Register      Login
Marine and Freshwater Research Marine and Freshwater Research Society
Advances in the aquatic sciences
RESEARCH ARTICLE

Using elemental profiles in the sediment of a lake used to supply drinking water to understand the impacts of urban stormwater recharge

J. L. Vanderzalm A E , P. J. Dillon A , G. J. Hancock B , C. Leslie B , J. Dighton A , C. Smith C and G. Pearce D
+ Author Affiliations
- Author Affiliations

A CSIRO Land and Water, Water for a Healthy Country Research Flagship, Waite Laboratories, Waite Road, Urrbrae, SA 5064, Australia.

B CSIRO Land and Water, Water for a Healthy Country Research Flagship, Black Mountain Laboratories, Clunies Ross Street, Black Mountain, ACT 2601, Australia.

C South Australian Environment Protection Authority, 11 Helen Street, Mount Gambier, SA 5290, Australia.

D South Australian Department of Environment, Water and Natural Resources, 11 Helen Street, Mount Gambier, SA 5290, Australia.

E Corresponding author. Email: joanne.vanderzalm@csiro.au

Marine and Freshwater Research 64(6) 493-506 https://doi.org/10.1071/MF12215
Submitted: 10 August 2012  Accepted: 18 January 2013   Published: 12 April 2013

Abstract

The regional city of Mount Gambier, South Australia, recharges stormwater directly into the underlying unconfined, karstic Gambier Limestone aquifer. This aquifer provides the majority of recharge to Blue Lake, a groundwater-fed volcanic crater lake, used for Mount Gambier’s drinking water supply. However, concern remains regarding the risk posed by contaminants within stormwater, in particular when stormwater recharge may ultimately contribute to a source of drinking-water supply. The present research examined the role of the annual calcite precipitation in the lake, in protecting the quality of its water supply, by examining the composition of particulate matter in the lake and on the lake bottom. The sediment did not reveal negative impacts of stormwater recharge, but did highlight the increase in erosion as a result of settlement and extensive land clearing for agriculture at the time of settlement. Analysis of lake-floor sediment revealed increased accumulation of the lithogenic elements within the lake-floor sediment during this interval, owing to the cleansing capacity of the calcite precipitation cycle. Extraction of water from Blue Lake for water supply has resulted in a reduced water residence time in the lake and a three-fold increase in the accumulation of calcium carbonate on the lake floor.

Additional keywords: aquifer recharge, Blue Lake, carbonate, groundwater, Mount Gambier.


References

Appleby, P. G. (2001). Chronostratigraphic techniques in recent sediments, In ‘Tracking Environmental Change Using Lake Sediments, Basin Analysis. Coring and Chronological Techniques Vol. 1’. (Eds.W. M. Last and J. P. Smol.) pp. 171–203. (Kluwer Academic Publishers: Dordrecht, Netherlands.)

Balogh, S. J., Engstrom, D. R., Almendinger, J. E., McDermott, C., Hu, J., Nollett, Y. H., Meyer, M. L., and Johnson, D. K. (2009). A sediment record of trace metal loadings in the Upper Mississippi River. Journal of Paleolimnology 41, 623–639.
A sediment record of trace metal loadings in the Upper Mississippi River.Crossref | GoogleScholarGoogle Scholar |

Blue Lake Management Committee (BLMC). (2001). ‘The Blue Lake Management Plan.’ (South East Water Catchment Management Board: Mount Gambier, South Australia.)

Blue Lake Management Committee (BLMC) (2006). ‘Blue Lake Management Plan.’ South East Natural Resources Management Board: Mount Gambier, SA. Available at http://www.senrm.sa.gov.au/Portals/10/PDF/policy%20and%20planning/NRM%20Plan/Blue_Lake_Management_Plan_2006.pdf [accessed May 2006].)

Bureau of Meteorology (BOM) (2010). ‘Climate Statistics for Australian Locations.’ Available at http//www.bom.gov.au/climate/averages/tables/cw_026021_All.shtml [accessed 18 June 2010].

Çelo, V., Babi, D., Baraj, B., and Cullaj, A. (1999). An assessment of heavy metal pollution in the sediments along the Albanian coast. Water, Air, and Soil Pollution 111, 235–250.
An assessment of heavy metal pollution in the sediments along the Albanian coast.Crossref | GoogleScholarGoogle Scholar |

Comans, R. N. J., Middelburg, J. J., Zonderhuis, J., Woittiez, J. R. W., De Lange, G. J., Das, H. A., and Van Der Weijden, C. H. (1989). Mobilization of radiocaesium in pore water of lake sediments. Nature 339, 367–369.
Mobilization of radiocaesium in pore water of lake sediments.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaL1MXks1elsrc%3D&md5=47645dc5a45f30ba421879c04406c542CAS |

Davis, R. B., Hess, C. T., Norton, S. A., Hanson, D. W., Hoagland, K. D., and Anderson, D. S. (1984). 137Cs and 210Pb dating of sediments from soft-water lakes in New England (USA) and Scandinavia, a failure of 137Cs dating. Chemical Geology 44, 151–185.
137Cs and 210Pb dating of sediments from soft-water lakes in New England (USA) and Scandinavia, a failure of 137Cs dating.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaL2cXkt1Kntb4%3D&md5=7745dd5e1d5cc9a5ac99d23ab769bf0dCAS |

Dean, W. E. (1999). The carbon cycle and biogeochemical dynamics in lake sediments. Journal of Paleolimnology 21, 375–393.
The carbon cycle and biogeochemical dynamics in lake sediments.Crossref | GoogleScholarGoogle Scholar |

Dillon, P., Page, D., Vanderzalm, J., Pavelic, P., Toze, S., Bekele, E., Sidhu, J., Prommer, H., Higginson, S., Regel, R., Rinck-Pfeiffer, S., Purdie, M., Pitman, C., and Wintgens, T. (2008). A critical evaluation of combined engineered and aquifer treatment systems in water recycling. Water Science and Technology 57, 753–762.
A critical evaluation of combined engineered and aquifer treatment systems in water recycling.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1cXms1Oht78%3D&md5=1e6bc55f388add17a5b372ba6f7f8945CAS | 18401149PubMed |

Dittrich, M., and Obst, M. (2004). Are picoplankton responsible for calcite precipitation in lakes? Ambio 33, 559–564.
| 15666689PubMed |

Eades, L. J., Farmer, J. G., MacKenzie, A. B., Kirika, A., and Bailey-Watts, A. E. (2002). Stable lead isotopic characterisation of the historical record of environmental lead contamination in dated freshwater lake sediment cores from northern and central Scotland. The Science of the Total Environment 292, 55–67.
Stable lead isotopic characterisation of the historical record of environmental lead contamination in dated freshwater lake sediment cores from northern and central Scotland.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD38XktFOlurk%3D&md5=14e19cf49bd48b484684e3b4f484cee2CAS | 12108445PubMed |

Emmet, A. J. (1985). Mount Gambier stormwater quality. Report 84/23. Department of Engineering and Water Supply South Australia, Adelaide, Australia.

Gouramanis, C., Wilkins, D., and De Deckker, P. (2010). 6000 years of environmental changes recorded in Blue Lake, South Australia, based on ostracod ecology and valve chemistry Palaeogeography, Palaeoclimatology, Palaeoecology 297, 223–237.
6000 years of environmental changes recorded in Blue Lake, South Australia, based on ostracod ecology and valve chemistryCrossref | GoogleScholarGoogle Scholar |

Hancock, G. J., Leslie, C., Everett, S. E., Tims, S. G., Brunskill, G. J., and Haese, R. (2011). Plutonium as a chronomarker in Australian and New Zealand sediments: a comparison with 137Cs. Journal of Environmental Radioactivity 102, 919–929.
Plutonium as a chronomarker in Australian and New Zealand sediments: a comparison with 137Cs.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3MXpvFGisLw%3D&md5=d2b4c1df5964fee6213923353ff326d7CAS | 19857913PubMed |

Herczeg, A. L., Leaney, F. W., Dighton, J. C., Lamontagne, S., Schiff, S. L., Telfer, A. L., and English, M. C. (2003). A modern isotope record of changes in water and carbon budgets in a groundwater-fed lake: Blue Lake, South Australia. Limnology and Oceanography 48, 2093–2105.
A modern isotope record of changes in water and carbon budgets in a groundwater-fed lake: Blue Lake, South Australia.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3sXpvFagsL0%3D&md5=bb181151b7b6b33fffaae5adb0d311dfCAS |

Kersten, M., and Smedes, F. (2002). Normalization procedures for sediment contaminants in spatial and temporal trend monitoring. Journal of Environmental Monitoring 4, 109–115.
Normalization procedures for sediment contaminants in spatial and temporal trend monitoring.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD38Xntlyksg%3D%3D&md5=f954230077405a77bc604c8ce1ded83dCAS |

Lamontagne, S. (2002). Groundwater delivery rate of nitrate and predicted change in nitrate concentration in Blue Lake, South Australia. Marine and Freshwater Research 53, 1129–1142.
Groundwater delivery rate of nitrate and predicted change in nitrate concentration in Blue Lake, South Australia.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3sXhslKgsbg%3D&md5=f4e296e03bdd21eae211ace9395f73d7CAS |

Landre, A. L., Winter, J. G., Helm, P., Hiriart-Baer, V., and Young, J. (2011). Metals in Lake Simcoe sediments and tributaries: do recent trends indicate changing sources? Journal of Great Lakes Research 37, 124–131.
Metals in Lake Simcoe sediments and tributaries: do recent trends indicate changing sources?Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3MXnt1agtbY%3D&md5=7d4c7750826d35de7385d264daa46dc0CAS |

Leslie, C. (2009). Analysing environmental radioactivity in soils and sediments using high-purity germanium gamma detectors at CSIRO Land and Water: Procedures and protocols. CSIRO Land and Water Science Report 12/09 CSIRO. Available at http://www.clw.csiro.au/publications/science/2009/sr12-09.pdf [accessed July 2009].

Leslie, C., and Hancock, G. J. (2008). Estimating the date corresponding to the horizon of the first detection of 137Cs and 239+240Pu in sediment cores. Journal of Environmental Radioactivity 99, 483–490.
Estimating the date corresponding to the horizon of the first detection of 137Cs and 239+240Pu in sediment cores.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1cXjtFShtrs%3D&md5=6899954cbfd945c4d37154dba8b0c855CAS | 17964699PubMed |

Love, A. J., Herczeg, A. L., Armstrong, D., Stadter, F., and Mazor, E. (1993). Groundwater flow regime within the Gambier Embayment of the Otway Basin, Australia: evidence from hydraulics and hydrochemistry. Journal of Hydrology 143, 297–338.
Groundwater flow regime within the Gambier Embayment of the Otway Basin, Australia: evidence from hydraulics and hydrochemistry.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK3sXlsVKjsLc%3D&md5=d6c72d32a33bb6d4621c72da698c9345CAS |

Monteiro, F. F., Cordeiro, R. C., Santelli, R. E., Machado, W., Evangelista, H., Villar, L. S., Viana, L. C. A., and Bidone, E. D. (2012). Sedimentary geochemical record of historical anthropogenic activities affecting Guanabara Bay (Brazil) environmental quality. Environmental Earth Sciences 65, 1661–1669.
Sedimentary geochemical record of historical anthropogenic activities affecting Guanabara Bay (Brazil) environmental quality.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC38XivFWksLk%3D&md5=213036c384e3270eec5dbb9f9255ea78CAS |

Morse, J. W., and Luther, G. W. (1999). Chemical influences on trace metal-sulfide interactions in anoxic sediments. Geochimica et Cosmochimica Acta 63, 3373–3378.
Chemical influences on trace metal-sulfide interactions in anoxic sediments.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK1MXotVCksLY%3D&md5=aba1443ee213ef947f741eceaaf99524CAS |

Morse, J. W., Gledhill, D. K., and Millero, F. J. (2003). CaCO3 precipitation kinetics in waters from the Great Bahama Bank: implications for the relationship between Bank hydrochemistry and whitings. Geochimica et Cosmochimica Acta 67, 2819–2826.
CaCO3 precipitation kinetics in waters from the Great Bahama Bank: implications for the relationship between Bank hydrochemistry and whitings.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3sXlslektb4%3D&md5=ec399ed0416bee7e0b34f5ca0707f002CAS |

NHMRC–NRMMC (2011). ‘Australian Drinking Water Guidelines.’ (National Health and Medical Research Council and Natural Resource Management Ministerial Council: Canberra.) Available at http://www.nhmrc.gov.au/_files_nhmrc/publications/attachments/eh52_aust_drinking_water_guidelines_update_120710_0.pdf [accessed October 2011].

NRMMC–EPHC–AHMC (2006). ‘Australian Guidelines for Water Recycling: Managing Health and Environmental Risks (Phase 1).’ (Natural Resource Management Ministerial Council, Environment Protection and Heritage Council and Australian Health Ministers Conference: Canberra.) Available at http://www.ephc.gov.au/sites/default/files/WQ_AGWR_GL__Managing_Health_Environmental_Risks_Phase1_Final_200611.pdf. [accessed February 2007].

NRMMC–EPHC–NHMRC (2009a). ‘Australian Guidelines for Water Recycling (Phase 2): Managed Aquifer Recharge.’ (Natural Resource Management Ministerial Council, Environment Protection and Heritage Council and National Health and Medical Research Council: Canberra.) Available at http://www.ephc.gov.au/sites/default/files/WQ_AGWR_GL__Managed_Aquifer_Recharge_Final_200907.pdf. [accessed August 2009].

NRMMC–EPHC–NHMRC (2009b). ‘Australian Guidelines for Water Recycling (Phase 2): Stormwater Harvesting and Reuse.’ (Natural Resource Ministerial Management Council, Environment Protection and Heritage Council and National Health and Medical Research Council: Canberra.) Available at http://www.ephc.gov.au/sites/default/files/WQ_AGWR_GL__Stormwater_Harvesting_and_Reuse_Final_200907.pdf. [accessed October 2009].

Oldfield, F., Appleby, P. G., and Battarbee, R. W. (1978). Alternative 210Pb dating: results from the New Guinea Highlands and Lough Erne. Nature 271, 339–342.
Alternative 210Pb dating: results from the New Guinea Highlands and Lough Erne.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaE1cXksVKlu7w%3D&md5=9b7c2d087cba5cf74123b1a6253ccc2eCAS |

Robbins, J. A. (1978). Geochemical and geophysical applications of radioactive lead. In ‘The Biogeochemistry of Lead in the Environment Part A’. (Ed. J. O. Nriagu.) pp. 285–393. (Elsevier Scientific: Amsterdam.)

Santschi, P. H., Li, Y.-H., Adler, D. M., Amdurer, M., Bell, J., and Nyffeler, U. P. (1983). The relative mobility of natural (Th, Pb and Po) and fallout (Pu, Am, Cs) radionuclides in the coastal marine environment: results from model ecosystems (MERL) and Narrangansett Bay. Geochimica et Cosmochimica Acta 47, 201–210.
The relative mobility of natural (Th, Pb and Po) and fallout (Pu, Am, Cs) radionuclides in the coastal marine environment: results from model ecosystems (MERL) and Narrangansett Bay.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaL3sXhtFWisb4%3D&md5=5369a9b382cd34e4b0ab4211a9f29cf0CAS |

Schottler, S. P., and Engstrom, D. R. (2006). A chronological assessment of Lake Okeechobee (Florida) sediments using multiple dating markers. Journal of Paleolimnology 36, 19–36.
A chronological assessment of Lake Okeechobee (Florida) sediments using multiple dating markers.Crossref | GoogleScholarGoogle Scholar |

Selig, U., and Leipe, T. (2008). Stratigraphy of nutrients and metals in sediment profiles of two dimictic lakes in north–Eastern Germany. Environmental Geology (New York, N.Y.) 55, 1099–1107.
Stratigraphy of nutrients and metals in sediment profiles of two dimictic lakes in north–Eastern Germany.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1cXhtFKrsbrM&md5=ffba378102a4de8d444886dab1321e27CAS |

Selig, U., Leipe, T., and Dörfler, W. (2007). Paleolimnological records of nutrient and metal profiles in prehistoric, historic and modern sediments of three lake in North-eastern Germany. Water, Air, and Soil Pollution 184, 183–194.
Paleolimnological records of nutrient and metal profiles in prehistoric, historic and modern sediments of three lake in North-eastern Germany.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2sXpsFSjs74%3D&md5=1bd40d7b4a390d421b89df6af3a308c9CAS |

Sholkovitz, E. R. (1983). The geochemistry of plutonium in fresh and marine water environments. Earth-Science Reviews 19, 95–161.
The geochemistry of plutonium in fresh and marine water environments.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaL3sXit1Wgur4%3D&md5=521098063ca26a7ab72571aab04cc5fdCAS |

Tamuly, A. (1970). Physical and chemical limnology of the Blue Lake of Mount Gambier. Transactions of the Royal Society of South Australia 94, 71–86.

Telfer, A. (2000). Identification of processes regulating the colour and colour change in an oligotropthic, hardwater, groundwater-fed lake, Blue Lake, Mount Gambier, South Australia. Lakes and Reservoirs: Research and Management 5, 161–176.
Identification of processes regulating the colour and colour change in an oligotropthic, hardwater, groundwater-fed lake, Blue Lake, Mount Gambier, South Australia.Crossref | GoogleScholarGoogle Scholar |

Torgersen, T., and Longmore, M. E. (1984). 137Cs in the highly organic sediment of Hidden Lake, Fraser Island, Queensland. Marine and Freshwater Research 35, 537–548.
137Cs in the highly organic sediment of Hidden Lake, Fraser Island, Queensland.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaL2cXlsFGhtLo%3D&md5=c0d8147152e1ac960d94215359966a21CAS |

Turoczy, N. (2002). Calcium chemistry of Blue Lake, Mt Gambier, Australia, and relevance to remarkable seasonal colour changes. Archiv fuer Hydrobiologie 156, 1–9.
Calcium chemistry of Blue Lake, Mt Gambier, Australia, and relevance to remarkable seasonal colour changes.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3sXhsFahsLo%3D&md5=0c5a3b493cbc8982aedf2da017384ddaCAS |

URS. (2000). Stormwater discharge monitoring, 1999, for Mount Gambier. URS, November 2000.

URS. (2003). 2001/02 Mount Gambier stormwater discharge monitoring. URS, June 2003.

Vanderzalm, J., Dillon, P., Page, D., Marvanek, S., Lamontagne, S., Cook, P., King, H., Dighton, J., Sherman, B., and Adams, L. (2009). Protecting the Blue Lake from land use impacts. CSIRO: Water for a Healthy Country National Research Flagship. Available at http://www.clw.csiro.au/publications/waterforahealthycountry/2009/wfhc-protecting-blue-lake.pdf [accessed October 2009].

Vanderzalm, J. L., Page, D. W., and Dillon, P. J. (2011). Application of a risk management framework to a drinking water supply augmented by stormwater recharge. Water Science and Technology 63, 719–726.
Application of a risk management framework to a drinking water supply augmented by stormwater recharge.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3MXks1Gjs7w%3D&md5=23da18a5bbcd0f2c8cb70097df728c31CAS | 21330719PubMed |

Waterhouse, J. D. (1977). The hydrogeology of the Mount Gambier area. Report of Investigations 48. Department of Mines Geological Survey of South Australia, Adelaide, Australia.

Wolf, L., Morris, B., and Burn, S. (2006). ‘AISUWRS: Urban Water Resources Toolbox.’ (IWA Publishing: London.)

Wong, K. M. (1971). Radiochemical determinations of plutonium in sea water, sediments and marine organisms. Analytica Chimica Acta 56, 355–364.
Radiochemical determinations of plutonium in sea water, sediments and marine organisms.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaE38Xjslalsg%3D%3D&md5=3c6cc53c597db86178bb6eb71a03b96bCAS | 5131429PubMed |