Register      Login
Marine and Freshwater Research Marine and Freshwater Research Society
Advances in the aquatic sciences
RESEARCH ARTICLE

Evidence that increased nitrogen efflux from wave-influenced marine sediment enhances pelagic phytoplankton production on the inner continental shelf of Western Australia

Jim Greenwood
+ Author Affiliations
- Author Affiliations

A CSIRO Marine and Atmospheric Research, Underwood Avenue, Floreat, WA 6014, Australia.

B Email: jim.greenwood@csiro.au

Marine and Freshwater Research 61(5) 625-632 https://doi.org/10.1071/MF09236
Submitted: 21 September 2009  Accepted: 12 November 2009   Published: 28 May 2010

Abstract

Increased biological and chemical reaction rates within permeable continental-shelf sediment can result from the action of passing surface waves, especially when the seabed is rippled. The effect of this on the exchange of nitrogen between the sediment and water column is the focus of the present paper. The continental shelf of Western Australia is used as an example. A time series of chlorophyll a is compared with surface-wave height revealing seasonal and sub-seasonal correlation between the two variables. At the same time, results from a coupled pelagic–benthic biogeochemical model show that temperature-controlled changes in sedimentary nitrogen efflux cannot account for the observed seasonal changes in chlorophyll a in the overlying water column. It is proposed that enhanced pore-water circulation within the sediment, caused by the action of passing surface waves, results in an increase in the efflux of nitrogen from the sediment during winter, supporting higher pelagic phytoplankton production. The parameterisation of sedimentary nitrogen mineralisation as a function of the square of wave height is suggested for the inclusion of this effect in regional-scale continental shelf models.

Additional keywords: modelling, phytoplankton, sediment, waves.


Acknowledgements

This work was supported by the West Australian Marine Science Institute and the Australian Government Wealth from Oceans Flagship. Wave buoy data was obtained from the Department of Planning and Infrastructure, Western Australian Government.


References

Batchelor G. K. (1967). ‘An Introduction to Fluid Mechanics.’ pp. 223–224. (Cambridge University Press: New York.)

Cardenas, B. M. , Cook, P. L. M. , Jiang, H. , and Traykovski, P. (2008). Constraining denitrification in permeable wave-influenced marine sediment using linked hydrodynamic and biogeochemical modelling. Earth and Planetary Science Letters 275, 127–137.
Crossref | GoogleScholarGoogle Scholar | CAS | Feng M., and Wild-Allen K. (2009). The Leeuwin Current. In ‘Carbon and Nutrient Fluxes in Continental Margins: A Global Synthesis’. (Eds K.-K. Liu, L. Atkinson, R. Quinones and L. Talaue-McManus.) pp. 197–210. (Springer–Verlag: New York.)

Fennel, K. , Wilkin, J. , Levin, J. , Moisan, J. , O'Reilly, J. , and Haidvogel, D. (2006). Nitrogen cycling in the Middle Atlantic Bight: Results from a three-dimensional model and implications for the North Atlantic nitrogen budget. Global Biogeochemical Cycles 20, GB3007.
Crossref | GoogleScholarGoogle Scholar | Huettel M., and Webster I. T. (2001). Porewater flow in permeable sediments. In ‘The Benthic Boundary Layer: Transport Processes and Biogeochemistry’. (Eds B. P. Boudreau and B. B. Jorgensen.) pp. 144–179. (Oxford University Press: New York.)

Jahnke, R. , Richards, M. , Nelson, J. , Robertson, C. , Rao, A. , and Jahnke, D. (2005). Organic matter remineralization and porewater exchange rates in permeable South Atlantic Bight continental shelf sediments. Continental Shelf Research 25, 1433–1452.
Crossref | GoogleScholarGoogle Scholar | Lourey M., and Kirkman H. (2009). Short lived dissolved nitrate pulses in a shallow Western Australian coastal lagoon. Marine and Freshwater Research 60, 1068–1080. doi:10.1071/MF08298

Lourey, M. , Dunn, J. , and Waring, J. (2006). A mixed-layer nutrient climatology of Leeuwin Current and Western Australian Shelf waters: Seasonal nutrient dynamics and biomass. Journal of Marine Systems 59, 25–51.
Crossref | GoogleScholarGoogle Scholar | Rosich R. S., Bastyan G. R., Pailing E. I., and Van Senden D. C. (1994). Sediment nutrient processes. Perth Coastal Water Study, project E3.4 (phase 2). Report no. SSB 15/94. Water Authority, Perth.

Rowe, G. T. , Clifford, C. H. , Smith, K. L. , and Hamilton, P. L. (1975). Benthic nutrient regeneration and its coupling to primary productivity in coastal waters. Nature 255, 215–217.
Crossref | GoogleScholarGoogle Scholar | CAS |

Shum, K. T. (1993). The effects of wave-induced pore water circulation on the transport of reactive solutes below a rippled sediment bed. Journal of Geophysical Research 98, 10289–10301.
Crossref | GoogleScholarGoogle Scholar |

Shum, K. T. , and Sundby, B. (1996). Organic matter processing in continental shelf sediments – the subtidal pump revisited. Marine Chemistry 53, 81–87.
Crossref | GoogleScholarGoogle Scholar | CAS |

Soetaert, K. , Middelburg, J. J. , Herman, P. M. J. , and Buis, K. (2000). On the coupling of benthic and pelagic biogeochemical models. Earth-Science Reviews 51, 173–201.
Crossref | GoogleScholarGoogle Scholar | CAS |

Tromp, T. K. , Van Cappellen, P. , and Key, R. M. (1995). A global model for the early diagenesis of organic carbon and organic phosphorus in marine sediments. Geochimica et Cosmochimica Acta 59, 1259–1284.
Crossref | GoogleScholarGoogle Scholar | CAS |

Webb, J. E. , and Theodor, J. (1968). Irrigation of submerged marine sands through wave action. Nature 220, 682–683.
Crossref | GoogleScholarGoogle Scholar |

Webster, I. T. (2003). Wave enhancement of diffusivities within surficial sediments. Environmental Fluid Mechanics 3, 269–288.
Crossref | GoogleScholarGoogle Scholar |

Webster, I. T. , and Taylor, J. H. (1992). Rotational dispersion in porous media due to fluctuating flows. Water Resources Research 28(1), 109–119.
Crossref | GoogleScholarGoogle Scholar | CAS |

Wijsman, J. W. M. , Herman, P. M. J. , Middelburg, J. J. , and Soetaert, K. (2002). A model for early diagenetic processes in sediments of the continental shelf of the Black Sea. Estuarine, Coastal and Shelf Science 54, 403–421.
Crossref | GoogleScholarGoogle Scholar | CAS |