Register      Login
Marine and Freshwater Research Marine and Freshwater Research Society
Advances in the aquatic sciences
REVIEW

Accounting for the effect of temperature on squid growth in nature: from hypothesis to practice

J. W. Forsythe
+ Author Affiliations
- Author Affiliations

National Resource Center for Cephalopods, Marine Biomedical Institute, University of Texas Medical Branch, Galveston, TX 77555-1163, USA. Email: john.forsythe@utmb.edu

Marine and Freshwater Research 55(4) 331-339 https://doi.org/10.1071/MF03146
Submitted: 19 September 2003  Accepted: 9 March 2004   Published: 22 June 2004

Abstract

The impact of temperature on cephalopod growth has become a productive area of study. Current knowledge of squid growth owes much to earlier laboratory studies on octopuses and cuttlefishes that revealed rapid temperature-sensitive growth. Advances in laboratory culture of squids eventually revealed the dramatic extent to which rising water temperature accelerates growth rates. This led to proposal and testing of a working hypothesis, the Forsythe Hypothesis, that during periods of gradually warming temperature, monthly cohorts of squids experience warmer conditions and grow faster, and perhaps larger, than older, earlier-hatched cohorts. The advent of statolith increment analysis for determining age in field-caught squids has provided a powerful tool in ground-truthing this hypothesis in nature. This hypothesis, now termed here the Forsythe Effect, has been laboratory- and field-tested over the past 10 years and been strongly supported. Food availability and inherent species-specific physiological limits must also be accounted for in predicting growth. Gaps still exist in our precise understanding of the temperature-induced changes in form and duration of squid growth. Acute and chronic ocean-scale seawater-temperature change events will compel us to look to squids as ‘bioindicators’ of environmental condition and to statoliths as the ‘archives’ of this information.

Extra keywords: bioindicators, cephalopoda, Forsythe Effect, Forsythe Hypothesis, statolith.


Acknowledgments

I would like to acknowledge the NIH Center for Research Resources (grant P40 RR01024), the Texas Institute of Oceanography and Marine Medicine General Budget Account of the Marine Biomedical Institute and the staff of the NRCC for longstanding support of significant portions of the research cited here. I also thank G. Jackson for his comments on an early draft of this manuscript as well as those of two anonymous reviewers, all of which improved this paper.


References

Alford, R. A. , and Jackson, G. D. (1993). Do cephalopods and larvae of other taxa grow asymptotically? American Naturalist 141, 717–728.
Crossref | GoogleScholarGoogle Scholar | Jereb P. , Ragonese S. and von Boletzky S. (Eds). (1991). Squid age determination using statoliths. In ‘Proceedings of the International workshop held in the Istututo di Tecnoligia della Pesca e del Pescato (ITPP-CNR), Mazara del Vallo, Italy, 9—14 October 1989’. Note Tecniche e Reprints dell'Instituto di Tecnologia della Pesca e del Pescato Special Publication Number 1, 1—127.

Lee, P. G. (1994). Nutrition of cephalopods. Marine Behaviour and Physiology 25, 35–51.


Lichterman, J. D. (1999). Disasters to come. Futures 31, 593–607.
Crossref | GoogleScholarGoogle Scholar |

Lipinski, M. R. (2001). Statoliths as archives of cephalopod life cycle: a search for universal rules. Folia Malacologica 9, 115–123.


Lipinski, M.R. , Augustyn, C.J. , Brodziak, J.K.T. , Butterworth, D.S. , and Christy, G. , et al. (1998). Cephalopod fisheries: a future global upside to past over-exploitation of living marine resources? South African Journal of Marine Science 20, 463–469.


Lowry, M. S. , and Carretta, J. V. (1999). Market squid (Loligo opalescens) in the diet of California sea lions (Zalophus californianus) in southern California (1981–1995). California Cooperative Oceanic Fisheries Investigations Report 40, 196–207.


Moltschaniwskyj,, N. A. (2004). Understanding the process of growth in cephalopods. Marine and Freshwater Research 55, 379–386.
Crossref | GoogleScholarGoogle Scholar |

Nigmatullin, C. M. , Nesis, K. N. , and Arkhipkin, A. I. (2001). A review of the biology of the jumbo squid Doscidicus gigas (Cephlaopoda: Ommastrephidae). Fisheries Research 54, 9–19.
Crossref | GoogleScholarGoogle Scholar |

O’Dor, R. K. and  Wells, M. J. (1987). Energy and nutrient flow. In ‘Cephalopod Life Cycles. Vol. II. Comparative Reviews’. (Ed P. R. Boyle)  pp. 109–134. (Academic Press: London, UK.)

Pauly, D. , Christensen, V. , Dalsgaard, J. , Froese, R. , and Torres, F. (1998). Fishing down marine food webs. Science 279, 860–863.
Crossref | GoogleScholarGoogle Scholar |

Pauly, D. , Christensen, V. , Guenette, S. , Pitcher, T. J. , Sumaila, U. R. , Walters, C. J. , Watson, R. , and Zeller, D. (2002). Towards sustainability in world fisheries. Nature 418, 689–695.
Crossref | GoogleScholarGoogle Scholar |

Pierce, G. J. , Key, L. N. , Boyle, P. R. , Siegert, K. J. , Goncalves, J. M. , Perteiro, F. M. , and Martins, H. R. (1999). RNA concentration and the RNA to protein ratio in cephalopod tissues, sources of variation and relationship with growth rate. Journal of Experimental Marine Biology and Ecology 237, 185–201.
Crossref | GoogleScholarGoogle Scholar |

Radke, R. L. , Townsend, D. W. , Folsom, S. D. , and Morrison, M. A. (1990). Strontium:calcium concentration ratios in otoliths of herring larvae as indicators of environmental histories. Environmental Biology and Fisheries 27, 51–61.


Richard, A. (1976). Biological correlations between temperature, growth, duration of life and maximal size in the cuttlefish (Sepia officinalis). Haliotis 5, 186–195.


Rocha, F. , and Guerra, A. (1999). Age and growth of two sympatric squid, Loligo vulgaris and Loligo forbesi, in Galician waters (northwest Spain). Journal of the Marine Biological Association of the UK 79, 697–707.
Crossref | GoogleScholarGoogle Scholar |

Rodhouse, P. G. (1998). Physiological progenesis in cephalopod molluscs. The Biological Bulletin 195, 17–20.


Rodhouse, P. G. , and Hatfield, E. M. C. (1990). Dynamics of growth and maturation in the cephalopod Illex argentinus de Castellanos 1960 (Teuthoidea, Ommastrephidae). Philosophical Transactions of the Royal Society of London B 329, 229–241.


Smale, M. , and Cliff, G. (1996). Cephalopods in the diets of four shark species (Galeocerdo cuvier, Sphyrna lewini, S. zygaena and S. mokarran) from KwaZulu-Natal, South Africa. South African Journal of Marine Science 20, 241–254.


Spratt, J. D. (1979). Age and growth of the market squid, Loligo opalescens Berry, from statoliths. California Cooperative Fisheries Investigations Report 20, 58–64.


Summers, W. C. (1983). Loligo pealei. In ‘Cephalopod Life Cycles Volume I - Species Accounts’. (Ed P. R. Boyle)  pp. 115–142. (Academic Press: London, UK.)

Turk, P. E. , Hanlon, R. T. , Bradford, L. A. , and Yang, W. T. (1986). Aspects of feeding, growth and survival of the European squid Loligo vulgaris Lamarck, 1799, reared through the early growth stages. Vie et Milieu 36, 9–13.


van Heukelem, W. F. (1983a). Octopus cyanea. In ‘Cephalopod Life Cycles Volume I - Species Accounts’. (Ed P. R. Boyle. pp. 267–276. Academic Press, London, UK).)  pp. 267–276. (Academic Press: London, UK.)

van Heukelem, W. F. (1983b). Octopus maya. In ‘Cephalopod Life Cycles Volume I - Species Accounts’. (Ed P. R. Boyle. pp. 311–23. Academic Press, London, UK).)  pp. 311–323. (Academic Press: London, UK.)

Vidal, E. A. G. , DiMarco, F. P. , Wormuth, J. H. , and Lee, P. G. (2002). Influence of temperature and food availability on survival, growth and yolk utilization in hatchling squid. Bulletin of Marine Science 71, 915–932.


Villanueva, R. (2000). Effect of temperature on statolith growth of the European squid Loligo vulgaris during early life. Marine Biology 136, 449–460.
Crossref | GoogleScholarGoogle Scholar |

Villanueva, R. , Arkhipkin, A. , Jereb, P. , Lefkaditou, E. , Lipinski, M. R. , Perales-Raya, C. , Riba, J. , and Rocha, F. (2003). Embryonic life of the loliginid squid Loligo vulgaris: comparison between statoliths of Atlantic and Mediterranean populations. Marine Ecology Progress Series 253, 197–208.


von Boletzky, S. (1974). Elevage de cephalopodes en aquarium. Vie et Milieu 24, 309–340.


Watson, R. T., Zinyowera, M. C. and  Moss, R. H. (1996). ‘Impacts, Adaptations and Mitigation of Climate Change: Scientific Technical Analysis. Contribution of Working Group II to the Second Assessment Report of the Intergovernmental Panel on Climate Change.’ p.  878. (Cambridge University Press: New York, USA)

Wells, M. J. , and Clarke, A. (1996). Energetics: the costs of living and reproducing for an individual cephalopod. Philosophical Transactions of the Royal Society of London B351, 1083–1104.


Wood, J. B. , and O’Dor, R. K. (2000). Do larger cephalopods live longer? Effects of temperature and phylogeny on interspecific comparisons of age and size at maturity. Marine Biology 136, 91–99.
Crossref | GoogleScholarGoogle Scholar |

Yang, W. T. , Hixon, R. F. , Turk, P. E. , Krejci, M. E. , Hanlon, R. T. , and Hulet, W. H. (1983). Laboratory rearing of Loligo opalescens, the market squid of California. Aquaculture 31, 77–88.
Crossref | GoogleScholarGoogle Scholar |

Yang, W. T. , Hixon, R. F. , Turk, P. E. , Krejci, M. E. , Hulet, W. H. , and Hanlon, R. T. (1983). Growth, behaviour, and sexual maturation of the market squid, Loligo opalescens, cultured through the life cycle. Fishery Bulletin 84, 771–798.