Register      Login
Invertebrate Systematics Invertebrate Systematics Society
Systematics, phylogeny and biogeography
RESEARCH ARTICLE

Revisiting the morphological aspects of the Anomalodesmata (Mollusca: Bivalvia): a phylogenetic approach

Fabrizio Marcondes Machado https://orcid.org/0000-0002-5085-865X A * and Flávio Dias Passos A
+ Author Affiliations
- Author Affiliations

A Departamento de Biologia Animal, Instituto de Biologia, Universidade Estadual de Campinas (UNICAMP), Caixa Postal 6109, CEP 13083-970, Campinas, SP, Brazil.

* Correspondence to: fabriziomarcondes@yahoo.com.br

Handling Editor: Gonzalo Giribet

Invertebrate Systematics 36(12) 1063-1098 https://doi.org/10.1071/IS22028
Submitted: 22 June 2022  Accepted: 7 October 2022   Published: 21 November 2022

© 2022 The Author(s) (or their employer(s)). Published by CSIRO Publishing.

Abstract

The Anomalodesmata Dall, 1899 includes some of the rarest and most specialised species of marine bivalves. This rarity has consequently constituted the greatest obstacle for understanding the internal relationships due to the low representativeness of species present in any phylogenetic reconstructions. Therefore, with the primary purpose of creating a more comprehensive morphological analysis, data including all the anomalodesmatan families were gathered into a cladistic analysis. Our data set includes, for the first-time, information about members of the families Clistoconchidae, Cetoconchidae, Protocuspidariidae, Spheniopsidae and the recently described Bentholyonsiidae. Information on shell morphology, anatomy and behaviour of anomalodesmatans was compiled through a review of the literature (from 1895 to 2022) and a re-analysis of shells and internal anatomy of some freshly collected and archived specimens in museum collections around the world. Our analysis suggests a deep division of the Anomalodesmata into two distinct clades: the first generally composed of shallow water species from 12 families and a second clade of a carnivorous lineage mainly comprising deep water species from 10 families. Consequently, a new topology for Anomalodesmata is suggested bringing new insights into the interfamilial relationships of this sometimes bizarre clade of bivalves.

Keywords: carnivorous bivalves, deep water species, literature review, lithodesma, morphological analysis, muscle septum evolution, rare bivalves, watering pot shells.


References

Absalão, RS, and Oliveira, CDC (2011). The genus Cuspidaria (Pelecypoda: Septibranchia: Cuspidariidae) from the deep sea of Campos Basin, Brazil, with descriptions of two new species. Malacologia 54, 119–138.
The genus Cuspidaria (Pelecypoda: Septibranchia: Cuspidariidae) from the deep sea of Campos Basin, Brazil, with descriptions of two new species.Crossref | GoogleScholarGoogle Scholar |

Adal, MN, and Morton, B (1973). The fine structure of the pallial eyes of Laternula truncata (Bivalvia: Anomalodesmata: Pandoracea). Journal of Zoology 170, 533–556.
The fine structure of the pallial eyes of Laternula truncata (Bivalvia: Anomalodesmata: Pandoracea).Crossref | GoogleScholarGoogle Scholar |

Allen, JA (1954). On the structure and adaptations of Pandora inaequivalvis and P. pinna. Quarterly Journal of Microscopical Science 95, 473–482.

Allen, JA (1958). Observations on Cochlodesma praetenue (Pulteney) [Eulamellibranchia]. Journal of the Marine Biological Association of the United Kingdom 37, 97–112.
Observations on Cochlodesma praetenue (Pulteney) [Eulamellibranchia].Crossref | GoogleScholarGoogle Scholar |

Allen, JA (1960). The ligament of Cochlodesma praetenue (Pulteney). Journal of the Marine Biological Association of the United Kingdom 39, 445–447.
The ligament of Cochlodesma praetenue (Pulteney).Crossref | GoogleScholarGoogle Scholar |

Allen, JA (2011). Descriptions of new deep-water species of the family Cuspidariidae (Mollusca: Bivalvia) and including a bibliography of the known species from the Atlantic. Journal of Conchology 40, 428–445.

Allen, JA, and Morgan, RE (1981). The functional morphology of Atlantic deep water species of the families Cuspidariidae and Poromyidae (Bivalvia): An analysis of the evolution of the Septibranch condition. Philosophical Transactions of the Royal Society of London – B. Biological Sciences 294, 413–546.
The functional morphology of Atlantic deep water species of the families Cuspidariidae and Poromyidae (Bivalvia): An analysis of the evolution of the Septibranch condition.Crossref | GoogleScholarGoogle Scholar |

Allen, JA, and Turner, JF (1974). On the functional morphology of the family Verticordiidae (Bivalvia) with descriptions of new species from the abyssal Atlantic. Philosophical Transactions of the Royal Society of London – B. Biological Sciences 268, 401–532.
On the functional morphology of the family Verticordiidae (Bivalvia) with descriptions of new species from the abyssal Atlantic.Crossref | GoogleScholarGoogle Scholar |

Ansell, AD (1967). Burrowing in Lyonsia norvegica (Gmelin) (Bivalvia: Lyonsiidae). Proceedings of the Malacological Society of London 37, 387–393.

Atkins, D (1937). On the ciliary mechanisms and interrelationships of lamellibranchs Part IV. Cuticular fusion with special reference to the fourth aperture in certain lamellibranchs. Quarterly Journal of Microscopical Research 79, 423–445.

Beu, AG, and Maxwell, PA (1990). Cenozoic Mollusca of New Zealand. New Zealand Geological Survey Paleontological Bulletin 58, 1–518.

Beu AG, Raine JI (2009) Revised descriptions of New Zealand Cenozoic Mollusca from Beu and Maxwell (1990). Miscellaneous Publication 27. (GNS Science: Lower Hutt, New Zealand) Available at https://www.gns.cri.nz/data-and-resources/cenozoic-mollusca-of-new-zealand/

Bieler, R, Carter, JG, and Coan, EV (2010). Classification of bivalvefamilies. Malacologia 52, 113–133.

Bieler, R, Mikkelsen, PM, Collins, TM, Glover, EA, González, VL, Graf, DL, Harper, EM, Healy, J, Kawauchi, GY, Sharma, PP, Staubach, S, Strong, EE, Taylor, JD, Tëmkin, I, Zardus, JD, Clark, S, Guzmán, A, McIntyre, E, Sharp, P, and Giribet, G (2014). Investigating the Bivalve Tree of Life – an exemplar-based approach combining molecular and novel morphological characters. Invertebrate Systematics 28, 32–115.
Investigating the Bivalve Tree of Life – an exemplar-based approach combining molecular and novel morphological characters.Crossref | GoogleScholarGoogle Scholar |

Boss, KJ (1978). Taxonomic concepts and superfluity in bivalve nomenclature. Philosophical Transactions of the Royal Society – B. Biological Sciences 284, 417–424.
Taxonomic concepts and superfluity in bivalve nomenclature.Crossref | GoogleScholarGoogle Scholar |

Boss, KJ, and Merrill, AS (1965). The family Pandoridae in the Western Atlantic. Johnsonia 4, 181–215.

Burne, RH (1920). Mollusca IV. Anatomy of Pelecypoda. British Antarctic (Terra Nova) Expedition, 1910. Natural History Reports in Zoology 11, 233–56.

Campos, A, Introíni, GO, Tallarico, LDF, Passos, FD, Machado, FM, and Recco‐Pimentel, SM (2018). Ultrastructure of the spermatozoa of three species of Anomalodesmata (Mollusca, Bivalvia) and phylogenetic implications. Acta Zoologica 101, 156–166.
Ultrastructure of the spermatozoa of three species of Anomalodesmata (Mollusca, Bivalvia) and phylogenetic implications.Crossref | GoogleScholarGoogle Scholar |

Carter, JG, Altaba, CR, Anderson, LC, Araujo, R, Biakov, AS, Bogan, AE, Campbell, DC, Campbell, M, Jin-hua, C, Cope, JCW, Delvene, G, Dijkstra, HH, Zong-jie, F, Gardner, RN, Gavrilova, VA, Goncharova, IA, Harries, PJ, Hartman, JH, Hautmann, M, Hoeh, WR, Hylleberg, J, Bao-yu, J, Johnston, P, Kirkendale, L, Kleemann, K, Koppka, J, Kříž, J, Machado, D, Malchus, N, Márquez-Aliaga, A, Masse, J-P, McRoberts, CA, Middelfart, PU, Mitchell, S, Nevesskaja, LA, Özer, S, Pojeta, J, Polubotko, IV, Pons, JM, Popov, S, Sánchez, T, Sartori, AF, Scott, RW, Sey, II, Signorelli, JH, Silantiev, VV, Skelton, PW, Steuber, T, Waterhouse, JB, Wingard, GL, and Yancey, T (2011). A synoptical classification of the Bivalvia (Mollusca). Paleontological Contributions 4, 1–47.
A synoptical classification of the Bivalvia (Mollusca).Crossref | GoogleScholarGoogle Scholar |

Checa, AG, and Harper, EM (2010). Spikey bivalves: intra-periostracal crystal growth in anomalodesmatans. The Biological Bulletin 219, 231–248.
Spikey bivalves: intra-periostracal crystal growth in anomalodesmatans.Crossref | GoogleScholarGoogle Scholar |

Coan EV, Valentich-Scott P (2012) ‘Bivalve seashells of tropical West America: marine bivalve mollusks from Baja California to Northern Peru.’ Monographs Number 6, Studies in Biodiversity Number 4. (Santa Barbara Museum of Natural History: Santa Barbara, CA, USA)

Combosch, DJ, Collins, TM, Glover, EA, Graf, DL, Harper, EM, Healy, JM, Kawauchi, GY, Lemer, S, McIntyre, E, Strong, EE, Taylor, JD, Zardus, JD, Mikkelsen, PM, Giribet, G, and Bieler, R (2017). A family-level tree of life for bivalves based on a Sanger-sequencing approach. Molecular Phylogenetics and Evolution 107, 191–208.
A family-level tree of life for bivalves based on a Sanger-sequencing approach.Crossref | GoogleScholarGoogle Scholar |

Crouch, NMA, Edie, SM, Collins, KS, Bieler, R, and Jablonski, D (2021). Calibrating phylogenies assuming bifurcation or budding alters inferred macroevolutionary dynamics in a densely sampled phylogeny of bivalve families. Proceedings of the Royal Society of London – B. Biological Sciences 288, 20212178.
Calibrating phylogenies assuming bifurcation or budding alters inferred macroevolutionary dynamics in a densely sampled phylogeny of bivalve families.Crossref | GoogleScholarGoogle Scholar |

Dall, WH (1889). A preliminary catalogue of the shell-bearing marine mollusks and brachiopods of the southeastern coast of the United States: with illustrations of many of the species. Bulletin of the United States National Museum 37, 1–232.

Dall, WH (1895). Scientific results of explorations by the U. S. Fish Commission steamer Albatross. No. XXXIV.—Report on Mollusca and Brachiopoda dredged in deepwater, chiefly near the Hawaiian Islands, with illustrations of hitherto unfigured species from northwest America. Proceedings of the United States National Museum 17, 675–733.
Scientific results of explorations by the U. S. Fish Commission steamer Albatross. No. XXXIV.—Report on Mollusca and Brachiopoda dredged in deepwater, chiefly near the Hawaiian Islands, with illustrations of hitherto unfigured species from northwest America.Crossref | GoogleScholarGoogle Scholar |

Diáz, JM, Gast, F, and Torres, DC (2009). Rediscovery of a Caribbean living fossil: Pholadomya candida G. B. Sowerby, 1823 (Bivalvia: Anomalodesmata: Pholadomyoidea). Nautilus 123, 19–20.

Dreyer, H, Steiner, G, and Harper, EM (2003). Molecular phylogeny of Anomalodesmata (Mollusca: Bivalvia) inferred from 18S rRNA sequences. Zoological Journal of the Linnean Society 139, 229–246.
Molecular phylogeny of Anomalodesmata (Mollusca: Bivalvia) inferred from 18S rRNA sequences.Crossref | GoogleScholarGoogle Scholar |

Giribet, G, and Wheeler, W (2002). On bivalve phylogeny: a high-level analysis of the Bivalvia (Mollusca) based on combined morphology and DNA sequence data. Invertebrate Biology 121, 271–324.
On bivalve phylogeny: a high-level analysis of the Bivalvia (Mollusca) based on combined morphology and DNA sequence data.Crossref | GoogleScholarGoogle Scholar |

Goloboff, PA (1993). Estimating character weights during tree search. Cladistics 9, 83–91.
Estimating character weights during tree search.Crossref | GoogleScholarGoogle Scholar |

Goloboff, PA, and Farris, JS (2001). Methods for quick consensus estimation. Cladistics 17, S26–S34.
Methods for quick consensus estimation.Crossref | GoogleScholarGoogle Scholar |

Goloboff, PA, Farris, JS, and Nixon, KC (2008). TNT, a free program for phylogenetic analysis. Cladistics 24, 774–786.
TNT, a free program for phylogenetic analysis.Crossref | GoogleScholarGoogle Scholar |

González, VL, Andrade, SCS, Bieler, R, Collins, TM, Dunn, CW, Mikkelsen, PM, Taylor, JD, and Giribet, G (2015). A phylogenetic backbone for Bivalvia: an RNA-seq approach. Proceedings of the Royal Society of London – B. Biological Sciences 282, 20142332.
A phylogenetic backbone for Bivalvia: an RNA-seq approach.Crossref | GoogleScholarGoogle Scholar |

Guadanucci, JPL (2014). Theraphosidae phylogeny: relationships of the ‘Ischnocolinae’ genera (Araneae, Mygalomorphae). Zoologica Scripta 43, 508–518.
Theraphosidae phylogeny: relationships of the ‘Ischnocolinae’ genera (Araneae, Mygalomorphae).Crossref | GoogleScholarGoogle Scholar |

Güller, M, and Zelaya, DG (2016). Unravelling the identity of Pandora species (Bivalvia: Pandoridae) from Southern South America. Journal of Molluscan Studies 82, 440–448.
Unravelling the identity of Pandora species (Bivalvia: Pandoridae) from Southern South America.Crossref | GoogleScholarGoogle Scholar |

Hanken, J, and Wake, DB (1993). Miniaturization of body size: organismal consequences and evolutionary significance. Annual Review of Ecology and Systematics 24, 501–519.
Miniaturization of body size: organismal consequences and evolutionary significance.Crossref | GoogleScholarGoogle Scholar |

Harper, EM, and Morton, B (2000). Biology and functional morphology of Myochama anomioides Stutchbury, 1830 (Bivalvia: Anomalodesmata: Pandoroidea), with reference to cementation. Journal of Molluscan Studies 66, 403–416.
Biology and functional morphology of Myochama anomioides Stutchbury, 1830 (Bivalvia: Anomalodesmata: Pandoroidea), with reference to cementation.Crossref | GoogleScholarGoogle Scholar |

Harper, EM, and Morton, B (2004). Tube construction in the watering pot shell Brechites vaginiferus (Bivalvia; Anomalodesmata; Clavagelloidea). Acta Zoologica 85, 149–161.
Tube construction in the watering pot shell Brechites vaginiferus (Bivalvia; Anomalodesmata; Clavagelloidea).Crossref | GoogleScholarGoogle Scholar |

Harper EM, Hide EA, Morton B (2000) Relationships between the extant Anomalodesmata: a cladistic test. In ‘The Evolutionary Biology of the Bivalvia’. (Eds EM Harper, JA Crame, JD Taylor) Vol. 177, pp. 129–143. (The Geological Society of London)

Harper, EM, Dreyer, H, and Steiner, G (2006). Reconstructing the Anomalodesmata (Mollusca: Bivalvia): morphology and molecules. Zoological Journal of the Linnean Society 148, 395–420.
Reconstructing the Anomalodesmata (Mollusca: Bivalvia): morphology and molecules.Crossref | GoogleScholarGoogle Scholar |

Healy JM (1996) Molluscan sperm ultrastructure: correlation with taxonomic units within the Gastropoda, Cephalopoda and Bivalvia. In ‘Origin and Evolutionary Radiation of the Mollusca’. (Ed. J. Taylor) pp. 99–113. (Oxford University Press)

Healy, JM, Bieler, R, and Mikkelsen, PM (2008). Spermatozoa of the Anomalodesmata (Bivalvia, Mollusca) with special reference to relationships within the group. Acta Zoologica 89, 339–350.
Spermatozoa of the Anomalodesmata (Bivalvia, Mollusca) with special reference to relationships within the group.Crossref | GoogleScholarGoogle Scholar |

Hoagland, KE, and Turner, RD (1981). Evolution and adaptive radiation of wood‐boring bivalves (Pholadacea). Malacologia 21, 111–148.

Huber M (2010) ‘Compendium of bivalves. A full-color guide to 3,300 of the world’s marine bivalves. A status on Bivalvia after 250 years of research.’ (Conch Books: Hackenheim, Germany)

Ituarte, C, Martin, JP, and Zelaya, DG (2012). A new species of Mysella from Patagonia (Bivalvia: Galeommatoidea). The Nautilus 126, 136–142.

Kamenev, GM (2002). Genus Parvithracia (Bivalvia: Thraciidae) with descriptions of a new subgenus and two new species from the Northwestern Pacific. Malacologia 44, 107–134.

Knudsen, J (1967). The deep-sea Bivalvia. Scientific Reports of the John Murray Expedition 11, 237–343.

Knudsen, J (1970). The systematics and biology of abyssal and hadal Bivalvia. Galathea Reports 11, 1–241.

Krylova, EM (1991). A new genus and two new species of bivalve molluscs of the family Cetoconchidae (Bivalvia, Septibranchia, Poromyoidea). Zoologicheskyi Zhurnal 70, 132–136.

Krylova, EM (1993). Bivalve molluscs of the genus Bathyneaera (Septibranchia, Cuspidariidae) of the World Ocean. Ruthenica 3, 51–59.

Krylova, EM (1994a). Bivalve molluscs of the genus Rhinoclama (Septibranchia, Cuspidariidae) from Seamounts. Transactions of the P.P. Shirshov Institute of Oceanology 129, 55–63.

Krylova, EM (1994b). Clams of the genus Octoporia (Septibranchia: Halonymphidae) in the world oceans. Zoologicheskyi Zhurnal 73, 38–45.

Krylova, EM (1995). Clams of the family Protocuspidariidae (Septibranchia, Cuspidarioidea): taxonomy and distribution. Zoologicheskii Zhurnal 74, 20–38.

Krylova, EM (1997). New taxa and the system of the Recent representatives of the family Poromyidae (Bivalvia, Septibranchia, Poromyoidea). Ruthenica 7, 141–148.

Krylova, EM (2001). Septibranchiate molluscs of the family Poromyidae (Bivalvia: Poromyoidea) from the tropical Western Pacific Ocean. In ‘Tropical Deep-Sea Benthos, vol. 22’. (Eds P Bouchet, BA Marshall). Mémoires du Muséum National d’Histoire Naturelle, Paris 185, 165–200.

Krylova EM (2006) Bivalves of seamounts of the north-eastern Atlantic. Part 1. In ‘Biogeography of the North Atlantic Seamounts’. (Eds AN Mironov, AV Gebruk, AJ Southward) pp. 76–95. (KMK Scientific Press: Moscow, Russian Federation)

Kubo, M (1977). The formation of a temporary‐acrosome in the spermatozoon of Laternula limicola (Bivalvia, Mollusca). Journal of Ultrastructure Research 61, 140–148.

Leal, JH (2008). A remarkable new genus of carnivorous, sessile bivalves (Mollusca: Anomalodesmata: Poromyidae) with descriptions of two new species. Zootaxa 1764, 1–18.
A remarkable new genus of carnivorous, sessile bivalves (Mollusca: Anomalodesmata: Poromyidae) with descriptions of two new species.Crossref | GoogleScholarGoogle Scholar |

Liu JY (Ed.) (2008) ‘Checklist of marine biota of China seas.’ (Science Press: Beijing, PR China)

MacClintock, C (1967). Shell structure of patelloid and bellerophontoid gastropods (Mollusca). Bulletin of the Peabody Museum of Natural History 22, 1–140.

Machado, FM, and Passos, FD (2015). Spheniopsidae Gardner, 1928 (Bivalvia): conchological characters of two new species from off Brazil, Southwestern Atlantic. American Malacological Bulletin 33, 212–220.
Spheniopsidae Gardner, 1928 (Bivalvia): conchological characters of two new species from off Brazil, Southwestern Atlantic.Crossref | GoogleScholarGoogle Scholar |

Machado, FM, Morton, B, and Passos, FD (2017). Functional morphology of Cardiomya cleryana (d’Orbigny, 1842) (Bivalvia: Anomalodesmata: Cuspidariidae) from Brazilian waters: new insights into the lifestyle of carnivorous bivalves. Journal of the Marine Biological Association of the United Kingdom 97, 447–462.
Functional morphology of Cardiomya cleryana (d’Orbigny, 1842) (Bivalvia: Anomalodesmata: Cuspidariidae) from Brazilian waters: new insights into the lifestyle of carnivorous bivalves.Crossref | GoogleScholarGoogle Scholar |

Machado, FM, Passos, FD, and Giribet, G (2019). The use of micro computed tomography as a minimally invasive tool for anatomical study of bivalves (Mollusca: Bivalvia). Zoological Journal of the Linnean Society 186, 46–75.
The use of micro computed tomography as a minimally invasive tool for anatomical study of bivalves (Mollusca: Bivalvia).Crossref | GoogleScholarGoogle Scholar |

Marshall, BA (2002). Some Recent Thraciidae, Periplomatidae, Myochamidae, Cuspidariidae and Spheniopsidae (Anomalodesmata) from the New Zealand region and referral of Thracia reinga Crozier, 1966 and Scintillona benthicola Dell, 1956 to Tellimya Brown, 1827 (Montacutidae) (Mollusca: Bivalvia). Molluscan Research 22, 221–288.

Mirande, JM (2009). Weighted parsimony phylogeny of the family Characidae (Teleostei: Characiformes). Cladistics 25, 574–613.
Weighted parsimony phylogeny of the family Characidae (Teleostei: Characiformes).Crossref | GoogleScholarGoogle Scholar |

Morgan, RE, and Allen, JA (1976). On the functional morphology and adaptations of Entodesma saxicola (Bivalvia: Anomalodesmacea). Malacologia 15, 233–240.

Morton, B (1973). The biology and functional morphology of Laternula truncata (Lamarck 1818) (Bivalvia: Anomalodesmata: Pandoracea). The Biological Bulletin 145, 509–531.
The biology and functional morphology of Laternula truncata (Lamarck 1818) (Bivalvia: Anomalodesmata: Pandoracea).Crossref | GoogleScholarGoogle Scholar |

Morton, B (1974). Some aspects of the biology and functional morphology of Cleidothaerus maorianus Finlay (Bivalvia: Anomalodesmata: Pandoracea). Proceedings of the Malacological Society of London 41, 201–222.

Morton, B (1976). The structure, mode of operation and variation in form of the shell of the Laternulidae (Bivalvia: Anomalodesmata: Pandoracea). Journal of Molluscan Studies 42, 261–278.
The structure, mode of operation and variation in form of the shell of the Laternulidae (Bivalvia: Anomalodesmata: Pandoracea).Crossref | GoogleScholarGoogle Scholar |

Morton, B (1977). Some aspects of the biology and functional morphology Of Myadora Striata (Quoy & Gaimard) (Bivalvia: Anomalodesmata: Pandoracea). Journal of Molluscan Studies 43, 141–154.
Some aspects of the biology and functional morphology Of Myadora Striata (Quoy & Gaimard) (Bivalvia: Anomalodesmata: Pandoracea).Crossref | GoogleScholarGoogle Scholar |

Morton, B (1980a). The anatomy of the ‘living fossil’ Pholadomya candida Sowerby 1823 (Mollusca: Bivalvia: Anomalodesmata). Videnskabelige Meddelelser fra Dansk naturhistorik Forening i Kjobenhavn 142, 7–102.

Morton, B (1980b). Some aspects of the biology and functional morphology (including the presence of a ligamental lithodesma) of Montacutona compacta and M. olivacea (Bivalvia: Leptonacea) associated with coelenterates in Hong Kong. Journal of Zoology 192, 431–455.

Morton, B (1981a). The Anomalodesmata. Malacologia 21, 35–60.

Morton, B (1981b). The biology and functional morphology of Periploma (Offadesma) angasai (Bivalvia: Anomalodesmata: Periplomatidae). Journal of Zoology 193, 39–70.

Morton, B (1981c). Prey capture in the carnivorous “septibranch” Poromya granulata (Bivalvia: Anomalodesmata: Poromyacea). Sarsia 66, 241–256.

Morton, B (1982). The functional morphology of Parilimya fragilis (Bivalvia: Parilimyidae nov. fam.) with a discussion on the origin and evolution of the carnivorous septibranchs and a reclassification of the Anomalodesmata. The Transactions of the Zoological Society of London 36, 153–216.
The functional morphology of Parilimya fragilis (Bivalvia: Parilimyidae nov. fam.) with a discussion on the origin and evolution of the carnivorous septibranchs and a reclassification of the Anomalodesmata.Crossref | GoogleScholarGoogle Scholar |

Morton, B (1984a). The biology and functional morphology of Clavagella australis (Bivalvia: Anomalodesmata). Journal of Zoology, London 202, 489–511.
The biology and functional morphology of Clavagella australis (Bivalvia: Anomalodesmata).Crossref | GoogleScholarGoogle Scholar |

Morton, B (1984b). Adventitious tube construction in Brechites vaginiferus (Bivalvia: Anomalodesmata: Clavagellacea) with an investigation of the juvenile of ‘Humphreyia strangei’. Journal of Zoology 203, 461–484.
Adventitious tube construction in Brechites vaginiferus (Bivalvia: Anomalodesmata: Clavagellacea) with an investigation of the juvenile of ‘Humphreyia strangei’.Crossref | GoogleScholarGoogle Scholar |

Morton, B (1984c). Prey capture in Lyonsiella formosa (Bivalvia: Anomalodesmata: Verticordiidae). Pacific Science 38, 283–297.

Morton, B (1984d). The adaptations of Frenamya ceylanica (Bivalvia: Anomalodesmata: Pandoracea) to life on the surface of soft muds. Journal of Conchology 31, 359–371.

Morton B (1985a) Adaptive radiation in the Anomalodesmata. In ‘The Mollusca’. (Eds KM Wilbur, ER Trueman, M Clarke) Vol. 10, pp. 405–59. (Academic Press: New York, NY, USA)

Morton, B (1985b). Statocyst structure in the Anomalodesmata (Bivalvia). Journal of Zoology, London 206, 23–34.
Statocyst structure in the Anomalodesmata (Bivalvia).Crossref | GoogleScholarGoogle Scholar |

Morton, B (1987a). The functional morphology of Neotrigonia margaritacea (Bivalvia: Trigoniacea), with a discussion of phylogenetic affinities. Records of the Australian Museum 39, 339–354.

Morton, B (1987b). The mantle margin and radial mantle glands of Entodesma saxicola and E. inflata (Bivalvia: Anomalodesmata: Lyonsiidae). Journal of Molluscan Studies 53, 139–151.
The mantle margin and radial mantle glands of Entodesma saxicola and E. inflata (Bivalvia: Anomalodesmata: Lyonsiidae).Crossref | GoogleScholarGoogle Scholar |

Morton, B (1987c). Siphon structure and prey capture as a guide to affinities in the abyssal septibranch Anomalodesmata (Bivalvia). Sarsia 72, 49–69.
Siphon structure and prey capture as a guide to affinities in the abyssal septibranch Anomalodesmata (Bivalvia).Crossref | GoogleScholarGoogle Scholar |

Morton, B (1995). The ecology and functional morphology of Trigonothracia jinxingae (Bivalvia: Anomalodesmata: Thracioidea) from Xiamen, China. Journal of Zoology 237, 445–468.
The ecology and functional morphology of Trigonothracia jinxingae (Bivalvia: Anomalodesmata: Thracioidea) from Xiamen, China.Crossref | GoogleScholarGoogle Scholar |

Morton, B (2002a). Biology and functional morphology of the watering pot shell Brechites vaginiferus (Bivalvia: Anomalodesmata: Clavagelloidea). Journal of Zoology, London 257, 545–562.
Biology and functional morphology of the watering pot shell Brechites vaginiferus (Bivalvia: Anomalodesmata: Clavagelloidea).Crossref | GoogleScholarGoogle Scholar |

Morton, B (2002b). The biology and functional morphology of Humphreyia strangei (Bivalvia: Anomalodesmata: Clavagellidae): an Australian cemented ‘watering pot’ shell. Journal of Zoology 258, 11–25.
The biology and functional morphology of Humphreyia strangei (Bivalvia: Anomalodesmata: Clavagellidae): an Australian cemented ‘watering pot’ shell.Crossref | GoogleScholarGoogle Scholar |

Morton, B (2003a). The biology and functional morphology of Dianadema gen. nov. multangularis (Tate, 1887) (Bivalvia: Anomalodesmata: Clavagellidae). Journal of Zoology 259, 389–401.
The biology and functional morphology of Dianadema gen. nov. multangularis (Tate, 1887) (Bivalvia: Anomalodesmata: Clavagellidae).Crossref | GoogleScholarGoogle Scholar |

Morton, B (2003b). The functional morphology of Bentholyonsia teramachii (Bivalvia: Lyonsiellidae): clues to the origin of predation in the deep water Anomalodesmata. Journal of Zoology 261, 363–380.
The functional morphology of Bentholyonsia teramachii (Bivalvia: Lyonsiellidae): clues to the origin of predation in the deep water Anomalodesmata.Crossref | GoogleScholarGoogle Scholar |

Morton, B (2004a). The biology and functional morphology of Foegia novaezelandiae (Bivalvia: Anomalodesmata: Clavagelloidea) from Western Australia. Malacologia 46, 37–55.

Morton, B (2004b). Biology and functional morphology of Kendrickiana gen. nov. veitchi (Bivalvia: Anomalodesmata: Clavagelloidea) from southern Australia. Invertebrate Biology 123, 244–259.
Biology and functional morphology of Kendrickiana gen. nov. veitchi (Bivalvia: Anomalodesmata: Clavagelloidea) from southern Australia.Crossref | GoogleScholarGoogle Scholar |

Morton, B (2004c). The biology and functional morphology of Nipponoclava gigantea: clues to the evolution of tube dwelling in the Penicillidae (Bivalvia: Anomalodesmata: Clavagelloidea). Journal of Zoology 264, 1–15.
The biology and functional morphology of Nipponoclava gigantea: clues to the evolution of tube dwelling in the Penicillidae (Bivalvia: Anomalodesmata: Clavagelloidea).Crossref | GoogleScholarGoogle Scholar |

Morton, B (2005). Biology and functional morphology of a new species of endolithic Bryopa (Bivalvia: Anomalodesmata: Clavagelloidea) from Japan and a comparison with fossil species of Stirpulina and other Clavagellidae. Invertebrate Biology 124, 202–219.
Biology and functional morphology of a new species of endolithic Bryopa (Bivalvia: Anomalodesmata: Clavagelloidea) from Japan and a comparison with fossil species of Stirpulina and other Clavagellidae.Crossref | GoogleScholarGoogle Scholar |

Morton, B (2006a). A new species and first record of the endobenthic clavagellid Stirpulina (Bivalvia: Anomalodesmata) from the Late Eocene of southern Western Australia. Alcheringa: An Australasian Journal of Palaeontology 30, 103–110.
A new species and first record of the endobenthic clavagellid Stirpulina (Bivalvia: Anomalodesmata) from the Late Eocene of southern Western Australia.Crossref | GoogleScholarGoogle Scholar |

Morton, B (2006b). The functional morphology of Penicillus philippinensis (Anomalodesmata: Clavagelloidea: Penicillidae) and the evolution of an unique muscular system in the Bivalvia. Records of the Western Australian Museum 23, 175–192.
The functional morphology of Penicillus philippinensis (Anomalodesmata: Clavagelloidea: Penicillidae) and the evolution of an unique muscular system in the Bivalvia.Crossref | GoogleScholarGoogle Scholar |

Morton, B (2006c). Structure and formation of the adventitious tube of the Japanese watering-pot shell Stirpulina ramosa (Bivalvia, Anomalodesmata, Clavagellidae) and a comparison with that of the Penicillidae. Invertebrate Biology 125, 233–249.
Structure and formation of the adventitious tube of the Japanese watering-pot shell Stirpulina ramosa (Bivalvia, Anomalodesmata, Clavagellidae) and a comparison with that of the Penicillidae.Crossref | GoogleScholarGoogle Scholar |

Morton, B (2007). The evolution of the watering pot shells (Bivalvia: Anomalodesmata: Clavagellidae and Penicillidae). Records of the Western Australian Museum 24, 19–64.
The evolution of the watering pot shells (Bivalvia: Anomalodesmata: Clavagellidae and Penicillidae).Crossref | GoogleScholarGoogle Scholar |

Morton, B (2010). Form and functional morphology of Raetellops pulchella (Bivalvia: Mactridae): an example of convergent evolution with Anomalodesmata. Invertebrate Biology 129, 241–251.
Form and functional morphology of Raetellops pulchella (Bivalvia: Mactridae): an example of convergent evolution with Anomalodesmata.Crossref | GoogleScholarGoogle Scholar |

Morton, B (2012). The functional morphology and inferred biology of the enigmatic South African ‘quadrivalve’ bivalve Clistoconcha insignis Smith, 1910 (Thracioidea: Clistoconchidae fam. nov.): another anomalodesmatan evolutionary eccentric. Transactions of the Royal Society of South Africa 67, 59–89.
The functional morphology and inferred biology of the enigmatic South African ‘quadrivalve’ bivalve Clistoconcha insignis Smith, 1910 (Thracioidea: Clistoconchidae fam. nov.): another anomalodesmatan evolutionary eccentric.Crossref | GoogleScholarGoogle Scholar |

Morton, B (2013). A cadaver unearthed: the anatomy of the Japanese living fossil Stirpulina ramosa (Bivalvia: Anomalodesmata: Clavagellidae) – the unique specimen in the collections of Emperor Showa. Zoological Journal of the Linnean Society 169, 776–797.
A cadaver unearthed: the anatomy of the Japanese living fossil Stirpulina ramosa (Bivalvia: Anomalodesmata: Clavagellidae) – the unique specimen in the collections of Emperor Showa.Crossref | GoogleScholarGoogle Scholar |

Morton, B (2015). The biology and functional morphology of the predatory septibranch Cardiomya costellata (Deshayes, 1833) (Bivalvia: Anomalodesmata: Cuspidariidae) from the Açores: survival at the edge. Journal of the Marine Biological Association of the United Kingdom 96, 1347–1361.
The biology and functional morphology of the predatory septibranch Cardiomya costellata (Deshayes, 1833) (Bivalvia: Anomalodesmata: Cuspidariidae) from the Açores: survival at the edge.Crossref | GoogleScholarGoogle Scholar |

Morton, B, and Harper, EM (2001). Cementation in Cleidothaerus albidus (Lamarck, 1819) (Bivalvia: Anomalodesmata: Pandoroidea). Molluscan Research 21, 1–15.
Cementation in Cleidothaerus albidus (Lamarck, 1819) (Bivalvia: Anomalodesmata: Pandoroidea).Crossref | GoogleScholarGoogle Scholar |

Morton, B, and Machado, FM (2019). Predatory marine bivalves: a review. Advances in Marine Biology 84, 2–98.
Predatory marine bivalves: a review.Crossref | GoogleScholarGoogle Scholar |

Morton, B, and Machado, FM (2021). The origins, relationships, evolution and conservation of the weirdest marine bivalves: the watering pot shells. A review. Advances in Marine Biology 88, 137–220.
The origins, relationships, evolution and conservation of the weirdest marine bivalves: the watering pot shells. A review.Crossref | GoogleScholarGoogle Scholar |

Morton, B, Machado, FM, and Passos, FD (2016a). The smallest carnivorous bivalve? Biology, morphology and behaviour of Grippina coronata (Anomalodesmata: Cuspidarioidea: Spheniopsidae) preying on epipsammic microcrustaceans in the southwestern Atlantic off Brazil. Journal of Molluscan Studies 82, 244–258.
The smallest carnivorous bivalve? Biology, morphology and behaviour of Grippina coronata (Anomalodesmata: Cuspidarioidea: Spheniopsidae) preying on epipsammic microcrustaceans in the southwestern Atlantic off Brazil.Crossref | GoogleScholarGoogle Scholar |

Morton, B, Machado, FM, and Passos, FD (2016b). The organs of prey capture and digestion in the miniature predatory bivalve Spheniopsis brasiliensis (Anomalodesmata: Cuspidarioidea: Spheniopsidae) expose a novel life-history trait. Journal of Natural History 50, 1725–1748.
The organs of prey capture and digestion in the miniature predatory bivalve Spheniopsis brasiliensis (Anomalodesmata: Cuspidarioidea: Spheniopsidae) expose a novel life-history trait.Crossref | GoogleScholarGoogle Scholar |

Morton, B, Machado, FM, and Passos, FD (2019). The anatomy of the miniature predator Trigonulina ornata d’Orbigny, 1853 (Bivalvia: Anomalodesmata: Verticordiidae) from continental shelf waters off Brazil. Marine Biodiversity 49, 2901–2916.
The anatomy of the miniature predator Trigonulina ornata d’Orbigny, 1853 (Bivalvia: Anomalodesmata: Verticordiidae) from continental shelf waters off Brazil.Crossref | GoogleScholarGoogle Scholar |

Nakazima, M (1967). Some observations on the soft part of Halicardia nipponensis Okutani. Venus 25, 147–158.

Narchi, W (1968). The functional morphology of Lyonsia californica Conrad, 1837 (Bivalvia). The Veliger 10, 305–313.

Oliveira, CDC, and Sartori, AF (2013). Discovery and anatomy of the arenophilic system of cuspidariid clams (Bivalvia: Anomalodesmata). Journal of Morphology 275, 9–16.
Discovery and anatomy of the arenophilic system of cuspidariid clams (Bivalvia: Anomalodesmata).Crossref | GoogleScholarGoogle Scholar |

Owen, R (1842). On the anatomy of Pholadomya candida. Proceedings of the Zoological Society of London 10, 150.

Owen, R (1845). Editor’s appendix etc. Annals and Magazine of Natural History 16, 44–45.

Owen R (1855) ‘Lectures on the comparative anatomy and physiology of the invertebrate animals’, 2nd edn. (Longman: London, UK)

Paine, CM, and Allen, JA (1991). The Morphology of Deep-Sea Thyasiridae (Mollusca: Bivalvia) from the Atlantic Ocean. Philosophical Transactions of the Royal Society of London – B. Biological Sciences 334, 481–562.
The Morphology of Deep-Sea Thyasiridae (Mollusca: Bivalvia) from the Atlantic Ocean.Crossref | GoogleScholarGoogle Scholar |

Pelseneer, P (1888). Report on the scientific results of the Voyage of H.M.S. Challenger in the years 1873-76. Challenger Reports, Zoology 27, 1–42.

Pelseneer P (1891) ‘Contribution a l’étude des lamellibranches’. (Vaillant-Carmanne)
| Crossref |

Pelseneer P (1906) Mollusca. Em: Ray Lankester, E. In ‘Zoology’. (Ed. A Treatise) p. 355. (Adams & Charles Black: London, UK)

Pelseneer P (1911) ‘Les Lamellibranches de l’expédition du Siboga: partie anatomique. Siboga-Expeditie: uitkomsten op zoölogisch, botanisch, oceanographisch en geologisch gebied verzameld in Nederlandsch Oost-Indië 1899-1900 aan boord H.M. Siboga onder commando van Luitenant ter Zee 1e kl. G.F. Tydeman, 53a’. pp. 1–125. (Boekhandel en drukkerij: Leiden, Netherlands) [In French]

Plazzi, F, Ceregato, A, Taviani, M, and Passamonti, M (2011). A molecular phylogeny of bivalve mollusks: Ancient radiations and divergences as revealed by mitochondrial genes. PLoS One 6, e27147.
A molecular phylogeny of bivalve mollusks: Ancient radiations and divergences as revealed by mitochondrial genes.Crossref | GoogleScholarGoogle Scholar |

Pojeta, J (1971). Review of Ordovician pelecypods. US Geological Survey, Professional Papers 695, 1–46.

Popham, JD (1979). Comparative spermatozoon morphology and bivalve phylogeny. Malacological Review 12, 1–20.

Poutiers, JM (1984). Septibranches abyssaux de l’océan Indien occidental (Mollusques Bivalves Anomalodesmata). Journal of Conchology 31, 281–306.

Poutiers M, Bernard FR (1995) Carnivorous bivalve molluscs (Anomalodesmata) from the tropical western Pacific Ocean, with a proposed classification and a catalogue of recent species. In ‘Résultats des Campagnes Musorstom, Vol. 14’. (Ed. P Bouchet) Mémoires du Muséum National d’Histoire Naturellé 167, 107–187. (Paris)

Prezant, RS (1979). The structure and function of the radial mantle glands of Lyonsia hyattna (Bivalvia: Anomalodesmata). Journal of Zoology 187, 505–516.
The structure and function of the radial mantle glands of Lyonsia hyattna (Bivalvia: Anomalodesmata).Crossref | GoogleScholarGoogle Scholar |

Prezant, RS (1981). The arenophilic radial mantle glands of the Lyonsiidae (Bivalvia: Anomalodesmata) with notes on lyonsiid evolution. Malacologia 20, 267–289.

Prezant, RS (1985). Derivations of arenophilic mantle glands in the Anomalodesmata. Malacologia 26, 273–275.

Purchon, RD (1956a). A note on the biology of Brechites penis (L.) (Lamellibranchia). Zoological Journal of the Linnean Society 43, 43–54.
A note on the biology of Brechites penis (L.) (Lamellibranchia).Crossref | GoogleScholarGoogle Scholar |

Purchon, RD (1956b). The stomach in the Protobranchia and Septibranchia (Lamellibranchia). Proceedings of the Zoological Society of London 127, 511–525.
The stomach in the Protobranchia and Septibranchia (Lamellibranchia).Crossref | GoogleScholarGoogle Scholar |

Purchon, RD (1960). Further note on the biology of Brechites penis (L.) (Lamellibranchia). Journal of Molluscan Studies 34, 19–23.
Further note on the biology of Brechites penis (L.) (Lamellibranchia).Crossref | GoogleScholarGoogle Scholar |

Purchon, RD (1987). The stomach in the Bivalvia. Philosophical Transactions of the Royal Society of London – B. Biological Sciences 316, 183–276.
The stomach in the Bivalvia.Crossref | GoogleScholarGoogle Scholar |

Purchon RD (1990) Stomach structure, classification and evolution of the Bivalvia. In ‘The Bivalvia – Proceedings of a Memorial Symposium in Honour of Sir Charles Maurice Yonge 1899–1986 at the IXth International Malacological Congress’, 1986, Edinburgh, UK. (Ed. B Morton) pp. 73–95. (Hong Kong University Press: Hong Kong)

Reid, RGB, and Crosby, SP (1980). The raptorial siphonal apparatus of the carnivorous septibranch Cardiomya planetica Dall (Mollusca: Bivalvia), with notes on feeding and digestion. Canadian Journal of Zoology 58, 670–679.
The raptorial siphonal apparatus of the carnivorous septibranch Cardiomya planetica Dall (Mollusca: Bivalvia), with notes on feeding and digestion.Crossref | GoogleScholarGoogle Scholar |

Reid, RGB, and Reid, AM (1974). The carnivorous habit of members of the septibranch genus Cuspidaria (Mollusca: Bivalvia). Sarsia 56, 47–56.
The carnivorous habit of members of the septibranch genus Cuspidaria (Mollusca: Bivalvia).Crossref | GoogleScholarGoogle Scholar |

Rosewater, J (1984). Burrowing activities of Periploma margaritaceum (Lamarck, 1801) (Bivalvia: Anomalodesmata: Periplomatidae). American Malacological Bulletin 2, 35–40.

Runnegar, B (1974). Evolutionary history of the bivalve subclass Anomalodesmata. Journal of Paleontology 48, 904–939.

Safonova, LA, and Barwick, KL (2016). A new species of the genus Policordia (Bivalvia, Verticordioidea, Lyonsiellidae) from off the coast of southern California. ZooKeys 622, 37–46.

Sartori AF (2009) Comparative morphology and phylogeny of anomalodesmatan bivalves. PhD Thesis, Emmanuel College, University of Cambridge, Cambridge, UK.

Sartori, AF, and Domaneschi, O (2005). The functional morphology of the Antarctic bivalve Thracia meridionalis Smith, 1885 (Anomalodesmata: Thraciidae). Journal of Molluscan Studies 71, 199–210.
The functional morphology of the Antarctic bivalve Thracia meridionalis Smith, 1885 (Anomalodesmata: Thraciidae).Crossref | GoogleScholarGoogle Scholar |

Sartori, AF, and Harper, EM (2009). Sticky bivalves from the Mesozoic: clues to the origin of the anomalodesmatan arenophilic system. Lethaia 42, 486–494.
Sticky bivalves from the Mesozoic: clues to the origin of the anomalodesmatan arenophilic system.Crossref | GoogleScholarGoogle Scholar |

Sartori, AF, Passos, FD, and Domaneschi, O (2006). Arenophilic mantle glands in the Laternulidae (Bivalvia: Anomalodesmata) and their evolutionary significance. Acta Zoologica (Stockholm) 87, 265–272.
Arenophilic mantle glands in the Laternulidae (Bivalvia: Anomalodesmata) and their evolutionary significance.Crossref | GoogleScholarGoogle Scholar |

Savazzi, E (1990). Shell biomechanics in the bivalve Laternula. Lethaia 23, 93–101.
Shell biomechanics in the bivalve Laternula.Crossref | GoogleScholarGoogle Scholar |

Savazzi E (1999) Boring, nestling and tube‐dwelling bivalves. In ‘Functional morphology of the invertebrate skeleton’. (Ed. E. Savazzi) pp. 205–237. (Wiley: Chichester, UK)

Savazzi E (2000) Morphodynamics of Bryopa and the evolution of clavagelloids. In ‘The evolutionary biology of the Bivalvia’. (Eds EM Harper, JD Taylor, JA Crame) Special Publication 177, pp. 313–327. (Geological Society: London, UK)

Scarlato OA, Starobogatov YI (1983) System of the bivalve mollusks of the superorder Septibranchia. In ‘Molluscs. Their systematics, ecology and distribution’. (Ed. M Lilcharev) pp. 7–13. (Nauka: Leningrad, USSR)

Sepkoski, JJ (2002). A compendium of fossil marine animal genera. Bulletin of American Paleontology 363, 1–560.

Sharma, PP, González, VL, Kawauchi, GY, Andrade, SCS, Guzmán, A, Collins, TM, Glover, EA, Harper, EM, Healy, JM, Mikkelsen, PM, Taylor, JD, Bieler, R, and Giribet, G (2012). Phylogenetic analysis of four nuclear protein-encoding genes largely corroborates the traditional classification of Bivalvia (Mollusca). Molecular Phylogenetics and Evolution 65, 64–74.
Phylogenetic analysis of four nuclear protein-encoding genes largely corroborates the traditional classification of Bivalvia (Mollusca).Crossref | GoogleScholarGoogle Scholar |

Simone, RL, and Cunha, MC (2008). Revision of the genus Spinosipella (Bivalvia: Verticordiidae), with a description of two new species from Brazil. Nautillus 122, 57–78.

Simone, LRL, Mikkelsen, PM, and Bieler, R (2015). Comparative anatomy of selected marine bivalves from the Florida Keys, with notes on Brazilian congeners (Mollusca: Bivalvia). Malacologia 58, 1–127.
Comparative anatomy of selected marine bivalves from the Florida Keys, with notes on Brazilian congeners (Mollusca: Bivalvia).Crossref | GoogleScholarGoogle Scholar |

Skelton PW, Benton MJ (1993) Mollusca: Rostroconchia, Scaphopoda and Bivalvia. In ‘The fossil record 2’. (Ed. MJ Benton) pp. 237–263. (Chapman and Hall: London, UK)

Smith, EA (1885). Report on the Lamellibranchiata collected by HMS Challenger during the years 1873–1876. Challenger Reports, Zoological 13, 1–341.

Taylor, JD, Kennedy, WJ, and Hall, AD (1969). The shell structure and mineralogy of the Bivalvia. Introduction, Nuculacea–Trigonacea. Bulletin of the British Museum (Natural History), Zoology Series 3, 1–125.

Taylor, JD, Kennedy, WJ, and Hall, AD (1973). The shell structure and mineralogy of the Bivalvia. II. Lucinacea–Clavagellacea, Conclusions. Bulletin of the British Museum (Natural History), Zoology Series 22, 225–294.

Taylor, JD, Williams, ST, Glover, EA, and Dyal, P (2007). A molecular phylogeny of heterodont bivalves (Mollusca: Bivalvia: Heterodonta): new analyses of 18S and 28S rRNA genes. Zoologica Scripta 36, 587–606.
A molecular phylogeny of heterodont bivalves (Mollusca: Bivalvia: Heterodonta): new analyses of 18S and 28S rRNA genes.Crossref | GoogleScholarGoogle Scholar |

Taylor, JD, Glover, EA, Harper, EM, Crame, JA, Ikebe, C, and Williams, S (2018). Left in the cold? Evolutionary origin of Laternula elliptica, a keystone bivalve species of Antarctic benthos. Biological Journal of the Linnean Society 123, 360–376.

Tëmkin, I (2006). Morphological perspective on the classification and evolution of recent Pterioidea (Mollusca: Bivalvia). Zoological Journal of the Linnean Society 148, 253–312.

Thomas, KA (1993). The functional morphology of the digestive system of Lyonsia hyalina Conrad, 1831 (Bivalvia: Anomalodesmata: Pandoroidea). Journal of Molluscan Studies 59, 175–186.
The functional morphology of the digestive system of Lyonsia hyalina Conrad, 1831 (Bivalvia: Anomalodesmata: Pandoroidea).Crossref | GoogleScholarGoogle Scholar |

Wheeler, WC (1995). Sequence alignment, parameter sensitivity, and the phylogenetic analysis of molecular data. Systematic Biology 44, 321–331.
Sequence alignment, parameter sensitivity, and the phylogenetic analysis of molecular data.Crossref | GoogleScholarGoogle Scholar |

Williams, ST, Foster, PG, Hughes, C, Harper, EM, Taylor, JD, Littlewood, DTJ, Dyal, P, Hopkins, KP, and Briscoe, AG (2017). Curious bivalves: systematic utility and unusual properties of anomalodesmatan mitochondrial genomes. Molecular Phylogenetics and Evolution 110, 60–72.
Curious bivalves: systematic utility and unusual properties of anomalodesmatan mitochondrial genomes.Crossref | GoogleScholarGoogle Scholar |

Yonge, MC (1928). Structure and function of the organs of feeding and digestion in the Septibranchs, Cuspidaria and Poromya. Philosophical Transactions of the Royal Society of London 216, 221–263.

Yonge, CM (1948). Cleansing mechanisms and the function of the fourth pallial aperture in Spisula subtruncata (da Costa) and Lutraria lutraria (L.). Journal of the Marine Biological Association of the United Kingdom 27, 585–596.
Cleansing mechanisms and the function of the fourth pallial aperture in Spisula subtruncata (da Costa) and Lutraria lutraria (L.).Crossref | GoogleScholarGoogle Scholar |

Yonge, CM (1952a). Structure and adaptation in Entodesma saxicola (Baird) and Mytilimeria nuttalli Conrad. University of California Publications in Zoology 55, 439–450.

Yonge, CM (1952b). Studies on Pacific coast mollusks. IV. Observations on Siliqua patula Dixon and on evolution within the Solenidae. University of California Publications, Zoology 55, 421–438.

Yonge, CM (1976). Primary and secondary ligaments with the lithodesma in the Lyonsiidae (Bivalvia: Pandoracea). Journal of Molluscan Studies 42, 395–408.
Primary and secondary ligaments with the lithodesma in the Lyonsiidae (Bivalvia: Pandoracea).Crossref | GoogleScholarGoogle Scholar |

Yonge CM (1979) Cementation in bivalves. In ‘Pathways in Malacology’. (Eds S van der Spoel, AC van Bruggen, J Lever) pp. 83–106. (Bohn, Scheltema and Holkema: Utrecht, Netherlands)

Yonge, CM (1982). Mantle margins with a revision of siphonal types in the Bivalvia. Journal of Molluscan Studies 48, 102–103.

Yonge, CM, and Morton, B (1980). Ligament and lithodesma in the Pandoracea and the Poromyacea with a discussion on evolutionary history in the Anomalodesmata (Mollusca: Bivalvia). Journal of Zoology 191, 263–292.
Ligament and lithodesma in the Pandoracea and the Poromyacea with a discussion on evolutionary history in the Anomalodesmata (Mollusca: Bivalvia).Crossref | GoogleScholarGoogle Scholar |