Register      Login
Marine and Freshwater Research Marine and Freshwater Research Society
Advances in the aquatic sciences
RESEARCH ARTICLE

Otolith shape feature extraction oriented to automatic classification with open distributed data

J. Piera A B E , V. Parisi-Baradad C , E. García-Ladona D , A. Lombarte D , L. Recasens D and J. Cabestany C
+ Author Affiliations
- Author Affiliations

A Marine Technology Unit (CMIMA-CSIC), Passeig Marítim 37-49, Barcelona 08003, Catalonia, Spain.

B Signal Theory and Communications Department, Universitat Politècnica de Catalunya (UPC), Av Canal Olímpic s/n, Castelldefels 08860, Barcelona, Catalonia, Spain.

C Electronic Engineering Department, Universitat Politècnica de Catalunya (UPC), Gran Capità, s/n, module C4, Campus Nord. Barcelona 08034, Catalonia, Spain.

D Institut de Ciències del Mar (CMIMA-CSIC), Passeig Marítim 37-49, Barcelona 08003, Catalonia, Spain.

E Corresponding author. Email: jpiera@tsc.upc.es

Marine and Freshwater Research 56(5) 805-814 https://doi.org/10.1071/MF04163
Submitted: 16 July 2004  Accepted: 11 March 2005   Published: 21 July 2005

Abstract

The present study reviewed some of the critical pre-processing steps required for otolith shape characterisation for automatic classification with heterogeneous distributed data. A common procedure for optimising automatic classification is to apply data pre-processing in order to reduce the dimension of vector inputs. One of the key aspects of these pre-processing methods is the type of codification method used for describing the otolith contour. Two types of codification methods (Cartesian and Polar) were evaluated, and the limitations (loss of information) and the benefits (invariance to affine transformations) associated with each method were pointed out. The comparative study was developed using four types of shape descriptors (morphological, statistical, spectral and multiscale), and focused on data codification techniques and their effects on extracting shape features for automatic classification. A new method derived from the Karhunen–Loève transformation was proposed as the main procedure for standardising the codification of the otolith contours.

Extra keywords: image processing, shape characterisation, shape descriptors.


Acknowledgments

The present study was funded by the IBACS project (European Union Project QLRT-2001-01610), by the Spanish project AVG-ION (McyT-TIC2000-0376-p4-04) from the Spanish Ministry of Science and Technology and by the IBACS European project. We would like to thank Antoni Cruz for his contribution in acquiring some of the otolith images processed, and Albert Martí for developing some of the required function routines. Remarks by two anonymous reviewers led to substantial improvements in the manuscript; they are thanked for their careful and constructive comments.


References

Cadrin, S. X. , and Friedland, K. D. (1999). The utility of image processing techniques for morphometric analysis and stock identification. Fisheries Research 43, 129–139.
Crossref | GoogleScholarGoogle Scholar | Castelman K. R. (1996). ‘Digital Image Processing.’ (Prentice Hall: Englewood Cliffs, NJ.)

Cardinale, M. , Doering-Arjes, P. , Kastowsky, M. , and Mosegaard, H. (2004). Effects of sex, stock, and environment on the shape of known-age Atlantic cod (Gadus morhua) otoliths. Canadian Journal of Fisheries and Aquatic Sciences 61, 158–167.
Crossref | GoogleScholarGoogle Scholar | Chic O., Cruz A., Lombarte A., Olivella R., García-Ladona E., Parisi V., and Graña M. (2004). AFORO: An interactive shape analysis and classification system for fish otoliths. In ‘Abstracts of the 3rd International Symposium on Fish Otolith Research and Application, 11–16 July, 2004, Townsville’. p. 96. [Abstract]

Cornillon, P. , Gallagher, J. , and Sgouros, T. (2003). Opendap: accessing data in a distributed, heterogeneous environment. Data Science Journal 2, 164–174.
Costa L. F., and Cesar R. M. (2002). ‘Shape Analysis and Classification. Theory and Practice.’ (CRC Press: New York.)

do Carmo M. P. (1976). ‘Differential Geometry of Curves and Surfaces.’ (Prentice-Hall: Englewood Cliffs, NJ.)

Frost, K. J. , and Lowry, U. F. (1981). Trophic importance of some marine gadids in Northern Alaska and their body-otolith size relationships. U.S. Fishery Bulletin 79, 187–192.
Loève M. M. (1955). ‘Probability Theory.’ (VanNostrand: Princeton, NJ.)

Lombarte, A. , and Castellón, A. (1991). Interespecific and intraspecific otolith variability in the genus Merluccius as determined by image analysis. Canadian Journal of Zoology 69, 2442–2449.
Nolf D. (1985). Otolith piscium. In ‘Handbook of Paleoichthyology, Vol. 10’. (Ed. H. P. Schultze.) pp. 1–145. (Gustav Fisher Verlag: Jena, Germany.)

Papoulis A. (1962). ‘The Fourier Integral and its Applications.’ (McGraw-Hill: New York.)

Parisi-Baradad, V. , Lombarte, A. , Garcia-Ladona, E. , Cabestany, J. , Piera, J. , and Chic, O. (2005). Otolith shape contour analysis using affine transformation invariant wavelet transforms and curvature scale space representation. Marine and Freshwater Research 56, 795–804.
Crossref | GoogleScholarGoogle Scholar | Pavlidis T. (1977). ‘Structural Pattern Recognition.’ (Springer: New York.)

Pavlidis, T. , and Horowitz, S. L. (1974). Segmentation of plane curves. IEEE Transactions on Computers. Institute of Electrical and Electronics Engineers 8, 860–870.
Peitgen H. O., and Saupe D. (1998). ‘The Science of Fractal Images.’ (Springer: New York.)

Platt C., and Popper A. N. (1981). Fine structure and function of the ear. In ‘Hearing and Sound Communication in Fishes’. (Eds W. N. Tavolga, A. N. Popper and R. R. Fay.) pp. 3–38. (Springer-Verlag: New York.)

Rao C. R. (1973). ‘Linear Statistical Inference and its Applications.’ (J. Wiley and Sons: New York.)

Ramer, U. (1972). An iterative procedure for the polygonal approximation of plane curves. Computer Graphics and Image Processing 1, 244–256.
Ripley B. D. (1996). ‘Pattern Recognition and Neural Networks.’ (Cambridge University Press: Cambridge, UK.)

Schmidt W. (1969). The otoliths as a means for differentiation between species of fish of very similar appearance. In ‘Proceedings of the Symposium on the Oceanogrophy and Fisheries Resources of the Tropical Atlantic, UNESCO, FAO and OAU’. pp. 393–396.

Schwarzhans, W. (1980). Die tertiäre Teleosteer-Fauna Neuseelands, rekonstruiert amhand von otolithen. Berliner Geowissenschaftliche abhandlungen 26, 1–211.
Wu K., and Levine M. D. (1995). 2-D Shape segmentation: a new approach. Technical Report TR-CIM-95-01. Centre for Intelligent Machines, McGill University, Montreal.

Zhu, P. , and Chirlian, P. M. (1995). On critical point detection of digital shapes. IEEE Transactions on Pattern Analysis and Machine Intelligence 17, 737–748.
Crossref | GoogleScholarGoogle Scholar |