Free Standard AU & NZ Shipping For All Book Orders Over $80!
Register      Login
Marine and Freshwater Research Marine and Freshwater Research Society
Advances in the aquatic sciences
RESEARCH ARTICLE

Variable discharge alters habitat suitability for benthic algae and cyanobacteria in a forested Mediterranean stream

Elisabet Tornés A B C and Sergi Sabater A B
+ Author Affiliations
- Author Affiliations

A Institute of Aquatic Ecology, Faculty of Sciences, University of Girona, Campus Montilivi, E-17071, Girona, Spain.

B Catalan Institute for Water Research (ICRA), Scientific and Technologic Park of the University of Girona, E-17003, Girona, Spain.

C Corresponding author. Email: etornes@icra.cat

Marine and Freshwater Research 61(4) 441-450 https://doi.org/10.1071/MF09095
Submitted: 29 April 2009  Accepted: 15 September 2009   Published: 27 April 2010

Abstract

Large-scale algal community patterns can be understood by studying organisation within patches. Spatial heterogeneity in light and substratum type may affect the biomass and community composition of benthic algae and cyanobacteria. We compared the effects of these factors at the species level in two reaches differing in canopy cover in a forested Mediterranean stream in winter (high water flow) and late spring (low water flow). Partial redundancy analyses revealed that the major determinants of species distribution were strongly associated with variations in measured environmental variables. Light availability, the Reynolds number and substratum type were the main factors accounting for the algal and cyanobacterial distribution. Factors affecting algal distribution varied between hydrological periods, suggesting that some species had specific requirements whereas others had a wider tolerance to environmental conditions. Our results demonstrated that the hydraulic conditions (low velocity v. high velocity) influence small-scale heterogeneity in streams, and that this affects benthic community distribution.

Additional keywords: biovolume, Chlorophyll a, multivariate analysis.


Acknowledgements

We thank Annelies Veraart and Gemma Vidal for help with fieldwork. Robert Sheath kindly confirmed the taxonomic diagnosis of young Lemanea filaments. Elisabet Tornés was recipient of a fellowship (FPI) from the Spanish Science Ministry. This research was funded by the project CGL2007-65549/BOS of the Spanish Science Ministry, and by the project SCARCE (CONSOLIDER-INGENIO CSD2009-00065). We are also grateful for the comments of Andrew Boulton and two anonymous referees on the manuscript.


References

Acuña, V. , Giorgi, A. , Muñoz, I. , Uehlinger, U. , and Sabater, S. (2004). Flow extremes and benthic organic matter shape the metabolism of a headwater Mediterranean stream. Freshwater Biology 49, 960–971.
Crossref | GoogleScholarGoogle Scholar | Allan J. D. (1995). ‘Stream Ecology. Structure and Function of Running Waters.’ (Chapman & Hall: London.)

Artigas, J. , Romaní, A. M. , and Sabater, S. (2004). Organic matter decomposition by fungi in a Mediterranean forested stream: contribution of streambed substrata. Annales de Limnologie – International Journal of Limnology 40, 269–277.
Crossref | GoogleScholarGoogle Scholar | Blondel J., and Aronson J. (1999). ‘Biology and Wildlife of the Mediterranean Region.’ (Oxford University Press: Oxford, UK.)

Borcard, D. , Legendre, P. , and Drapeau, P. (1992). Partialling out the spatial component of ecological variation. Ecology 73, 1045–1055.
Crossref | GoogleScholarGoogle Scholar | Burkholder J. M. (1996). Interactions of benthic algae with their substrata. In ‘Algal Ecology: Freshwater Benthic Ecosystems’. (Eds R. J. Stevenson, M. L. Bothwell and R. L. Lowe.) pp. 253–297. (Academic Press: San Diego, CA.)

Butturini, A. , Bernal, S. , Nin, E. , Hellin, C. , and Rivero, L. , et al. (2003). Influences of the stream groundwater hydrology on nitrate concentration in unsaturated riparian area bounded by an intermittent Mediterranean stream. Water Resources Research 39, 1–13.
Crossref | GoogleScholarGoogle Scholar | Geel C. (1997). Photosystem II electron flow as a measure for phytoplankton gross primary production. Ph.D. Thesis, Wageningen University, Wageningen, The Netherlands.

HACH (1992). ‘HACH, Water Analysis Handbook.’ 2nd edn. (HACH Company: Loveland, CO.)

Hill, M. O. , and Gauch, H. G. (1980). Detrended correspondence analysis: an improved ordination technique. Vegetatio 42, 47–58.
Crossref | GoogleScholarGoogle Scholar | Hill W. R. (1996). Effects of light. In ‘Algal Ecology: Freshwater Benthic Ecosystems’. (Eds R. J. Stevenson, M. L. Bothwell and R. L. Lowe.) pp. 121–148. (Academic Press: San Diego, CA.)

Hill, W. R. , and Harvey, B. C. (1990). Periphyton responses to higher trophic levels and light in a shaded stream. Canadian Journal of Fisheries and Aquatic Sciences 47, 2307–2314.
Crossref | GoogleScholarGoogle Scholar | Krammer K., and Lange-Bertalot H. (1991–1997). Bacillariophyceae, 2 (1–4). In ‘Süsswasserflora von Mitteleuropa’. (Eds H. Ettl, J. Gerloff, H. Heynig and D. Mollenhauer.) (v.1, 1997), (v.2, 1997), (v.3, 1991), (v.4, 1991). (Fischer: Stuttgart, Germany.)

Lake, P. S. (2003). Ecological effects of perturbation by drought in flowing waters. Freshwater Biology 48, 1161–1172.
Crossref | GoogleScholarGoogle Scholar | Lange-Bertalot H. (2001). Navicula sensu stricto, 10 genera separated from Navicula sensu lato, Frustulia, 2. In ‘Diatoms of Europe’. (Ed. H. Lange-Bertalot.) (Gantner Verlag: Ruggell, Liechtenstein.)

Ledger, M. E. , Harris, R. M. L. , Armitage, P. D. , and Milner, A. M. (2008). Disturbance frequency influences patch dynamics in stream benthic algal communities. Oecologia 155, 809–819.
Crossref | GoogleScholarGoogle Scholar | PubMed | Legendre P., and Legendre L. (1998). ‘Numerical Ecology: Developments in Environmental Modelling, 20.’ 2nd edn. (Elsevier: Amsterdam.)

Lepš J., and Šmilauer P. (2003). ‘Multivariate Analysis of Ecological Data using CANOCO.’ (Cambridge University Press: Cambridge, UK.)

Lowe, R. L. , Golladay, S. W. , and Webster, J. R. (1986). Periphyton response to nutrient manipulation in streams draining clearcut and forested watersheds. Journal of the North American Benthological Society 5, 221–229.
Crossref | GoogleScholarGoogle Scholar | Sabater S. (1987). Study on the River Ter algae. Ph.D. Thesis, University of Barcelona, Barcelona.

Sabater, S. (1989). Encrusting algal assemblages in a Mediterranean river basin. Archiv für Hydrobiologie 114, 555–573.
Sabater S., and Tockner K. (in press). Effects of hydrologic alterations on the ecological quality of river ecosystems. In ‘Water Scarcity in the Mediterranean’. (Eds S. Sabater and D. Barceló.) (Springer Verlag: Berlin.)

Sabater, S. , Elosegi, A. , Acuña, V. , Basaguren, A. , and Muñoz, I. , et al. (2008). Effect of climate on the trophic structure of temperate forested streams. A comparison of Mediterranean and Atlantic streams. The Science of the Total Environment 390, 475–484.
Crossref | GoogleScholarGoogle Scholar | CAS | PubMed | Sheath R. G. (2003). Red algae. In ‘Freshwater Algae of North America: Ecology and Classification’. (Eds J. D. Wehr and R. G. Sheath.) pp. 197–224. (Academic Press: San Diego, CA.)

Shortreed, K. R. S. , and Stockner, J. G. (1983). Periphyton biomass and species composition in a coastal rainforest stream in British Columbia: effects of environmental changes caused by logging. Canadian Journal of Fisheries and Aquatic Sciences 40, 1887–1895.
Crossref | GoogleScholarGoogle Scholar | Sokal R. R., and Rohlf F. J. (1995). ‘Biometry: The Principles and Practice of Statistics in Biological Research.’ 3rd edn. (W. H. Freeman and Company: New York.)

Steinman, A. D. , and McIntire, C. D. (1986). Effects of current velocity and light energy on the structure of periphyton assemblages in laboratory streams. Journal of Phycology 22, 352–361.
Crossref | GoogleScholarGoogle Scholar | Stevenson R. J. (1996). The stimulation and drag of current. In ‘Algal Ecology: Freshwater Benthic Ecosystems’. (Eds R. J. Stevenson, M. L. Bothwell and R. L. Lowe.) pp. 321–340. (Academic Press: San Diego, CA.)

Stockner, J. G. , and Armstrong, F. A. J. (1971). Periphyton of the Experimental Lakes Area, NW Ontario. Journal of the Fisheries Research Board of Canada 28, 215–229.
ter Braak C. J. F., and Šmilauer P. (2002). ‘CANOCO Reference Manual and CanoDraw for Windows User’s Guide: Software for Canonical Community Ordination, version 4.5.’ (Microcomputer Power: Ithaca, NY.)

ter Braak, C. J. F. , and Verdonschot, P. F. M. (1995). Canonical correspondence analysis and related multivariate methods in aquatic ecology. Aquatic Sciences 57, 225–289.


Thirb, H. H. , and Benson-Evans, K. (1983). The effect of different light intensities and wavelenghts on carpospore germination and the apical tips of the red alga Lemanea Bory. Nova Hedwigia 37, 669–682.


Tornés, E. , Cambra, J. , Gomà, J. , Leira, M. , and Ortiz, R. , et al. (2007). Indicator taxa of benthic diatom communities: a case study in Mediterranean streams. Annales de Limnologie – International Journal of Limnology 43, 1–11.
Crossref | GoogleScholarGoogle Scholar |

Uehlinger, U. (2006). Annual cycle and inter-annual variability of gross primary production and ecosystem respiration in a floodprone river during a 15-year period. Freshwater Biology 51, 938–950.
Crossref | GoogleScholarGoogle Scholar | CAS |

Veraart, A. J. , Romaní, A. M. , Tornés, E. , and Sabater, S. (2008). Algal response to nutrient enrichment in forested oligotrophic stream. Journal of Phycology 44, 564–572.
Crossref | GoogleScholarGoogle Scholar | CAS |

Walker, B. , Kinzig, A. , and Langridge, J. (1999). Plant attribute diversity, resilience, and ecosystem function: the nature and significance of dominant and minor species. Ecosystems 2, 95–113.
Crossref | GoogleScholarGoogle Scholar |

Wilson, K. C. , and Dodds, W. K. (2009). Centimeter-scale stream substratum heterogeneity and metabolic rates. Hydrobiologia 623, 53–62.
Crossref | GoogleScholarGoogle Scholar | CAS |