Free Standard AU & NZ Shipping For All Book Orders Over $80!
Register      Login
Marine and Freshwater Research Marine and Freshwater Research Society
Advances in the aquatic sciences
RESEARCH ARTICLE

The removal of colloidal lead during estuarine mixing: seasonal variations and importance of iron oxides and humic substances

Virginie Tanguy A B , Matthieu Waeles A B E , Julien Gigault D , Jean-Yves Cabon A C , François Quentel A C and Ricardo D. Riso A B
+ Author Affiliations
- Author Affiliations

A Université Européenne de Bretagne, Brest, France.

B Université de Bretagne Occidentale, IUEM, LEMAR, UMR–CNRS 6539, Equipe Chimie Marine, Place N. Copernic, 29280 Plouzané, France.

C Université de Bretagne Occidentale, UMR–CNRS 6521, 6 Avenue V. Le Gorgeu, CS 93837, 29238 Brest Cedex 3, France.

D Laboratoire de Chimie Analytique, LCABIE, UMR–CNRS 5034, Université de Pau et des Pays de l’Adour, Avenue de l’Université, BP 1155, 64013 Pau, France.

E Corresponding author. Email: waeles@univ-brest.fr

Marine and Freshwater Research 62(4) 329-341 https://doi.org/10.1071/MF10220
Submitted: 17 August 2010  Accepted: 24 November 2010   Published: 28 April 2011

Abstract

In the present study, seven colloidal fractions of lead (Pb) were analysed along the mixing zone of the Penzé estuary over the Year 2009, with the aim to provide some insight into the mechanism that removes the metal from the <0.45-µm fraction. According to our results, Pb was generally found as large colloids (>300 kDa) and was removed in the salinity range 0–10 from all of the size fractions where it was significantly found. Because the colloidal fractionation of Pb was strongly linked to that of iron (Fe) and humic substances (HS), the removal of Pb in the mixing area must occur under flocculation of organomineral complexes. A key period corresponding to the first strong autumnal precipitations was also revealed in the present work. At this time of the year, the mobilisation of Pb (and Fe) from catchment soils is enhanced by the mobilisation of HS and the metal is associated with smaller colloids (30–300 kDa).

Additional keywords: colloids, estuarine waters, Fe, humic substances, Pb, seasonal variations.


References

Aiken, G. R. (1986). Isolation and concentration techniques for aquatic humic substances. In ‘Humic substances in soil, sediment and water: geochemistry, isolation and characterization’. (Eds G. R. Aiken, D. M. McKnight, R. L. Wershaw and P. MacCarthy.) pp. 363–385. (Wiley-Interscience: New York.)

Baeyens, W. (1997). Evolution of trace metal concentrations in the Scheldt estuary (1978–1995). A comparison with estuarine and ocean levels. Hydrobiologia 366, 157–167.
Evolution of trace metal concentrations in the Scheldt estuary (1978–1995). A comparison with estuarine and ocean levels.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK1cXmt1aksb0%3D&md5=45579eb0b081bac87fe61b499e305ac4CAS |

Banse, K., Falls, C. P., and Hobson, L. A. (1963). A gravimetric method for determining suspended matter in sea water using millipore filters. Deep Sea Research and Oceanographic Abstracts 10, 639–642.
A gravimetric method for determining suspended matter in sea water using millipore filters.Crossref | GoogleScholarGoogle Scholar |

Benoit, G., Oktay-Marshall, S. D., Cantu, A., Hood, E. M., Coleman, C. H., et al. (1994). Partitioning of Cu, Pb, Ag, Zn, Fe, Al, and Mn between filter-retained particles, colloids, and solution in six Texas estuaries. Marine Chemistry 45, 307–336.
Partitioning of Cu, Pb, Ag, Zn, Fe, Al, and Mn between filter-retained particles, colloids, and solution in six Texas estuaries.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK2cXisl2gsbc%3D&md5=1c4dd19e07247cd9957d9cd4962c8d78CAS |

Boyle, E. A., Edmond, J. M., and Sholkovitz, E. R. (1977). The mechanism of iron removal in estuaries. Geochimica et Cosmochimica Acta 41, 1313–1324.
The mechanism of iron removal in estuaries.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaE1cXpt1GrtQ%3D%3D&md5=bbe39ff09fb9afe022b8bc00af9c5718CAS |

Buffle, J., and Chalmers, R. A. (1988). ‘Complexation Reactions in Aquatic Systems.’ (John Wiley and Sons Inc.: New York.)

Buffle, J., and Leppard, G. G. (1995). Characterization of aquatic colloids and macromolecules. 1. Structure and behavior of colloidal material. Environmental Science & Technology 29, 2169–2175.
Characterization of aquatic colloids and macromolecules. 1. Structure and behavior of colloidal material.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK2MXntFKksrs%3D&md5=bcdba7729c055b9cd547c9abcf1c5a95CAS |

Buffle, J., and van Leeuwen, H. P. (1992). ‘Environmental particles. Vol. 1.’ (IUPAC Series on Environmental Analytical and Physical Chemistry; Lewis Publishers: Chelsea, MI.)

Burba, P., Aster, B., Nifant’eva, T., Shkinev, V., and Spivakov, B. Y. (1998). Membrane filtration studies of aquatic humic substances and their metal species: a concise overview: part 1. Analytical fractionation by means of sequential-stage ultrafiltration. Talanta 45, 977–988.
Membrane filtration studies of aquatic humic substances and their metal species: a concise overview: part 1. Analytical fractionation by means of sequential-stage ultrafiltration.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK1cXhtlaqt7w%3D&md5=751fdad4277b24339515fefa2eea403dCAS | 18967087PubMed |

Chanudet, V., Filella, M., and Quentel, F. (2006). Application of a simple voltammetric method to the determination of refractory organic substances in freshwaters. Analytica Chimica Acta 569, 244–249.
Application of a simple voltammetric method to the determination of refractory organic substances in freshwaters.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD28XltVWgurg%3D&md5=5978c40d4cdb20288f8c15c32e31c32aCAS |

Chen, Y., and Buffle, J. (1996). Physicochemical and microbial preservation of colloid characteristics of natural water samples. I: experimental conditions. Water Research 30, 2178–2184.
Physicochemical and microbial preservation of colloid characteristics of natural water samples. I: experimental conditions.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK28XmtFOqsrk%3D&md5=e0d7de6d4df604e5fa1f5b8f039508e9CAS |

Chiffoleau, J., Auger, D., and Chartier, E. (1999). Fluxes of selected trace metals from the Seine estuary to the eastern English Channel during the period August 1994 to July 1995. Continental Shelf Research 19, 2063–2082.
Fluxes of selected trace metals from the Seine estuary to the eastern English Channel during the period August 1994 to July 1995.Crossref | GoogleScholarGoogle Scholar |

Church, T. M., Tramontano, J. M., and Murray, S. (1986). Trace metal fluxes through the Delaware Bay estuary Rapports et Proces-Verbaux des Reunions – Conseil International pour L’Exploration de la Mer 186, 271–276.
| 1:CAS:528:DyaL2sXhsVemtb4%3D&md5=43dac0dc294b75ac491b7f891a6820bcCAS |

Coonley, L. S., Baker, E. B., and Holland, H. D. (1971). Iron in the Mullica River and Great Bay, New Jersey. Chemical Geology 7, 51–63.
Iron in the Mullica River and Great Bay, New Jersey.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaE3MXptFSjsQ%3D%3D&md5=e064e0cc676496e64e525b1cbbdd40d8CAS |

Dai, M., and Martin, J. (1995). First data on trace metal level and behaviour in two major Arctic river-estuarine systems (Ob and Yenisey) and in the adjacent Kara Sea, Russia. Earth and Planetary Science Letters 131, 127–141.
First data on trace metal level and behaviour in two major Arctic river-estuarine systems (Ob and Yenisey) and in the adjacent Kara Sea, Russia.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK2MXltl2ju78%3D&md5=f7028c69837edc58570804e45f6376f3CAS |

Dai, M.-H., Martin, J.-M., and Cauwet, G. (1995). The significant role of colloids in the transport and transformation of organic carbon and associated trace metals (Cd, Cu and Ni) in the Rhone delta (France) Marine Chemistry 51, 159–175.
The significant role of colloids in the transport and transformation of organic carbon and associated trace metals (Cd, Cu and Ni) in the Rhone delta (France)Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK2MXovVymtrc%3D&md5=fafa796413a5d2f8aabc33316801a312CAS |

Danielsson, L., Magnusson, B., Westerlund, S., and Zhang, K. (1983). Trace metals in the Göta river estuary. Estuarine, Coastal and Shelf Science 17, 73–85.
Trace metals in the Göta river estuary.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaL3sXmtVShsLg%3D&md5=9ec82e846fc77f0913f06275fb8eb638CAS |

Dehairs, F., Baeyens, W., and Van Gansbeke, D. (1989). Tight coupling between enrichment of iron and manganese in North Sea suspended matter and sedimentary redox processes: evidence for seasonal variability. Estuarine, Coastal and Shelf Science 29, 457–471.
Tight coupling between enrichment of iron and manganese in North Sea suspended matter and sedimentary redox processes: evidence for seasonal variability.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK3cXks1Ckur4%3D&md5=637438aa0bd088fbd1f4c4649485aad0CAS |

Elbaz-Poulichet, F., Holliger, P., Wen Huang, W., and Martin, J. (1984). Lead cycling in estuaries, illustrated by the Gironde estuary, France. Nature 308, 409–414.
Lead cycling in estuaries, illustrated by the Gironde estuary, France.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaL2cXhs1Wmsbk%3D&md5=cb9a5400e23475d88a6b4a5db6d0ad3bCAS |

Ertel, J. R., Hedges, J. I., Richey, J. E., and Ribeiro, M. N. G. (1986). Dissolved humic substances of the Amazon River system. Limnology and Oceanography 31, 739–754.
Dissolved humic substances of the Amazon River system.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaL28Xltl2iu7s%3D&md5=5bc3a24a8788914036ff06b7a8e9f6c1CAS |

Escoube, R., Rouxel, O. J., Sholkovitz, E., and Donard, O. F. X. (2009). Iron isotope systematics in estuaries: the case of North River, Massachusetts (USA). Geochimica et Cosmochimica Acta 73, 4045–4059.
Iron isotope systematics in estuaries: the case of North River, Massachusetts (USA).Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1MXmvVynsLY%3D&md5=bdf010b42e5f2a245e538a803cf43a22CAS |

Filella, M., and Buffle, J. (1993). Factors controlling the stability of submicron colloids in natural waters. Colloids and Surfaces A: Physicochemical and Engineering Aspects 73, 255–273.
Factors controlling the stability of submicron colloids in natural waters.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK3sXmslyisL8%3D&md5=f2ee4d3f5b9577c7e9803490e1b3d878CAS |

Fox, L. E. (1984). The relationship between dissolved humic acids and soluble iron in estuaries. Geochimica et Cosmochimica Acta 48, 879–884.
The relationship between dissolved humic acids and soluble iron in estuaries.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaL2cXhvFOnsbo%3D&md5=c39dab5ddecf1fc5751805ffcc008e28CAS |

Guéguen, C., Belin, C., and Dominik, J. (2002). Organic colloid separation in contrasting aquatic environments with tangential flow filtration. Water Research 36, 1677–1684.
Organic colloid separation in contrasting aquatic environments with tangential flow filtration.Crossref | GoogleScholarGoogle Scholar | 12044067PubMed |

Herman, P. M. J., and Heip, C. H. R. (1999). Biogeochemistry of the MAximum TURbidity Zone of Estuaries (MATURE): some conclusions. Journal of Marine Systems 22, 89–104.
Biogeochemistry of the MAximum TURbidity Zone of Estuaries (MATURE): some conclusions.Crossref | GoogleScholarGoogle Scholar |

Hosokawa, I., Ohshima, F., and Kondo, N. (1970). On the concentrations of the dissolved chemical elements in the estuary of the Chikugogawa River. Journal of the Oceanographical Society of Japan 26, 1–5.
On the concentrations of the dissolved chemical elements in the estuary of the Chikugogawa River.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaE3MXnvFerug%3D%3D&md5=5c6b1701b6f367b7ddb884c63a74e8abCAS |

Hunter, K. A., and Liss, P. S. (1979). The surface charge of suspended particles in estuarine and coastal waters. Nature 282, 823–825.
The surface charge of suspended particles in estuarine and coastal waters.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaL3cXhsFalu7o%3D&md5=faf2d98820ea166101d8bb1c88ae88fcCAS |

Jiann, K., Wen, L., and Santschi, P. H. (2005). Trace metal (Cd, Cu, Ni and Pb) partitioning, affinities and removal in the Danshuei River estuary, a macro-tidal, temporally anoxic estuary in Taiwan. Marine Chemistry 96, 293–313.
Trace metal (Cd, Cu, Ni and Pb) partitioning, affinities and removal in the Danshuei River estuary, a macro-tidal, temporally anoxic estuary in Taiwan.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2MXmvFGjtL0%3D&md5=16e2a9080a3382f0f25253ecbf492473CAS |

Kozelka, P. B., Sañudo-Wilhelmy, S., Flegal, A. R., and Bruland, K. W. (1997). Physico-chemical speciation of lead in south San Francisco Bay. Estuarine, Coastal and Shelf Science 44, 649–658.
Physico-chemical speciation of lead in south San Francisco Bay.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK2sXkslaiu7o%3D&md5=82a4950d23d335ec2b329d1c621ddca5CAS |

Lead, J., Davison, W., Hamilton-Taylor, J., and Buffle, J. (1997). Characterizing colloidal material in natural waters. Aquatic Geochemistry 3, 213–232.
Characterizing colloidal material in natural waters.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK1cXit1Kisr4%3D&md5=ab95f2e67fcf98343f18f31607a0e889CAS |

Liss, P. S., and Pointon, M. J. (1973). Removal of dissolved boron and silicon during estuarine mixing of sea and river waters. Geochimica et Cosmochimica Acta 37, 1493–1498.
Removal of dissolved boron and silicon during estuarine mixing of sea and river waters.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaE3sXktlCqtrk%3D&md5=008fe30c2a5eac1d65852a4ae3cacce3CAS |

Luoma, S. N. (1989). Can we determine the biological availability of sediment-bound trace elements? Hydrobiologia 176–177, 379–396.
Can we determine the biological availability of sediment-bound trace elements?Crossref | GoogleScholarGoogle Scholar |

Luoma, S. N., and Davis, J. A. (1983). Requirements for modeling trace metal partitioning in oxidized estuarine sediments. Marine Chemistry 12, 159–181.
Requirements for modeling trace metal partitioning in oxidized estuarine sediments.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaL3sXhvVGitLY%3D&md5=e7457792a2e8b21a231e6696bd3f04b0CAS |

Mantoura, R. F. C., and Woodward, E. M. S. (1983). Conservative behaviour of riverine dissolved organic carbon in the Severn Estuary: chemical and geochemical implications Geochimica et Cosmochimica Acta 47, 1293–1309.
Conservative behaviour of riverine dissolved organic carbon in the Severn Estuary: chemical and geochemical implicationsCrossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaL3sXkslCns70%3D&md5=f1e34c402e24d5843887cc79cb610fe0CAS |

Martin, J., Dai, M., and Cauwet, G. (1995). Significance of colloids in the biogeochemical cycling of organic carbon and trace metals in the Venice Lagoon (Italy). Limnology and Oceanography 40, 119–131.
Significance of colloids in the biogeochemical cycling of organic carbon and trace metals in the Venice Lagoon (Italy).Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK2MXmtFaitbo%3D&md5=1e7be7d8edbd547ad588f43ecd2b7a2aCAS |

Monbet, P. (2006). Mass balance of lead through a small macrotidal estuary: the Morlaix River estuary (Brittany, France). Marine Chemistry 98, 59–80.
Mass balance of lead through a small macrotidal estuary: the Morlaix River estuary (Brittany, France).Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD28Xht1ymsw%3D%3D&md5=df983b87a1a35faca7cd8e051e4df2e5CAS |

Muller, F. L. L. (1996). Interactions of copper, lead and cadmium with the dissolved, colloidal and particulate components of estuarine and coastal waters. Marine Chemistry 52, 245–268.
Interactions of copper, lead and cadmium with the dissolved, colloidal and particulate components of estuarine and coastal waters.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK28XjsFOntb8%3D&md5=78d91e99a4e99c28edfe5ee556d5a321CAS |

Myneni, S. C. B., Brown, J. T., Martinez, G. A., and Meyer-Ilse, W. (1999). Imaging of humic substance macromolecular structures in water and soils. Science 286, 1335–1337.
Imaging of humic substance macromolecular structures in water and soils.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK1MXnsVektbg%3D&md5=61e9a0df383a0f937c4243f5b7c4ab09CAS | 10558983PubMed |

Nagao, S., Matsunaga, T., Suzuki, Y., Ueno, T., and Amano, H. (2003). Characteristics of humic substances in the Kuji River waters as determined by high-performance size exclusion chromatography with fluorescence detection. Water Research 37, 4159–4170.
Characteristics of humic substances in the Kuji River waters as determined by high-performance size exclusion chromatography with fluorescence detection.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3sXms1SmsLk%3D&md5=c1c2f5037d993f483de7370e6a1b0b2bCAS | 12946898PubMed |

Pempkowiak, J., and Kupryszewski, G. (1980). The input of organic matter to the Baltic from the Vistula River. Oceanologia 12, 79–98.

Perret, D., Newman, M. E., Nègre, J., Chen, Y., and Buffle, J. (1994). Submicron particles in the Rhine River – I. Physico-chemical characterization. Water Research 28, 91–106.
Submicron particles in the Rhine River – I. Physico-chemical characterization.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK2cXmtFKkug%3D%3D&md5=4a69a3b9ed6f48d2ebcef7875a40cd55CAS |

Pokrovsky, O. S., and Schott, J. (2002). Iron colloids/organic matter associated transport of major and trace elements in small boreal rivers and their estuaries (NW Russia). Chemical Geology 190, 141–179.
Iron colloids/organic matter associated transport of major and trace elements in small boreal rivers and their estuaries (NW Russia).Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD38XosFaisLk%3D&md5=1c65eff2df76509dd1112d4b8ad5d550CAS |

Quentel, F., Madec, C., Le Bihan, A., and Courtot-Coupez, J. (1986). Détermination des substances humiques en milieu marin par redissolution cathodique à l’électrode à goutte pendante de mercure. Analytical Letters 19, 325–344.
| 1:CAS:528:DyaL28XitV2mu7w%3D&md5=750162d7e6ede490e8befd9d25efdd24CAS |

Riso, R. D., Le Corre, P., and Chaumery, C. J. (1997). Rapid and simultaneous analysis of trace metals (Cu, Pb and Cd) in seawater by potentiometric stripping analysis. Analytica Chimica Acta 351, 83–89.
Rapid and simultaneous analysis of trace metals (Cu, Pb and Cd) in seawater by potentiometric stripping analysis.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK2sXmtFKhsrw%3D&md5=57fc6aed135f8a5c87b674b8adb623bcCAS |

Sholkovitz, E., Boyle, E., and Price, N. (1978). The removal of dissolved humic acids and iron during estuarine mixing. Earth and Planetary Science Letters 40, 130–136.
The removal of dissolved humic acids and iron during estuarine mixing.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaE1cXkvFartrw%3D&md5=127373021b2e387109afe4d0c81aeb7eCAS |

Spencer, D. W., Bacon, M. P., and Brewer, P. G. (1980). The distribution of 210Pb and 210Po in the North Sea. Thalassia Jugoslavica 16, 125–154.
| 1:CAS:528:DyaL38XktFWntbo%3D&md5=95fbec30a988d9c9064d5727d45c7dd3CAS |

Tessier, A. (1992). Sorption of trace elements on natural particles in oxic environments. In ‘Environmental particles’. (Eds J. Buffle and H. P. van Leeuwen.) pp. 425–453. (Lewis Publishers: Chelsea, MI.)

Thurman, E. M. (1985). ‘Organic Geochemistry of Natural Waters.’ (Kluwer Academics Publishers Group: Dordrech, The Netehrlands.)

Tipping, E. (1981). The adsorption of aquatic humic substances by iron oxides. Geochimica et Cosmochimica Acta 45, 191–199.
The adsorption of aquatic humic substances by iron oxides.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaL3MXhvVSgtr8%3D&md5=292fd8ddad281a10e1c3df4c6366a0bbCAS |

Waeles, M., Riso, R. D., and Le Corre, P. (2007). Distribution and seasonal changes of lead in an estuarine system affected by agricultural practices: the Penzé estuary, NW France. Estuarine, Coastal and Shelf Science 74, 570–578.
Distribution and seasonal changes of lead in an estuarine system affected by agricultural practices: the Penzé estuary, NW France.Crossref | GoogleScholarGoogle Scholar |

Waeles, M., Riso, R. D., Maguer, J.-F., Guillaud, J.-F., and Le Corre, P. (2008). On the distribution of dissolved lead in the Loire estuary and the North Biscay continental shelf, France. Journal of Marine Systems 72, 358–365.
On the distribution of dissolved lead in the Loire estuary and the North Biscay continental shelf, France.Crossref | GoogleScholarGoogle Scholar |

Waeles, M., Tanguy, V., Lespes, G., and Riso, R. D. (2008). Behaviour of colloidal trace metals (Cu, Pb and Cd) in estuarine waters: an approach using frontal ultrafiltration (UF) and stripping chronopotentiometric methods (SCP). Estuarine, Coastal and Shelf Science 80, 538–544.
Behaviour of colloidal trace metals (Cu, Pb and Cd) in estuarine waters: an approach using frontal ultrafiltration (UF) and stripping chronopotentiometric methods (SCP).Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1cXhsVGltLfI&md5=c8843a6b9e7b1a57445d075d736e5f4aCAS |

Wells, M. L., Kozelka, P. B., and Bruland, K. W. (1998). The complexation of ‘dissolved’ Cu, Zn, Cd and Pb by soluble and colloidal organic matter in Narragansett Bay, RI. Marine Chemistry 62, 203–217.
The complexation of ‘dissolved’ Cu, Zn, Cd and Pb by soluble and colloidal organic matter in Narragansett Bay, RI.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK1cXlt1ajs7Y%3D&md5=4ef13b9fdb3f65c6fa7dd9f31478989eCAS |

Wen, L., Stordal, M. C., Tang, D., Gill, G. A., and Santschi, P. H. (1996). An ultraclean cross-flow ultrafiltration technique for the study of trace metal phase speciation in seawater. Marine Chemistry 55, 129–152.
An ultraclean cross-flow ultrafiltration technique for the study of trace metal phase speciation in seawater.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK28XmvFemu7s%3D&md5=05d83ffc8db94d8f8628dfa2403ad8b2CAS |

Wen, L.-S., Santschi, P., and Tang, D. (1997). Interactions between radioactively labelled colloids and natural particles: evidence for colloidal pumping. Geochimica et Cosmochimica Acta 61, 2867–2878.
Interactions between radioactively labelled colloids and natural particles: evidence for colloidal pumping.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK2sXlsFKhurY%3D&md5=6cc71171d50284e15571d7bbbd5d83b5CAS |

Wen, L., Santschi, P., Gill, G., and Paternostro, C. (1999). Estuarine trace metal distributions in Galveston Bay: importance of colloidal forms in the speciation of the dissolved phase. Marine Chemistry 63, 185–212.
Estuarine trace metal distributions in Galveston Bay: importance of colloidal forms in the speciation of the dissolved phase.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK1cXnslKiur0%3D&md5=160008c2ef68f1cf158733a02a6dfa23CAS |

Wen, L.-S., Warnken, K. W., and Santschi, P. H. (2008). The role of organic carbon, iron, and aluminium oxyhydroxides as trace metal carriers: cComparison between the Trinity River and the Trinity River Estuary (Galveston Bay, Texas). Marine Chemistry 112, 20–37.
The role of organic carbon, iron, and aluminium oxyhydroxides as trace metal carriers: cComparison between the Trinity River and the Trinity River Estuary (Galveston Bay, Texas).Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1cXhtlOnurbP&md5=11a8a1ae87c0c9e14f45682a7d1a15baCAS |

Windom, H. L., Smith, R. G., and Maeda, M. (1985). The geochemistry of lead in rivers, estuaries and the continental shelf of the southeastern United States. Marine Chemistry 17, 43–56.
The geochemistry of lead in rivers, estuaries and the continental shelf of the southeastern United States.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaL2MXmtVSntbc%3D&md5=34959dce03e615280951c2c4965078e4CAS |

Windom, H., Smith, R., Rawlinson, C., Hungspreugs, M., Dharmvanij, S., and Wattayakorn, G. (1988). Trace metal transport in a tropical estuary. Marine Chemistry 24, 293–305.
Trace metal transport in a tropical estuary.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaL1cXlsFGltrY%3D&md5=8c0938c0409e9afd6803bbcb5ff273dbCAS |