Register      Login
Marine and Freshwater Research Marine and Freshwater Research Society
Advances in the aquatic sciences
RESEARCH ARTICLE

Nutrient status of seagrasses cannot be inferred from system-scale distribution of phosphorus in Shark Bay, Western Australia

Matthew W. Fraser A E , Gary A. Kendrick A , Pauline F. Grierson B , James W. Fourqurean C , Mathew A. Vanderklift D and Diana I. Walker A
+ Author Affiliations
- Author Affiliations

A School of Plant Biology and The UWA Oceans Institute, The University of Western Australia, Crawley, WA 6009, Australia.

B School of Plant Biology and Ecosystem Research Group, The University of Western Australia, Crawley, WA 6009, Australia.

C Department of Biological Sciences and Southeast Environmental Research Center, Florida International University, North Miami, FL 33181, USA.

D CSIRO Wealth from Oceans Flagship, Private Bag 5, Wembley, WA 6913, Australia.

E Corresponding author. Email: matthew.fraser@uwa.edu.au

Marine and Freshwater Research 63(11) 1015-1026 https://doi.org/10.1071/MF12026
Submitted: 30 January 2012  Accepted: 20 August 2012   Published: 26 November 2012

Abstract

Differences in phosphorus (P) availability can influence the ecology and physiology of seagrass communities; and are usually inferred from changes in the relative P content in seagrass leaves. Shark Bay is a subtropical marine embayment, with decreasing P concentrations in the water column and sediments from north to south across the entire embayment. We examined the P and nitrogen (N) content of seagrass leaves and P content of sediments across the Faure Sill and Wooramel delta region of Shark Bay, to determine whether the leaf content of seagrasses in Shark Bay also decreased from north to south over smaller spatial scales. Nutrient content of Amphibolis antarctica and Halodule uninervis were highly variable and were not strongly correlated with sediment P concentrations. Mean N : P ratios of seagrasses (<33.5) were not indicative of P limitation, as has been previously assumed for Shark Bay. We conclude that availability of P for uptake by seagrasses across Shark Bay may be highly localised and cannot be predicted from system-scale gradients (>100 km) of sedimentary P distributions. We suggest that P availability to seagrasses is more likely a complex function of differing nutrient inputs, rates of delivery to the plants and cycling rates.

Additional keywords: Amphibolis antarctica, calcareous, carbonate, C : N : P ratios, Halodule uninervis, river floods, salinity.


References

Armitage, A. R., and Fourqurean, J. W. (2006). The short-term influence of herbivory near patch reefs varies between seagrass species. Journal of Experimental Marine Biology and Ecology 339, 65–74.
The short-term influence of herbivory near patch reefs varies between seagrass species.Crossref | GoogleScholarGoogle Scholar |

Armitage, A. R., Frankovich, T. A., Heck, K. L., and Fourqurean, J. W. (2005). Experimental nutrient enrichment causes complex changes in seagrass, microalgae, and macroalgae community structure in Florida Bay. Estuaries 28, 422–434.
Experimental nutrient enrichment causes complex changes in seagrass, microalgae, and macroalgae community structure in Florida Bay.Crossref | GoogleScholarGoogle Scholar |

Armitage, A. R., Frankovich, T. A., and Fourqurean, J. W. (2011). Long-term effects of adding nutrients to an oligotrophic coastal environment. Ecosystems (New York, N.Y.) 14, 430–444.
Long-term effects of adding nutrients to an oligotrophic coastal environment.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3MXktVSgsbw%3D&md5=3f2524190ae4afc6ab7cc2270122f161CAS |

Atkinson, M. J. (1987). Low phosphorus sediments in a hypersaline marine bay. Estuarine, Coastal and Shelf Science 24, 335–347.
Low phosphorus sediments in a hypersaline marine bay.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaL2sXksVGrs7g%3D&md5=dd50bd1e4d5e7dea82658d7f3f3074baCAS |

Atkinson, M. J., and Smith, S. V. (1983). C:N:P ratios of benthic marine plants. Limnology and Oceanography 28, 568–574.
C:N:P ratios of benthic marine plants.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaL3sXktlOmur4%3D&md5=e053ee30dd4a6056e07fa240360af7c6CAS |

Broberg, O., and Pettersson, K. (1988). Analytical determination of orthophosphate in water. Hydrobiologia 170, 45–59.
Analytical determination of orthophosphate in water.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaL1MXhsl2jtr4%3D&md5=95fb66c8ad5a6501846849919b2e82f4CAS |

Bureau of Meteorology (2011). ‘Gascoyne river flood.’ Availalble at http://www.bom.gov.au/wa/sevwx/gascoyne_river/gascoyne_river.shtml [accessed 25 October 2011].

Burling, M. C., Ivey, G. N., and Pattiaratchi, C. B. (1999). Connectively driven exchange in a shallow coastal embayment. Continental Shelf Research 19, 1599–1616.
Connectively driven exchange in a shallow coastal embayment.Crossref | GoogleScholarGoogle Scholar |

Burling, M. C., Pattiaratchi, C. B., and Ivey, G. N. (2003). The tidal regime of Shark Bay, Western Australia. Estuarine, Coastal and Shelf Science 57, 725–735.
The tidal regime of Shark Bay, Western Australia.Crossref | GoogleScholarGoogle Scholar |

Cambridge, M. L., and Kendrick, G. A. (2009). Contrasting responses of seagrass transplants (Posidonia australis) to nitrogen, phosphorus and iron addition in an estuary and a coastal embayment. Journal of Experimental Marine Biology and Ecology 371, 34–41.
Contrasting responses of seagrass transplants (Posidonia australis) to nitrogen, phosphorus and iron addition in an estuary and a coastal embayment.Crossref | GoogleScholarGoogle Scholar |

Duarte, C. M. (1990). Seagrass nutrient content. Marine Ecology Progress Series 67, 201–207.
Seagrass nutrient content.Crossref | GoogleScholarGoogle Scholar |

Elser, J. J., Bracken, M. E. S., Cleland, E. E., Gruner, D. S., Harpole, W. S., Hillebrand, H., Ngai, J. T., Seabloom, E. W., Shurin, J. B., and Smith, J. E. (2007). Global analysis of nitrogen and phosphorus limitation of primary producers in freshwater, marine and terrestrial ecosystems. Ecology Letters 10, 1135–1142.
Global analysis of nitrogen and phosphorus limitation of primary producers in freshwater, marine and terrestrial ecosystems.Crossref | GoogleScholarGoogle Scholar |

Erftemeijer, P. L. A., and Middel, J. J. (1995). Mass balance constraints on nutrient cycling in tropical seagrass beds. Aquatic Botany 50, 21–36.
Mass balance constraints on nutrient cycling in tropical seagrass beds.Crossref | GoogleScholarGoogle Scholar |

Erftemeijer, P. L. A., Stapel, J., Smekens, M. J. E., and Drossaert, W. M. E. (1994). The limited effect of in situ phosphorus and nitrogen additions to seagrass beds on carbonate and terrigenous sediment in South Sulawesi, Indonesia. Journal of Experimental Marine Biology and Ecology 182, 123–140.
The limited effect of in situ phosphorus and nitrogen additions to seagrass beds on carbonate and terrigenous sediment in South Sulawesi, Indonesia.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK2MXitFCmtbo%3D&md5=ef667d4b90aef663e5e012617971035eCAS |

Eyre, B., Ferguson, A. J. P., Webb, A., Maher, D., and Oakes, J. M. (2011). Denitrification, N-fixation and nitrogen and phosphorus fluxes in different benthic habitats and their contribution to the nitrogen and phosphorus budgets of a shallow oligotrophic sub-tropical coastal system (southern Moreton Bay, Australia). Biogeochemistry 102, 111–133.
Denitrification, N-fixation and nitrogen and phosphorus fluxes in different benthic habitats and their contribution to the nitrogen and phosphorus budgets of a shallow oligotrophic sub-tropical coastal system (southern Moreton Bay, Australia).Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3cXhsFOjsL7I&md5=e88f483f19d07e819356cf9ffc732ad5CAS |

Ferdie, M., and Fourqurean, J. W. (2004). Responses of seagrass communities to fertilization along a gradient of relative availability of nitrogen and phosphorus in a carbonate environment. Limnology and Oceanography 49, 2082–2094.
Responses of seagrass communities to fertilization along a gradient of relative availability of nitrogen and phosphorus in a carbonate environment.Crossref | GoogleScholarGoogle Scholar |

Fourqurean, J. W., and Rutten, L. M. (2003). Competiting goals of spatial and temporal resolution: monitoring seagrass communities on the regional scale. In ‘Monitoring Ecosystems: Interdisciplinary Approaches for Evaluating Ecoregional Initiatives’. (Eds D. E. Busch and J. C. Trexler.) pp. 257–289. (Island Press: Washington, DC.)

Fourqurean, J. W., and Zieman, J. C. (1992). Phosphorus limitation of primary production in Florida Bay: evidence from C : N : P ratios of the dominant seagrass Thalassia testudinum. Limnology and Oceanography 37, 162–171.
Phosphorus limitation of primary production in Florida Bay: evidence from C : N : P ratios of the dominant seagrass Thalassia testudinum.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK38Xktleitbs%3D&md5=5bee7e8b99f1608ecb2b3c8104e86969CAS |

Fourqurean, J. W., and Zieman, J. C. (2002). Nutrient content of the seagrass Thalassia testudinum reveals regional patterns of relative availability of nitrogen and phosphorus in the Florida Keys USA. Biogeochemistry 61, 229–245.
Nutrient content of the seagrass Thalassia testudinum reveals regional patterns of relative availability of nitrogen and phosphorus in the Florida Keys USA.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD38XntVKjurY%3D&md5=1d7518f5d2ae5464f051214fdec7aefeCAS |

Fourqurean, J. W., Jones, R. D., and Zieman, J. C. (1993). Processes influencing water column nutrient characteristics and phosphorus limitation of phytoplankton biomass in Florida Bay, FL, USA: inferences from spatial distributions. Estuarine, Coastal and Shelf Science 36, 295–314.
Processes influencing water column nutrient characteristics and phosphorus limitation of phytoplankton biomass in Florida Bay, FL, USA: inferences from spatial distributions.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK3sXlsVKjsb0%3D&md5=b37dbcb38d3f6ba9726736af93ab236eCAS |

Fourqurean, J. W., Powell, G. V. N., Kenworthy, W. J., and Zieman, J. C. (1995). The effects of long-term manipulation of nutrient supply on competition between the seagrasses Thalassia testudinum and Halodule wrightii in Florida Bay. Oikos 72, 349–358.
The effects of long-term manipulation of nutrient supply on competition between the seagrasses Thalassia testudinum and Halodule wrightii in Florida Bay.Crossref | GoogleScholarGoogle Scholar |

Fourqurean, J. W., Escorcia, S. P., Anderson, W. T., and Zieman, J. C. (2005). Spatial and seasonal variability in elemental content, δ13C, and δ15N of Thalassia testudinum from south Florida and its implications for ecosystem studies. Estuaries 28, 447–461.
Spatial and seasonal variability in elemental content, δ13C, and δ15N of Thalassia testudinum from south Florida and its implications for ecosystem studies.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2MXpslSmtb4%3D&md5=54b07885f409bb5c9adb06a7285cdadfCAS |

Fourqurean, J. W., Kendrick, G. A., Collins, L. S., Chambers, R. M., and Vanderklift, M. A. (2012). Carbon, nitrogen and phosphorus storage in subtropical seagrass meadows: examples from Florida Bay and Shark Bay. Marine and Freshwater Research 63, 967–983.
Carbon, nitrogen and phosphorus storage in subtropical seagrass meadows: examples from Florida Bay and Shark Bay.Crossref | GoogleScholarGoogle Scholar |

Hemminga, M. A., Marbà, N., and Stapel, J. (1999). Leaf nutrient resorption, leaf lifespan and the retention of nutrients in seagrass systems. Aquatic Botany 65, 141–158.
Leaf nutrient resorption, leaf lifespan and the retention of nutrients in seagrass systems.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK1MXntVeqt7s%3D&md5=4f85be828124a3a2d5a603c1c696e22dCAS |

Herbert, D. A., and Fourqurean, J. W. (2008). Ecosystem structure and function still altered two decades after short-term fertilization of a seagrass meadow. Ecosystems 11, 688–700.
Ecosystem structure and function still altered two decades after short-term fertilization of a seagrass meadow.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1cXhtVOnt7bE&md5=5fecf075999ccf2cc16b183eb683a6e5CAS |

Herbert, D. A., and Fourqurean, J. W. (2009). Phosphorus availability and salinity control productivity and demography of the seagrass Thalassia testudinum in Florida Bay. Estuaries and Coasts 32, 188–201.
Phosphorus availability and salinity control productivity and demography of the seagrass Thalassia testudinum in Florida Bay.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1MXntFCgtA%3D%3D&md5=3de024f8799b5b2064976bd65e0d4f36CAS |

Holmer, M., Andersen, F. O., Nielsen, S. L., and Boschker, H. T. S. (2001). The importance of mineralisation based on sulfate reduction for nutrient regeneration in tropical seagrass sediments. Aquatic Botany 71, 1–17.
The importance of mineralisation based on sulfate reduction for nutrient regeneration in tropical seagrass sediments.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3MXlt1SgsLY%3D&md5=21a8f8ac8d9b8f455c69480fdc026671CAS |

Hovey, R. K., Cambridge, M. L., and Kendrick, G. A. (2012). Season and sediment nutrient additions affect root architecture in the temperate seagrasses Posidonia australis and P. sinuosa. Marine Ecology Progress Series 446, 23–30.
Season and sediment nutrient additions affect root architecture in the temperate seagrasses Posidonia australis and P. sinuosa.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC38XlsFeqsr0%3D&md5=7ff50d4d9b50e1f6b374862c48d7fb9eCAS |

Howarth, R. W. (1988). Nutrient limitation of net primary production in marine ecosystems. Annual Review of Ecology and Systematics 19, 89–110.
Nutrient limitation of net primary production in marine ecosystems.Crossref | GoogleScholarGoogle Scholar |

Johnson, M. W., Heck, K. L., and Fourqurean, J. W. (2006). Nutrient content of seagrasses and epiphytes in the northern Gulf of Mexico: evidence of phosphorus and nitrogen limitation. Aquatic Botany 85, 103–111.
Nutrient content of seagrasses and epiphytes in the northern Gulf of Mexico: evidence of phosphorus and nitrogen limitation.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD28XlsFOhsbw%3D&md5=5fdd873507a6ce5ce8493c834c02bf77CAS |

Koch, E. W., Ackerman, J. D., Verduin, J. J., and van Keulen, M. (2005). Fluid dynamics in seagrass ecology – from molecules to ecosystem. In ‘Seagrasses: Biology, Ecology and Conservation’. pp. 193–225. (Springer: Dordrecht, The Netherlands.)

Logan, B. W., and Cebulski, D. E. (1970). Sedimentary environments of Shark Bay, Western Australia. In ‘Carbonate Sedimentation and Environments, Shark Bay, Western Australia’. (Ed. B. W. Logan.) pp. 1–36. (The American Association of Petroleum Geologists: Tulsa, OK.)

McKee, L. J., Eyre, B. D., and Hossain, S. (2000). Transport and retention of nitrogen and phosphorus in the sub-tropical Richmond River estuary, Australia – a budget approach. Biogeochemistry 50, 241–278.
Transport and retention of nitrogen and phosphorus in the sub-tropical Richmond River estuary, Australia – a budget approach.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3cXmtVCjtLg%3D&md5=d1b8b7778dea7f6a99aa50a856991893CAS |

Mitchell, A. W., Bramley, R. G. V., and Johnson, A. K. L. (1997). Export of nutrients and suspended sediments during a cyclone-mediated flood event in the Herbert River catchment, Australia. Marine and Freshwater Research 48, 79–88.
Export of nutrients and suspended sediments during a cyclone-mediated flood event in the Herbert River catchment, Australia.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK2sXjtFemtbo%3D&md5=f7776a8d5f2e41e75b9bfbcf1f3cbd80CAS |

Murphy, J., and Riley, J. P. (1962). A modified single solution method for the determination of phosphate in natural waters. Analytica Chimica Acta 27, 31–36.
A modified single solution method for the determination of phosphate in natural waters.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaF38XksVyntr8%3D&md5=943bf38258e26cfd1c2279b5ccbbcf4eCAS |

Nielsen, O. I., Koch, M. S., and Madden, C. J. (2007). Inorganic phosphorus uptake in a carbonate-dominated seagrass ecosystem. Estuaries and Coasts 30, 827–839.
| 1:CAS:528:DC%2BD1cXht12lsb8%3D&md5=b70707c0c007a19dc08ae4573d122576CAS |

Nott, J. (2011). A 6000 year tropical cyclone record from Western Australia. Quaternary Science Reviews 30, 713–722.
A 6000 year tropical cyclone record from Western Australia.Crossref | GoogleScholarGoogle Scholar |

Paul, D., Skrzypek, G., and Forizs, I. (2007). Normalization of measured stable isotopic compositions to isotope reference scales – a review. Rapid Communications in Mass Spectrometry 21, 3006–3014.
Normalization of measured stable isotopic compositions to isotope reference scales – a review.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2sXhtVyksL7L&md5=8d6fa3622cb1838da850f5f36d1e6eeaCAS |

Pedersen, M. F., Paling, E. I., and Walker, D. I. (1997). Nitrogen uptake and allocation in the seagrass Amphibolis antarctica. Aquatic Botany 56, 105–117.
Nitrogen uptake and allocation in the seagrass Amphibolis antarctica.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK2sXisleiu78%3D&md5=c240ae746891a47b8f25f1c9c8fdfe1dCAS |

Price, R. M., Skrzypek, G., Grierson, P. F., Swart, P. K., and Fourqurean, J. W. (2012). The use of stable isotopes of oxygen and hydrogen to identify water sources in two hypersaline estuaries with different hydrologic regimes. Marine and Freshwater Research 63, 952–966.
The use of stable isotopes of oxygen and hydrogen to identify water sources in two hypersaline estuaries with different hydrologic regimes.Crossref | GoogleScholarGoogle Scholar |

R Development Core Team (2012). R: A Language and Environment for Statistical Computing (Version 2.13.1). R Foundation for Statistical Computing, Vienna, Austria. Available at http://www.R-project.org [accessed 28 September 12]

Ralph, P. J., Tomasko, D. A., Moore, K. A., Seddon, S., and Macinnis-Ng, C. M. O. (2005). Human impacts on seagrasses: eutrophication, sedimentation, and contamination. In ‘Seagrasses: Biology, Ecology and Conservation’. (Eds A. W. D. Larkum, R. J. Orth and C. M. Duarte.) pp. 567–593. (Springer: Dordrecht, The Netherlands.)

Short, F. T. (1987). Effects of sediment nutrients on seagrasses: literature review and mesocosm experiment. Aquatic Botany 27, 41–57.
Effects of sediment nutrients on seagrasses: literature review and mesocosm experiment.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaL2sXitFejtrc%3D&md5=af70fa96948f359ae9bfeb5c3d413e6cCAS |

Smith, S. V. (1984). Phosphorus limitation of net production in a confined aquatic ecosystem. Nature 307, 626–627.
Phosphorus limitation of net production in a confined aquatic ecosystem.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaL2cXhtVykur0%3D&md5=8ff3fd50b697f4fc38f346518807fa6eCAS |

Smith, S., and Atkinson, M. (1983). Mass balance of carbon and phosphorus in Shark Bay, Western Australia. Limnology and Oceanography 28, 625–639.
Mass balance of carbon and phosphorus in Shark Bay, Western Australia.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaL3sXltFSgsLY%3D&md5=28825cacfaab30d66e36e58af857e441CAS |

Solórzano, L., and Sharp, J. H. (1980). Determination of total dissolved phosphorus and particulate phosphorus in natural waters. Limnology and Oceanography 25, 754–758.
Determination of total dissolved phosphorus and particulate phosphorus in natural waters.Crossref | GoogleScholarGoogle Scholar |

Technicon (1977). Individual/Simultaneous determination of Nitrogen and/or Phosphorus in BD acid digests. Industrial Method No. 329-374 W/B. Technicon Industrial Systems, New York.

Udy, J. W., Dennison, W. C., Lee Long, W. J., and McKenzie, L. J. (1999). Responses of seagrass to nutrients in the Great Barrier Reef, Australia. Marine Ecology Progress Series 185, 257–271.
Responses of seagrass to nutrients in the Great Barrier Reef, Australia.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3cXitF2ksg%3D%3D&md5=e4621ae440504fb1c53425a88c9a2b95CAS |

Walker, D. I. (1985). Correlations between salinity and growth of the seagrass Amphibolis antarctica (labill.) Sonder & Aschers., in Shark Bay, Western Australia, using a new method for measuring production rate. Aquatic Botany 23, 13–26.
Correlations between salinity and growth of the seagrass Amphibolis antarctica (labill.) Sonder & Aschers., in Shark Bay, Western Australia, using a new method for measuring production rate.Crossref | GoogleScholarGoogle Scholar |

Walker, D. I. (1989). Regional studies – seagrasses in Shark Bay, the foundations of an ecosystem. In ‘Biology of Seagrasses: a Treatise on the Biology of Seagrasses with Special Reference to the Australian Region’. (Eds A. W. D. Larkum, A. J. McComb and S. A. Shepherd.) pp. 182–210. (Elsevier Science: Amsterdam.)

Walker, D. I., Kendrick, G. A., and McComb, A. J. (1988). The distribution of seagrass species in Shark Bay, Western Australia, with notes on their ecology. Aquatic Botany 30, 305–317.
The distribution of seagrass species in Shark Bay, Western Australia, with notes on their ecology.Crossref | GoogleScholarGoogle Scholar |

Wernberg, T., Russell, B. D., Moore, P., Ling, S. D., Smale, D. A., Campbell, A., Coleman, M. A., Steinberg, P. D., Kendrick, G. A., and Connell, S. D. (2011). Impacts of climate change in a global hotspot for temperate marine biodiversity and ocean warming. Journal of Experimental Marine Biology and Ecology 400, 7–16.