Free Standard AU & NZ Shipping For All Book Orders Over $80!
Register      Login
Marine and Freshwater Research Marine and Freshwater Research Society
Advances in the aquatic sciences
RESEARCH ARTICLE

Predicting potential change in agricultural sediment inputs to rivers across England and Wales by 2015

Adrian L. Collins A C , Steven G. Anthony A , Julia Hawley B and Tony Turner B
+ Author Affiliations
- Author Affiliations

A Environment Group, ADAS, Woodthorne, Wergs Road, Wolverhampton, WV6 8TQ, UK.

B Rural Management Group, ADAS, Woodthorne, Wergs Road, Wolverhampton, WV6 8TQ, UK.

C Corresponding author. Email: adrian.collins@adas.co.uk

Marine and Freshwater Research 60(7) 626-637 https://doi.org/10.1071/MF08033
Submitted: 13 February 2008  Accepted: 3 December 2008   Published: 28 July 2009

Abstract

Recent work has evaluated the gap between current and compliant suspended sediment losses due to farming across England and Wales and the potential for change by 2015. The study adopted the guideline annual average sediment threshold of 25 mg L–1 cited by the European Union Freshwater Fish Directive. Compliance testing required national scale sediment source apportionment to assess the current contributions of diffuse agricultural and urban sector losses, channel bank erosion and point source discharges to the total suspended sediment loads delivered to all rivers. Results suggested that the agricultural sector dominates present day (year 2000) sediment inputs to rivers (1929 kt = 76%) compared with eroding channel banks (394 kt = 15%), diffuse urban sources (147 kt = 6%) and point source discharges (76 kt = 3%). Projected change in farming by 2015, represented by the Business As Usual forecast of structural developments and predicted uptake of sediment mitigation methods, suggested a 9% reduction in sediment losses from the agricultural sector across England and Wales. Further mitigation of diffuse agricultural sediment transfers to watercourses will therefore be necessary to ensure ‘good ecological status’ in some catchments. A similar modelling framework could be applied in other countries.

Additional keywords: agriculture, channel banks, mitigation, source apportionment, suspended sediment, urban sector.


Acknowledgements

The authors gratefully acknowledge the financial support of the Department for Environment, Food and Rural Affairs (Defra) under project WQ0106. Paul Taylor assisted with the figures. The Guest Editor and two anonymous referees are thanked for their review comments.


References

Anthony S. (2003). The MCDM model: a monthly calculation of water balance for use in decision support systems. Unpublished ADAS report, Wolverhampton, UK.

Boorman D. B., Hollis J. M., and Lilly A. (1995). Hydrology of soil types: a hydrologically based classification of the soils of the United Kingdom. Institute of Hydrology, Wallingford, UK.

Bull, L. J. (1997). Magnitude and variation in the contribution of bank erosion to the suspended sediment load of the River Severn, UK. Earth Surface Processes and Landforms 22, 1109–1123.
Crossref | GoogleScholarGoogle Scholar | Collins A. L., Walling D. E., and Leeks G. J. L. (2005). Storage of fine-grained sediment and associated contaminants within the channels of lowland permeable catchments in the UK. In ‘Sediment Budgets 1. International Association of Hydrological Sciences Publication No. 291’. (Eds D. E. Walling and A. J. Horowitz.) pp. 259–268. (IAHS Press: Wallingford, UK.)

Collins, A. L. , Stromqvist, J. , Davison, P. S. , and Lord, E. I. (2007a). Appraisal of phosphorus and sediment transfer in three pilot areas identified for the Catchment Sensitive Farming initiative in England: application of the prototype PSYCHIC model. Soil Use and Management 23, 117–132.
Crossref | GoogleScholarGoogle Scholar | Collins A. L., Anthony S. G., Turner T., and Hawley J. (2007b). Predicting the impact of projected change in agriculture by 2015 on annual mean fluvial suspended sediment concentrations across England and Wales. In ‘Water Quality and Sediment Behaviour of the Future: Predictions for the 21st Century. International Association of Hydrological Sciences Publication No. 314’. (Eds B. W. Webb and D. De Boer.) pp. 28–37. (IAHS Press: Wallingford, UK.)

Cuttle S. P., Macleod C. J. A., Chadwick D. R., Scholefield D., Haygarth P. M., et al. (2007). An inventory of methods to control diffuse water pollution from agriculture (DWPA): user manual. Report to Defra Project ES0203, London, UK.

D’Arcy J. B., Ellis J. B., Ferrier R. C., Jenkins A., and Dils R. (Eds) (2000). ‘Diffuse Pollution Impacts: The Environmental and Economic Effects of Diffuse Pollution in the UK.’ (Terence Dalton Publishing Ltd. (CIWEM): Lavenham, UK.)

Davison, P. S. , Hutchins, M. G. , Anthony, S. G. , Betson, M. , and Johnson, C. , et al. (2005). The relationship between potentially erosive storm energy and daily rainfall quantity in England and Wales. The Science of the Total Environment 344, 15–25.
Crossref | GoogleScholarGoogle Scholar | CAS | PubMed | Ellis J. B. (1986). Pollutional aspects of urban runoff. In ‘Urban Runoff Pollution’. (Eds H. C. Torno, H. C. Marsalek and M. Desbordes.) pp. 1–38. (Springer Verlag, Berlin: Germany.)

Ellis, J. B. , and Mitchell, G. (2006). Urban diffuse pollution: key data information approaches for the Water Framework Directive. Water and Environment Journal 20, 19–26.
Crossref | GoogleScholarGoogle Scholar | CAS | European Parliament (2000). Establishing a framework for community action in the field of water policy. Directive EC/2000/60, EU, Brussels Belgium.

Foster, I. D. L. , Boardman, J. , and Keay-Bright, J. (2007). Sediment tracing and environmental history for two small catchments, Karoo Uplands, South Africa. Geomorphology 90, 126–143.
Crossref | GoogleScholarGoogle Scholar | Gustard A., Bullock A., and Dixon J. M. (1992). Low flow estimation in the United Kingdom. Institute of Hydrology Report 108, Wallingford, UK.

Haygarth, P. M. , and Jarvis, S. C. (1999). Transfer of phosphorus from agricultural soils. Advances in Agronomy 66, 195–249.
Crossref | GoogleScholarGoogle Scholar | CAS | Hough M., Palmer S., Weir A., Lee M., and Barrie I. (1996). The Meteorological Office Rainfall and Evaporation Calculation System: MORECS Version 2.0. An update to the Hydrological Memorandum. Meteorological Office, Exeter, UK.

Jarvie, H. P. , Neal, C. , and Tappin, A. D. (1997). European land-based pollutant loads to the North Sea: an analysis of the Paris Commission data and review of monitoring strategies. The Science of the Total Environment 194/195, 39–58.
Crossref | GoogleScholarGoogle Scholar | CAS | McHugh M., Wood G., Walling D., Morgan R., Zhang Y., et al. (2002). Prediction of sediment delivery to watercourses from land: phase 2. R & D Technical Report No P2–209, Environment Agency, Bristol, UK.

Mitchell G., Lockyer J., and McDonald A. T. (2001). Pollution hazard from urban nonpoint sources: a GIS-model to support strategic environmental planning in the UK. Technical Report, School of Geography, University of Leeds, Leeds, UK.

Morgan, R. P. C. (2001). A simple approach to soil loss prediction: a revised Morgan–Morgan–Finney model. Catena 44, 305–322.
Crossref | GoogleScholarGoogle Scholar | Roberts G., and Williams R. J. (1997). A review of the treatment of household and industrial wastes and the characterisation of sewage effluents. Institute of Hydrology Internal Report, Wallingford, UK.

Rosemond, A. D. , Mulholland, P. J. , and Brawley, S. H. (2000). Seasonally shifting limitation of stream periphyton: response of algal populations and assemblage biomass and productivity to variations in light, nutrients and herbivores. Canadian Journal of Fisheries and Aquatic Sciences 57, 66–75.
Crossref | GoogleScholarGoogle Scholar | Swietlik W., Berry W., Gardner T., Hill B., Jha M. et al. (2003). ‘Developing Water Quality Criteria for Suspended and Bedded Sediments (SABS). Potential Approaches.’ (US EPA Office of Water, Office of Science and Technology, Health and Ecological Criteria Division: Washington DC, USA.)

Trimble S. W. (1995). Catchment sediment budgets and change. In ‘Changing River Channels.’ (Eds A. M. Gurnell and G. Petts.) pp. 201–215. (Wiley: Chichester, UK.)

Tsara, M. , Kosmas, C. , Kirkby, M. J. , Kosma, D. , and Yassoglou, N. (2005). An evaluation of the PESERA soil erosion model and its application to a case study in Zakynthos, Greece. Soil Use and Management 21, 377–385.
Crossref | GoogleScholarGoogle Scholar | University of Cambridge (2004). Business as usual projections of agricultural outputs – phase one. Report to Environment Agency, Bristol, UK.

University of Cambridge (2006). Business as usual projections of agricultural activities for the Water Framework Directive – phase two. Report to Environment Agency, Bristol, England.

USEPA (2003). ‘Developing Water Quality Criteria for Suspended and Bedded Sediments (SABS): Potential Approaches.’ (US Environment Protection Agency, Office of Water, Office of Science and Technology: Washington DC, USA.)

Verstraeten, G. , Van Oost, K. , Van Rompaey, A. , Poesen, J. , and Govers, G. (2002). Evaluating an integrated approach to catchment management to reduce soil loss and sediment pollution through modelling. Soil Use and Management 19, 386–394.
Walling D. E., and Collins A. L. (2005). Suspended sediment sources in British rivers. In ‘Sediment Budgets 1. International Association of Hydrological Sciences Publication No. 291.’ (Eds D. E. Walling and A. J. Horowitz.) pp. 123–133. (IAHS Press: Wallingford, UK.)

Walling D. E., and Webb B. W. (1987). Suspended load in gravel-bed rivers: UK experience. In ‘Sediment Transport in Gravel-Bed Rivers’. (Eds C. R. Thorne, J. C. Bathurst and R. D. Hey.) pp. 691–723. (Wiley: Chichester, UK.)

Walling, D. E. , Owens, P. N. , and Leeks, G. J. L. (1999). Fingerprinting suspended sediment sources in the catchment of the River Ouse, Yorkshire, UK. Hydrological Processes 13, 955–975.
Crossref | GoogleScholarGoogle Scholar |

Walling, D. E. , Owens, P. N. , Waterfall, B. D. , and Leeks, G. J. L. (2000). The particle size characteristics of fluvial suspended sediment in the Humber and Tweed catchments, UK. The Science of the Total Environment 251/252, 205–222.
Crossref | GoogleScholarGoogle Scholar | CAS |

Walling, D. E. , Collins, A. L. , Jones, P. A. , Leeks, G. J. L. , and Old, G. (2006). Establishing the fine-grained sediment budgets of the Pang and Lambourn LOCAR study catchments. Journal of Hydrology 330, 126–141.
Crossref | GoogleScholarGoogle Scholar |

Warren, N. , Allan, I. J. , Cater, J. E. , House, W. A. , and Parker, A. (2003). Pesticides and other micro-organic contaminants in freshwater sedimentary environments – a review. Applied Geochemistry 18, 159–194.
Crossref | GoogleScholarGoogle Scholar | CAS |

Willems, P. , and de Lange, W. J. (2007). Concept of technical support to science-policy interfacing with respect to the implementation of the European water framework directive. Environmental Science and Policy 10, 464–473.
Crossref | GoogleScholarGoogle Scholar |