.
| Population genetics of ecological communities with DNA barcodes: an example from New Guinea Lepidoptera.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3cXjvFGntL8%3D&md5=1f5195fcdb9ce0d0d6934883ab9459feCAS | 20202924PubMed |
Daley, R. K., Appleyard, S. A., and Koopman, M. (2012). Genetic catch verification to support recovery plans for deepsea gulper sharks (genus Centrophorus, family Centrophoridae). Marine and Freshwater Research 63, 708–714.
| Genetic catch verification to support recovery plans for deepsea gulper sharks (genus Centrophorus, family Centrophoridae).Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC38Xht1ekt7jO&md5=3bede1493a6206b744a5b138a6816079CAS |
de Carvalho, M. R. (1996). Higher-level elasmobranch phylogeny, basal squaleans, and paraphyly. In ‘Interrelationships of Fishes’. (Eds M. L. J. Stiassny, L. R. Parenti and G. D. Johnson.) pp. 35–62. (Academic Press: San Diego, CA.)
Deynat, P. P. (2003). Partial albinism in the Portuguese dogfish Centroscymnus coelolepis (Elasmobranchii, Somniosidae). Cybium 27, 233–236.
Douady, C. J., Dosay, M., Shivji, M. S., and Stanhope, M. J. (2003). Molecular phylogenetic evidence refuting the hypothesis of Batoidea (rays and skates) as derived sharks. Molecular Phylogenetics and Evolution 26, 215–221.
| Molecular phylogenetic evidence refuting the hypothesis of Batoidea (rays and skates) as derived sharks.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3sXmt1Wqtw%3D%3D&md5=5585bb49da385f184c8c6110c299ef4aCAS | 12565032PubMed |
Dunn, M. R., Szabo, A., McVeagh, M. S., and Smith, P. J. (2010). The diet of deepwater sharks and the benefits of using DNA identification of prey. Deep-sea Research. Part I, Oceanographic Research Papers 57, 923–930.
| The diet of deepwater sharks and the benefits of using DNA identification of prey.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3cXntF2gt7s%3D&md5=74624a59a655ea332d8b1fa6bf8729ddCAS |
Escobar-Sánchez, O., Galván-Magaña, F., Downton-Hoffmann, C. A., Carrera-Fernández, M., and Alatorre-Ramírez, G. (2009). First record of a morphological abnormality in the longtail stingray Dasyatis longa (Myliobatiformes: Dasyatidae) in the gulf of California, Mexico. Marine Biodiversity Records 2, e26.
| First record of a morphological abnormality in the longtail stingray Dasyatis longa (Myliobatiformes: Dasyatidae) in the gulf of California, Mexico.Crossref | GoogleScholarGoogle Scholar |
Figueiredo, I., Machado, P. B., and Gordo, L. S. (2005). Deep-water shark fisheries off the Portuguese continental coast. Journal of Northwest Atlantic Fishery Science 35, 291–298.
| Deep-water shark fisheries off the Portuguese continental coast.Crossref | GoogleScholarGoogle Scholar |
Galtier, N., Jobson, R. W., Nabholz, B., Glémin, S., and Blier, P. U. (2009). Mitochondrial whims: metabolic rate, longevity and the rate of molecular evolution. Biology Letters 5, 413–416.
| Mitochondrial whims: metabolic rate, longevity and the rate of molecular evolution.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1MXnvVWrtb0%3D&md5=2e281e19852bc0cf61d0c4b4fdd8b478CAS | 19324654PubMed |
Garcia, V. B., Lucifora, L. O., and Myers, R. A. (2008). The importance of habitat and life history to extinction risk in sharks, skates, rays and chimaeras. Proceedings of the Royal Society of London. B – Biological Sciences 275, 83–89.
| The importance of habitat and life history to extinction risk in sharks, skates, rays and chimaeras.Crossref | GoogleScholarGoogle Scholar |
Gibbs, A. G. (1997). Biochemistry at depth. In ‘Deep-sea Fishes’. (Eds D. J. Randall and A. P. Farrel.) pp. 239–277. (Academic Press: San Diego, CA.)
Goto, M., Taninuchi, T., Kuga, N., and Iwata, M. (1981). Four dicephalous specimens of blue shark, Prionace glauca, from Japan. Japanese Journal of Ichthyology 28, 157–165.
Greig, T. W., Moore, M. K., Woodley, C. M., and Quattro, J. M. (2005). Mitochondrial gene sequences useful for species identification of commercially regulated Atlantic Ocean sharks. Fishery Bulletin 103, 516–523.
Günther, A. (1870). Catalogue of the Physostomi containing the families Gymnotidae, Symbranchidae, Muraenidae, Pegasidae and of the Lophobranchii, Plectognathi, Dipnoi, Ganoidei, Chondropterygii, Cyclostomata, Leptocardii in the collection of the British Museum. In ‘Catalogue of the Fishes in the British Museum, vol. 8’. (British Museum of Natural History: London.)
Hall, T. A. (1999). BioEdit: a user-friendly biological sequence alignment editor and analysis program for Windows 95/98/NT. Nucleic Acids Symposium Series 41, 95–98.
| 1:CAS:528:DC%2BD3cXhtVyjs7Y%3D&md5=9cb2157f64a65889a72f8b3c73c686caCAS |
Hebert, P. D. N., and Gregory, T. R. (2005). The promise of DNA barcoding for taxonomy. Systematic Biology 54, 852–859.
| The promise of DNA barcoding for taxonomy.Crossref | GoogleScholarGoogle Scholar |
Hebert, P. D. N., Cywinska, A., Ball, S., and deWaard, J. R. (2003a). Biological identifications through DNA barcodes. Proceedings. Biological Sciences 270, 313–321.
| Biological identifications through DNA barcodes.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3sXktVWiu7g%3D&md5=0a3c55121aec562c77fd37481bd37253CAS |
Hebert, P. D. N., Ratnasingham, S., and deWaard, J. R. (2003b). Barcoding animal life: cytochrome c subunit 1 divergences among closely related species. Proceedings. Biological Sciences 270, S96–S99.
| Barcoding animal life: cytochrome c subunit 1 divergences among closely related species.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3sXns1Smsbo%3D&md5=3c8e84b8b6d7c7ef4435d3183eea4d8dCAS |
Hebert, P. D. N., deWaard, J. R., and Landry, J. F. (2010). DNA barcodes for 1/1000 of the animal kingdom. Biology Letters 6, 359–362.
| DNA barcodes for 1/1000 of the animal kingdom.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3cXovFCqsrw%3D&md5=676d9572036dc26cac8250c48f884a53CAS |
Heist, E. J., and Gold, J. R. (1999). Genetic identification of sharks in the US Atlantic large coastal shark fishery. Fishery Bulletin 97, 53–61.
Holmes, B. H., Steinke, D., and Ward, R. D. (2009). Identification of shark and ray fins using DNA barcoding. Fisheries Research 95, 280–288.
| Identification of shark and ray fins using DNA barcoding.Crossref | GoogleScholarGoogle Scholar |
Hubert, N., Hanner, R., Holm, E., Mandrak, N. E., Taylor, E., Burridge, M., Watkinson, D., Dumont, P., Curry, A., Bentzen, P., Zhang, J., April, J., and Bernatchez, L. (2008). Identifying Canadian freshwater fishes through DNA barcodes. PLoS ONE 3, e2490.
| Identifying Canadian freshwater fishes through DNA barcodes.Crossref | GoogleScholarGoogle Scholar | 22423312PubMed |
ICES (2007). Report of the Working Group Elasmobranch Fishes (WGEF), 22–28 June 2007, Galway, Ireland. ICES CM 2007/ACFM:27. ICES, Copenhagen, Denmark.
ICES (2010). Report of the Working Group on Elasmobranch Fishes (WGEF), 22–29 June 2010, Horta, Portugal. ICES CM 2010/ACOM:19. ICES, Copenhagen, Denmark.
Inoue, J. G., Miya, M., Lam, K., Tay, B. H., Danks, J. A., Bell, J., Walker, T. I., and Venkatesh, B. (2010). Evolutionary origin and phylogeny of the modern holocephalans (Chondrichthyes: Chimaeriformes): a mitogenomic perspective. Molecular Biology and Evolution 27, 2576–2586.
| Evolutionary origin and phylogeny of the modern holocephalans (Chondrichthyes: Chimaeriformes): a mitogenomic perspective.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3cXhtlShu7zL&md5=19515bc6a3bfb3299039c06f18d85b8aCAS | 20551041PubMed |
Jones, Y. L., Peters, S. M., Weland, C., Ivanova, N. V., and Yancy, H. F. (2013). Potential use of DNA barcodes in regulatory science: identification of the US Food and Drug Administration’s ‘Dirty 22’, contributors to the spread of foodborne pathogens. Journal of Food Protection 76, 144–149.
| Potential use of DNA barcodes in regulatory science: identification of the US Food and Drug Administration’s ‘Dirty 22’, contributors to the spread of foodborne pathogens.Crossref | GoogleScholarGoogle Scholar | 23317871PubMed |
Kiraly, S. J., Moore, J. A., and Jasinski, P. H. (2003). Deepwater and other sharks of the US Atlantic Ocean Exclusive Economic Zone. Marine Fisheries Review 65, 1–20.
Kyne, P. M., and Simpfendorfer, C. A. (2007). A collation and summarization of available data on deepwater chondrichthyans: biodiversity, life history and fisheries. A report prepared by the IUCN SSC Shark Specialist Group for the Marine Conservation Biology Institute. Available at http://www.researchgate.net/publication/228826523_A_COLLATION_AND_SUMMARIZATION_OF_AVAILABLE_DATA_ON_DEEPWATER_CHONDRICHTHYANS_BIODIVERSITY_LIFE_HISTORY_AND_FISHERIES/file/d912f50aa7896a865d.pdf [Verified 15 October 2014].
Last, P. R. (2007). The state of chondrichthyan taxonomy and systematics. Marine and Freshwater Research 58, 7–9.
| The state of chondrichthyan taxonomy and systematics.Crossref | GoogleScholarGoogle Scholar |
Mancini, P. L., Casas, A. L., and Amorim, A. F. (2006). Morphological abnormalities in a blue shark Prionace glauca (Chondrichthyes: Carcharhinidae) foetus from southern Brazil. Journal of Fish Biology 69, 1881–1884.
| Morphological abnormalities in a blue shark Prionace glauca (Chondrichthyes: Carcharhinidae) foetus from southern Brazil.Crossref | GoogleScholarGoogle Scholar |
Martin, A. P., Naylor, G. J. P., and Palumbi, S. R. (1992). Rates of mitochondrial DNA evolution in sharks are slow compared with mammals. Nature 357, 153–155.
| Rates of mitochondrial DNA evolution in sharks are slow compared with mammals.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK38XktVCmtLg%3D&md5=bc11a5077a21e710aee3214c12f00de4CAS | 1579163PubMed |
Maurin, C. M., and Bonnet, M. (1970). Poissons des côtes nord-ouest africaines (campagnes de la ‘Thalassa’, 1962 et 1968). Revue des Travaux de l’Institut des Peches Maritimes 34, 125–170.
McCusker, M. R., Denti, D., van Guelpen, L., Kenchington, E., and Bentzen, P. (2013). Barcoding Atlantic Canada’s commonly encountered marine fishes. Molecular Ecology Resources 13, 177–188.
| Barcoding Atlantic Canada’s commonly encountered marine fishes.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3sXislOqs70%3D&md5=ba26d47b8561ef8f9ffa7ba9db2308c0CAS | 23253798PubMed |
Moftah, M., Aziz, S. H. A., Elramah, S., and Favereaux, A. (2011). Classification of sharks in the Egyptian Mediterranean waters using morphological and DNA barcoding approaches. PLoS ONE 6, e27001.
| Classification of sharks in the Egyptian Mediterranean waters using morphological and DNA barcoding approaches.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3MXhsFSitbrE&md5=664a6e0ee04940239158998dadedfbabCAS | 22087242PubMed |
Molina, J. M., and Cooke, S. J. (2012). Trends in shark bycatch research: current status and research needs. Reviews in Fish Biology and Fisheries 22, 719–737.
| Trends in shark bycatch research: current status and research needs.Crossref | GoogleScholarGoogle Scholar |
Mooers, A. O., and Harvey, P. H. (1994). Metabolic rate, generation time, and the rate of molecular evolution in birds. Molecular Phylogenetics and Evolution 3, 344–350.
| Metabolic rate, generation time, and the rate of molecular evolution in birds.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK2MXjsVWksLk%3D&md5=8a2aed223a47146c0ee5fcf6d0915d88CAS | 7697191PubMed |
Moura, T., Figueiredo, I., Neves, A., Farias, I., Serra-Pereira, B., and Gordo, L. S. (2008a). First occurrence of the deepwater shark Centroscymnus owstoni on the Portuguese continental slope. Cybium 32, 271–272.
Moura, T., Silva, M. C., Figueiredo, I., Neves, A., Durán-Muñoz, P., Coelho, M. M., and Gordo, L. S. (2008b). Molecular barcoding of north-east Atlantic deep-water sharks: species identification and application to fisheries management and conservation. Marine and Freshwater Research 59, 214–223.
| Molecular barcoding of north-east Atlantic deep-water sharks: species identification and application to fisheries management and conservation.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1cXltl2jtLk%3D&md5=75198836f879b84d3c29cddec097316bCAS |
Müller, J., and Henle, F. G. J. (1841). ‘Systematische Beschreibung der Plagiostomen.’ (Verlag von Veit und Comp.: Berlin, Germany).
Munoz-Chapuli, R., and Ramos, F. (1989). Review of the Centrophorus sharks (Elasmobranchii, Squalidae) of the eastern Atlantic. Cybium 13, 65–81.
Myers, R. A., Baum, J. K., Shepherd, T. D., Powers, S. P., and Peterson, C. H. (2007). Cascading effects of the loss of apex predatory sharks from a coastal ocean. Science 315, 1846–1850.
| Cascading effects of the loss of apex predatory sharks from a coastal ocean.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2sXjsFSitrw%3D&md5=46fc872a3098aa00922b3337e654d3f0CAS | 17395829PubMed |
Nakaya, K. (1973). An albino zebra shark Stegostoma fasciatum from the Indian Ocean, with comments on albinism in elasmobranchs. Japanese Journal of Ichthyology 20, 120–122.
Naylor, G. J. P., Ryburn, J. A., Fedrigo, O., and López, A. (2005). Phylogenetic relationships among the major lineages of sharks and rays deduced from multiple genes. In ‘Reproductive Biology and Phylogeny of Chondrichthyans (Sharks, Skates, Stingrays and Chimaeras)’. (Eds W. C. Hamlett and B. Jamieson.) pp. 1–25. (Science Publishers: Enfield, NH, USA.)
Posada, D., and Crandall, K. A. (1998). Modeltest: testing the model of DNA substitution. Bioinformatics 14, 817–818.
| Modeltest: testing the model of DNA substitution.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK1MXktlCltw%3D%3D&md5=7a4ca6eeb66956fb6e7da5dbd886f051CAS | 9918953PubMed |
Rey, J., Séret, B., Lloris, D., Coelho, R., and Sola, L. G. (2006). A new redescription of Galeus atlanticus (Vaillant, 1888) (Chondrichthyes: Scyliorhinidae) based on field marks. Cybium 30, 7–14.
Sandoval-Castillo, J., Mariano-Meléndez, E., and Villavicencio-Garayzar, C. J. (2006). New records of albinism in two elasmobranchs: the tiger shark Galeocerdo cuvier and the giant electric ray Narcine entemedor. Cybium 30, 191–192.
Sanjuán, A., de Carlos, A., Rodríguez-Cabello, C., Bañón, R., Sánchez, F., and Serrano, A. (2012). Molecular identification of the arrowhead dogfish Deania profundorum (Centrophoridae) from the northern waters of the Iberian Peninsula. Marine Biology Research 8, 901–905.
| Molecular identification of the arrowhead dogfish Deania profundorum (Centrophoridae) from the northern waters of the Iberian Peninsula.Crossref | GoogleScholarGoogle Scholar |
Schander, C., and Willassen, E. (2005). What can biological barcoding do for marine biology? Marine Biology Research 1, 79–83.
| What can biological barcoding do for marine biology?Crossref | GoogleScholarGoogle Scholar |
Serra-Pereira, B., Moura, T., Gordo, L. S., and Figueiredo, I. (2011). Molecular barcoding of skates (Chondrichthyes: Rajidae) from the southern northeast Atlantic. Zoologica Scripta 40, 76–84.
| Molecular barcoding of skates (Chondrichthyes: Rajidae) from the southern northeast Atlantic.Crossref | GoogleScholarGoogle Scholar |
Shirai, S. (1996). Phylogenetic interrelationships of neoselachians (Chondrichthyes: Euselachii). In ‘Interrelationships of Fishes’. (Eds M. L. J. Stiassny, L. R. Parenti and G. D. Johnson.) pp. 9–34. (Academic Press: San Diego, CA)
Spies, I. B., Gaichas, S., Stevenson, D. E., Orr, J.W., and Canino, M. F. (2006). DNA-based identification of Alaska skates (Amblyraja, Bathyraja and Raja: Rajidae) using cytocrome c oxidase subunit I (COI) variation. Journal of Fish Biology 69, 283–292.
| DNA-based identification of Alaska skates (Amblyraja, Bathyraja and Raja: Rajidae) using cytocrome c oxidase subunit I (COI) variation.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2sXht1Siur8%3D&md5=ad2e6f4870b5717c84b1ecf9381a5f22CAS |
Tamura, K., and Nei, M. (1993). Estimation of the number of nucleotide substitutions in the control region of mitochondrial DNA in humans and chimpanzees. Molecular Biology and Evolution 10, 512–526.
| 1:CAS:528:DyaK3sXks1CksL4%3D&md5=16ba0ca1b0c8a6e15fa4ccafd022a74bCAS | 8336541PubMed |
Tamura, K., Peterson, D., Peterson, N., Stecher, G., Nei, M., and Kumar, S. (2011). MEGA5: molecular evolutionary genetics analysis using maximum likelihood, evolutionary distance, and maximum parsimony methods. Molecular Biology and Evolution 28, 2731–2739.
| MEGA5: molecular evolutionary genetics analysis using maximum likelihood, evolutionary distance, and maximum parsimony methods.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3MXht1eiu73K&md5=887c0fd611631fa5076e3aa6bcbb4e32CAS | 21546353PubMed |
Vannuccini, S. (1999). Shark utilization, marketing and trade. FAO Fisheries Technical Paper 389. Food and Agriculture Organization, Rome, Italy.
Vernooy, R., Haribabu, E., Muller, M. R., Vogel, J. H., Hebert, P. D. N., Schindel, D. E., Shimura, J., and Singer, G. A. C. (2010). Barcoding life to conserve biological diversity: beyond the taxonomic imperative. PLoS Biology 8, e1000417.
| Barcoding life to conserve biological diversity: beyond the taxonomic imperative.Crossref | GoogleScholarGoogle Scholar | 20644709PubMed |
Walker, T. I. (1998). Can shark resources be harvested sustainably? A question revisited with a review of shark fisheries. Marine and Freshwater Research 49, 553–572.
| Can shark resources be harvested sustainably? A question revisited with a review of shark fisheries.Crossref | GoogleScholarGoogle Scholar |
Ward, R. D. (2009). DNA barcode divergence among species and genera of birds and fishes. Molecular Ecology Resources 9, 1077–1085.
| DNA barcode divergence among species and genera of birds and fishes.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1MXpt1Omur4%3D&md5=0ef68970725fa5574ee3fcc5cc246f63CAS | 21564845PubMed |
Ward, R. D., Zemlak, T. S., Innes, B. H., Last, P. R., and Hebert, P. D. N. (2005). DNA barcoding Australia’s fish species. Philosophical Transactions of the Royal Society. B – Biological Sciences 360, 1847–1857.
| DNA barcoding Australia’s fish species.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2MXhtlSjsrjK&md5=2180dc17730a4735b2bf1c1b084855cfCAS |
Ward, R. D., Holmes, B. H., White, W. T., and Last, P. R. (2008). DNA barcoding Australasian chondrichthyans: results and potential uses in conservation. Marine and Freshwater Research 59, 57–71.
| DNA barcoding Australasian chondrichthyans: results and potential uses in conservation.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1cXhtFKnt7c%3D&md5=8fedc475d7bb95a9fb12a274c8e3f1e6CAS |
White, W. T., and Last, P. R. (2012). A review of the taxonomy of chondrichthyan fishes: a modern perspective. Journal of Fish Biology 80, 901–917.
| A review of the taxonomy of chondrichthyan fishes: a modern perspective.Crossref | GoogleScholarGoogle Scholar | 1:STN:280:DC%2BC38rksVOksA%3D%3D&md5=a20a16726260ab327d77c50359ac6345CAS | 22497367PubMed |
White, W. T., Ebert, D. A., Naylor, G. J. P., Ho, H. C., Clerkin, P., Veríssimo, A., and Cotton, C. (2013). Revision of the genus Centrophorus (Squaliformes: Centrophoridae): Part 1: redescription of Centrophorus granulosus (Bloch and Schneider), a senior synonym of C. acus Garman and C. niaukang Teng. Zootaxa 3752, 35–72.
| Revision of the genus Centrophorus (Squaliformes: Centrophoridae): Part 1: redescription of Centrophorus granulosus (Bloch and Schneider), a senior synonym of C. acus Garman and C. niaukang Teng.Crossref | GoogleScholarGoogle Scholar | 25229108PubMed |
Wong, E. H. K., Shivji, M. S., and Hanner, R. H. (2009). Identifying sharks with DNA barcodes: assessing the utility of a nucleotide diagnostic approach. Molecular Ecology Resources 9, 243–256.
| Identifying sharks with DNA barcodes: assessing the utility of a nucleotide diagnostic approach.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1MXlslOjt7w%3D&md5=02436107f0f07cdf7c12a7ec81bba7e3CAS |