Register      Login
Marine and Freshwater Research Marine and Freshwater Research Society
Advances in the aquatic sciences
RESEARCH ARTICLE

Bomb radiocarbon dating of three important reef-fish species using Indo-Pacific Δ14C chronologies

Allen H. Andrews A F , John M. Kalish B C , Stephen J. Newman D and Justine M. Johnston B E
+ Author Affiliations
- Author Affiliations

A NOAA Fisheries, Pacific Islands Fisheries Science Center, 99-193 Aiea Heights Drive #417, Aiea, HI 96701, USA.

B Division of Evolution, Ecology and Genetics, Research School of Biology, Australian National University, Canberra, ACT 0200, Australia.

C Present address: Australian Safeguards and Non-Proliferation Office, Department of Foreign Affairs and Trade, Barton, ACT 0221, Australia.

D Western Australian Fisheries and Marine Research Laboratories, Department of Fisheries, Government of Western Australia, PO Box 20, North Beach, WA 6920, Australia.

E Australian Fisheries Management Authority, PO Box 7051, Canberra BC, ACT 2610, Australia.

F Corresponding author. Email: allen.andrews@noaa.gov

Marine and Freshwater Research 62(11) 1259-1269 https://doi.org/10.1071/MF11080
Submitted: 6 April 2011  Accepted: 15 July 2011   Published: 29 September 2011

Abstract

Demersal reef fishes of the Indo-Pacific are under increasing pressure as a fisheries resource, yet many of the important life history characteristics required for suitable management are poorly known. The three fish species, eightbar grouper (Hyporthodus octofasciatus), ruby snapper (Etelis carbunculus) and the spangled emperor (Lethrinus nebulosus), are important components of fisheries and ecosystems throughout the Indo-Pacific. Despite their importance, age and growth information is incomplete. Age has been estimated for E. carbunculus and L. nebulosus, but validated age beyond the first few years is lacking and for H. octofasciatus no age estimates exist. Bomb radiocarbon dating can provide age estimates that are independent of growth-zone counting, but only if appropriate reference Δ14C chronologies exist. In this study, a series of Δ14C records from hermatypic corals was assembled to provide a basis for bomb radiocarbon dating in the western Indo-Pacific region. Results provided (1) valid age estimates for comparison to age estimates from two facilities investigating growth-zones in otolith thin sections; (2) support for age estimation protocols using otolith thin sections; and (3) the information necessary for further refinement of age estimation procedures. Estimates of longevity from bomb radiocarbon dating agree with some prior studies: H. octofasciatus, E. carbunculus and L. nebulosus all being long-lived species with life spans of at least 43, 35 and 28 years respectively.

Additional keywords: age validation, carbon-14, Epinephelidae, Indian Ocean, Lethrinidae, longevity, Lutjanidae.


References

Andrews, A. H., Kerr, L. A., Cailliet, G. M., Brown, T. A., Lundstrom, C. C., et al. (2007). Age validation of canary rockfish (Sebastes pinniger) using two independent otolith techniques: lead–radium and bomb radiocarbon dating. Marine and Freshwater Research 58, 531–541.
Age validation of canary rockfish (Sebastes pinniger) using two independent otolith techniques: lead–radium and bomb radiocarbon dating.Crossref | GoogleScholarGoogle Scholar |

Andrews, A. H., Tracey, D. M., and Dunn, M. R. (2009). Lead–radium dating of orange roughy (Hoplostethus altanticus): validation of a centenarian life span. Canadian Journal of Fisheries and Aquatic Sciences 66, 1130–1140.
Lead–radium dating of orange roughy (Hoplostethus altanticus): validation of a centenarian life span.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1MXotlegtr8%3D&md5=048912461c5c557aef12691e3742647eCAS |

Bard, E., Arnold, M., Toggweiler, J. R., Maurice, P., and Duplessy, J.-C. (1989). Bomb 14C in the Indian Ocean measured by accelerator mass spectrometry: oceanographic implications. Radiocarbon 31, 510–522.

Beamish, R. J., McFarlane, G. A., and Benson, A. (2006). Longevity overfishing. Progress in Oceanography 68, 289–302.
Longevity overfishing.Crossref | GoogleScholarGoogle Scholar |

Broecker, W. S., and Peng, T.-H. (1982). ‘Tracers in the Sea.’ (Lamont-Doherty Geological Observatory: Palisades, NY.)

Cailliet, G. M., and Andrews, A. H. (2008). Age-validated longevity of fishes: its importance for sustainable fisheries. In ‘Fisheries for Global Welfare and Environment’. (Eds K. Tsukamoto, T. Kawamura, T. Takeuchi, T. D. Beard, Jr. and M. J. Kaiser) pp. 103–120. (TERRAPUB: Tokyo.)

Campana, S. E. (1997). Use of radiocarbon from nuclear fallout as a dated marker in the otoliths of haddock Melanogrammus aeglefinus. Marine Ecology Progress Series 150, 49–56.
Use of radiocarbon from nuclear fallout as a dated marker in the otoliths of haddock Melanogrammus aeglefinus.Crossref | GoogleScholarGoogle Scholar |

Druffel, E. R. M., and Linick, T. W. (1978). Radiocarbon in annual coral rings of Florida. Geophysical Research Letters 5, 913–916.
Radiocarbon in annual coral rings of Florida.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaE1MXktFKgug%3D%3D&md5=52993281e50b07568cf9990dad592698CAS |

Ebisawa, A., and Ozawa, T. (2009). Life-history traits of eight Lethrinus species from two local populations in waters off the Ryukyu Islands. Fisheries Science 75, 553–566.
Life-history traits of eight Lethrinus species from two local populations in waters off the Ryukyu Islands.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1MXms1ehs7g%3D&md5=87d22a9be72b6eb21e2f2b94cb01788fCAS |

Ewing, G. P., Lyle, J. M., Murphy, R. J., Kalish, J. M., and Ziegler, P. E. (2007). Validation of age and growth in a long-lived temperate reef fish using otolith structure, oxytetracycline and bomb radiocarbon methods. Marine and Freshwater Research 58, 944–955.
Validation of age and growth in a long-lived temperate reef fish using otolith structure, oxytetracycline and bomb radiocarbon methods.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2sXht1yit7jM&md5=25b4a3f9ef63e95e32ac90638af5a669CAS |

Fallon, S. J., and Guilderson, T. P. (2008). Surface water processes in the Indonesian throughflow as documented by high-resolution coral Δ14C record. Journal of Geophysical Research 113, C09001.
Surface water processes in the Indonesian throughflow as documented by high-resolution coral Δ14C record.Crossref | GoogleScholarGoogle Scholar |

Fry, G. C., Brewer, D. T., and Venables, W. N. (2006). Vulnerability of deepwater demersal fishes to commercial fishing: evidence from a study around a tropical volcanic seamount in Papua New Guinea. Fisheries Research 81, 126–141.
Vulnerability of deepwater demersal fishes to commercial fishing: evidence from a study around a tropical volcanic seamount in Papua New Guinea.Crossref | GoogleScholarGoogle Scholar |

Grandcourt, E. M., Al Abdessalaam, T. Z., Al Shamsi, A. T., and Francis, F. (2006). Biology and assessment of the painted sweetlips (Diagramma pictum (Thunberg 1792)) and the spangled emperor (Lethrinus nebulosus (Forsskål 1775)) in the southern Arabian Gulf. Fishery Bulletin 104, 75–88.

Grumet, N. S., Guilderson, T. P., and Dunbar, R. B. (2002). Meridional transport in the Indian Ocean traced by coral radiocarbon. Journal of Marine Research 60, 725–742.
Meridional transport in the Indian Ocean traced by coral radiocarbon.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3sXit1emurc%3D&md5=890244eeffb8ce8d3aa194a6210ad9cfCAS |

Grumet, N. S., Abram, N. J., Beck, J. W., Dunbar, R. B., Gagan, M. K., et al. (2004). Coral radiocarbon records of Indian Ocean water mass and wind-induced upwelling along the coast of Sumatra, Indonesia. Journal of Geophysical Research 109, C05003.
Coral radiocarbon records of Indian Ocean water mass and wind-induced upwelling along the coast of Sumatra, Indonesia.Crossref | GoogleScholarGoogle Scholar |

Guilderson, T. P., Fallon, S., Moore, M. D., Schrag, D. P., and Charles, C. D. (2009). Seasonally resolved surface water Δ14C variability in the Lombok Strait: a coralline perspective. Journal of Geophysical Research 114, C07029.
Seasonally resolved surface water Δ14C variability in the Lombok Strait: a coralline perspective.Crossref | GoogleScholarGoogle Scholar |

Hua, Q., Woodroffe, C. D., Barbetti, M., Smithers, S. G., Zoppi, U., et al. (2004). Marine reservoir correction for the Cocos (Keeling) Islands, Indian Ocean. Radiocarbon 46, 603–610.
| 1:CAS:528:DC%2BD2cXot1agtr8%3D&md5=d138889dcf42c53dc62d1cfa540a72b1CAS |

Hua, Q., Woodroffe, C. D., Smithers, S. G., Barbetti, M., and Fink, D. (2005). Radiocarbon in corals from the Cocos (Keeling) Islands and implications for Indian Ocean circulation. Geophysical Research Letters 32, L21602.
Radiocarbon in corals from the Cocos (Keeling) Islands and implications for Indian Ocean circulation.Crossref | GoogleScholarGoogle Scholar |

Kalish, J. M. (1993). Pre- and post-bomb radiocarbon in fish otoliths. Earth and Planetary Science Letters 114, 549–554.
Pre- and post-bomb radiocarbon in fish otoliths.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK3sXitFKqs7k%3D&md5=89f0ea0d7ee5e5cb56b2827d1f50e3d3CAS |

Kalish, J. M. (2001). Use of the bomb radiocarbon chronometer to validate fish age. Final Report FRDC Project 93/109. Fisheries Research and Development Corporation, Canberra.

Kalish, J. M., Johnston, J. M., Gunn, J. F., and Clear, N. (1996). Use of the bomb radiocarbon chronometer to determine the age of southern bluefin tuna (Thunnus maccoyii). Marine Ecology Progress Series 143, 1–8.
Use of the bomb radiocarbon chronometer to determine the age of southern bluefin tuna (Thunnus maccoyii).Crossref | GoogleScholarGoogle Scholar |

Kalish, J. M., Nydal, R., Nedreaas, K. H., Burr, G. S., and Eine, G. L. (2001). A time history of pre- and post-bomb radiocarbon in the Barents Sea derived from Arcto-Norwegian cod otoliths. Radiocarbon 43, 843–855.
| 1:CAS:528:DC%2BD38XislOnu7Y%3D&md5=b11f9841fa7b9c8ba2343c1b8e53db54CAS |

Key, R. M., Kozyr, A., Sabine, C. L., Lee, K., Wanninkhof, R., Bullister, J. L., Feely, R. A., Millero, F. J., Mordy, C., and Peng, T.-H. (2004). A global ocean carbon climatology: results from Global Data Analysis Project (GLODAP). Global Biogeochemical Cycles 18, GB4031.
A global ocean carbon climatology: results from Global Data Analysis Project (GLODAP).Crossref | GoogleScholarGoogle Scholar |

Loubens, G. (1980). Biologie de quelques espèces de poissons du lagon Néo-Calédonien. III. Croissance. Cah. Indo-Pacific 2, 101–153.

Marriott, R. J., Adams, D. J., Jarvis, N. D. C., Moran, M. J., Newman, S. J., et al. (2011). Age-based demographic assessment of fished stocks of spangled emperor, Lethrinus nebulosus in the Gascoyne Bioregion of Western Australia. Fisheries Management and Ecology 18, 89–103.
Age-based demographic assessment of fished stocks of spangled emperor, Lethrinus nebulosus in the Gascoyne Bioregion of Western Australia.Crossref | GoogleScholarGoogle Scholar |

Neilson, J. D., and Campana, S. E. (2008). A validated description of age and growth of western Atlantic bluefin tuna (Thunnus thynnus). Canadian Journal of Fisheries and Aquatic Sciences 65, 1523–1527.
A validated description of age and growth of western Atlantic bluefin tuna (Thunnus thynnus).Crossref | GoogleScholarGoogle Scholar |

Newman, S. J., Williams, D. McB., and Russ, G. R. (1996). Age validation, growth and mortality rates of the tropical snappers (Pisces: Lutjanidae), Lutjanus adetii (Castelnau 1873) and L. quinquelineatus (Bloch 1790) from the central Great Barrier Reef, Australia. Marine and Freshwater Research 47, 575–584.
Age validation, growth and mortality rates of the tropical snappers (Pisces: Lutjanidae), Lutjanus adetii (Castelnau 1873) and L. quinquelineatus (Bloch 1790) from the central Great Barrier Reef, Australia.Crossref | GoogleScholarGoogle Scholar |

Newman, S. J., Cappo, M., and Williams, D. McB. (2000). Age, growth, mortality rates and corresponding yield estimates using otoliths of the tropical red snappers, Lutjanus erythropterus, L. malabaricus and L. sebae from the central Great Barrier Reef. Fisheries Research 48, 1–14.
Age, growth, mortality rates and corresponding yield estimates using otoliths of the tropical red snappers, Lutjanus erythropterus, L. malabaricus and L. sebae from the central Great Barrier Reef.Crossref | GoogleScholarGoogle Scholar |

Pears, R. J., Choat, J. H., Mapstone, B. D., and Begg, G. A. (2006). Demography of a large grouper, Epinephelus fuscoguttatus, from Australia's Great Barrier Reef: implications for fishery management. Marine Ecology Progress Series 307, 259–272.
Demography of a large grouper, Epinephelus fuscoguttatus, from Australia's Great Barrier Reef: implications for fishery management.Crossref | GoogleScholarGoogle Scholar |

Ralston, S., and Miyamoto, G. T. (1983). Analysing the width of daily otolith increments to age the Hawaiian snapper, Pristipomoides filamentosus. Fishery Bulletin 81, 523–535.

Smith, M. K. (1992). Regional differences in otolith morphology of the deep slope red snapper Etelis carbunculus. Canadian Journal of Fisheries and Aquatic Sciences 49, 795–804.
Regional differences in otolith morphology of the deep slope red snapper Etelis carbunculus.Crossref | GoogleScholarGoogle Scholar |

Smith, M. K., and Kostlan, E. (1991). Estimates of age and growth of ehu Etelis carbunculus in four regions of the Pacific from density of daily increments in otoliths. Fishery Bulletin 89, 461–472.

Stuiver, M., and Ostlund, H. G. (1983). Geosecs Indian Ocean and Mediterranean radiocarbon. Radiocarbon 25, 1–29.
| 1:CAS:528:DyaL3sXls1elsLw%3D&md5=4ea266ae86202578cf90106cae58e17eCAS |

Stuiver, M., and Polach, H. A. (1977). Discussion: reporting of 14C data. Radiocarbon 19, 355–363.

Toggweiler, J. R., and Dixon, K. (1991). The Peru upwelling and the ventilation of the South Pacific thermocline. Journal of Geophysical Research 96, 20 467–20 497.
The Peru upwelling and the ventilation of the South Pacific thermocline.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK38XhtFSnur8%3D&md5=f6d819fa543278499e7b4fe82e08143dCAS |

Uchida, R. N., Tagami, D. T., and Uchiyama, J. H. (1982). Results of bottom fish research in the north-western Hawaiian Islands. Southwest Fisheries Science Center Administrative Report H-82–10, Honolulu, Hawaii.