Register      Login
Healthcare Infection Healthcare Infection Society
Official Journal of the Australasian College for Infection Prevention and Control
REVIEW

Acinetobacter infections – Epidemiology and pathogenesis of a significant healthcare-associated pathogen

Blake W. Buchan A , Nathan A. Ledeboer A C D and Charles E. Edmiston Jr B
+ Author Affiliations
- Author Affiliations

A Department of Pathology, Medical College of Wisconsin, 9200 West Wisconsin Avenue, Milwaukee, WI 53226, USA.

B Department of Surgery, Medical College of Wisconsin, 9200 West Wisconsin Avenue, Milwaukee, WI 53226, USA.

C Dynacare Laboratories, 9200 West Wisconsin Avenue, Milwaukee, WI 53226, USA.

D Corresponding author. Email: nledeboe@mcw.ed

Healthcare Infection 16(1) 6-17 https://doi.org/10.1071/HI10026
Submitted: 21 August 2010  Accepted: 29 November 2010   Published: 28 March 2011

Abstract

The genus Acinetobacter contains a heterogeneous array of environmental and commensal organisms. The majority of these strains are non-pathogenic; however, A. baumannii has emerged as a common nosocomial pathogen. Groups with the highest risk of A. baumannii infection include immunocompromised and critically ill patients, and those undergoing long-term care following severe burns or traumatic injury. In these patients A. baumannii can cause wound infections, pneumonia, and sepsis resulting in prolonged recovery time, longer hospital stays, and in some cases can be a contributing factor in mortality. The rise to prominence of A. baumannii in the healthcare setting can be attributed to intrinsic resistance to desiccation and chemical disinfectants, which allow the organism to persist on surfaces. This persistence provides a constant reservoir for transmission and can result in recurrent outbreaks within hospital units. Additionally, numerous native antibiotic resistance mechanisms along with the evolution of novel resistance through mutation or horizontal gene transfer has resulted in multi-drug resistant (MDR) strains which demonstrate resistance to nearly every available class of antibiotic. While the development of new antibiotics such as tigecycline holds some promise for treating these resistant strains, the best interventional strategy is to prevent nosocomial spread through the use of screening, contact isolation and good hand hygiene practices.


References

[1]  Towner KJ. Acinetobacter: an old friend, but a new enemy. J Hosp Infect 2009; 73 355–63.
Acinetobacter: an old friend, but a new enemy.Crossref | GoogleScholarGoogle Scholar | 1:STN:280:DC%2BD1MjmsFOjuw%3D%3D&md5=6693389ebb2d4b2a4b57e0cae8696f5eCAS | 19700220PubMed |

[2]  Baumann P, Doudoroff M, Stanier RY. A study of the Moraxella group. II. Oxidative-negative species (genus Acinetobacter). J Bacteriol 1968; 95 1520–41.
| 1:CAS:528:DyaF1cXhtFansbo%3D&md5=813f5e35e83478ba037adb04dd9eaf2cCAS | 5650064PubMed |

[3]  Baumann P. Isolation of Acinetobacter from soil and water. J Bacteriol 1968; 96 39–42.
| 1:STN:280:DyaF1czltVCktw%3D%3D&md5=18e5931eeb2b152dd4802fedd0a33ebcCAS | 4874313PubMed |

[4]  Penna VT, Martins SA, Mazzola PG. Identification of bacteria in drinking and purified water during the monitoring of a typical water purification system. BMC Public Health 2002; 2 13
Identification of bacteria in drinking and purified water during the monitoring of a typical water purification system.Crossref | GoogleScholarGoogle Scholar | 12182763PubMed |

[5]  Berlau J, Aucken H, Malnick H, Pitt T. Distribution of Acinetobacter species on skin of healthy humans. Eur J Clin Microbiol Infect Dis 1999; 18 179–83.
Distribution of Acinetobacter species on skin of healthy humans.Crossref | GoogleScholarGoogle Scholar | 1:STN:280:DyaK1M3otl2nsA%3D%3D&md5=31c17cf6a6b4417fe74e8b98364c9232CAS | 10357050PubMed |

[6]  Van Looveren M, Goossens H. Antimicrobial resistance of Acinetobacter spp. in Europe. Clin Microbiol Infect 2004; 10 684–704.
Antimicrobial resistance of Acinetobacter spp. in Europe.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2cXosFOru7g%3D&md5=5411f2e67266705d986b13cee25fa60cCAS | 15301671PubMed |

[7]  Patwardhan RB, Dhakephalkar PK, Niphadkar KB, Chopade BA. A study on nosocomial pathogens in ICU with special reference to multiresistant Acinetobacter baumannii harbouring multiple plasmids. Indian J Med Res 2008; 128 178–87.
| 1:CAS:528:DC%2BD1cXhtl2gtrbN&md5=58ddde36f35387a526dc6da4c10fa9e5CAS | 19001682PubMed |

[8]  Lessel E. International committee on nomenclature of bacteria minutes. Subcommittee on the taxonomy of Moraxella and allied bacteria. Int J Syst Bacteriol 1971; 21 213–4.
International committee on nomenclature of bacteria minutes. Subcommittee on the taxonomy of Moraxella and allied bacteria.Crossref | GoogleScholarGoogle Scholar |

[9]  Bouvet P, Grimont P. Taxonomy of the genus Acinetobacter with recognition of Acinetobater baumannii sp. nov., Acinetobacter haemolyticus sp. nov., Acinetobacter johnsonii sp. nov., and Acinetobacter junii sp. nov. and emended descriptions of Acinetobacter calcoaceticus and Acinetobater lowoffii. Int J Syst Bacteriol 1986; 36 228–40.
Taxonomy of the genus Acinetobacter with recognition of Acinetobater baumannii sp. nov., Acinetobacter haemolyticus sp. nov., Acinetobacter johnsonii sp. nov., and Acinetobacter junii sp. nov. and emended descriptions of Acinetobacter calcoaceticus and Acinetobater lowoffii.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaL28Xit1Wqs7Y%3D&md5=a9ab6d044372a74c0188b96232d4446dCAS |

[10]  Bouvet PJ, Grimont PA. Identification and biotyping of clinical isolates of Acinetobacter. Ann Inst Pasteur Microbiol 1987; 138 569–78.
Identification and biotyping of clinical isolates of Acinetobacter.Crossref | GoogleScholarGoogle Scholar | 1:STN:280:DyaL1c7kvF2itQ%3D%3D&md5=8ee997777ad8b7171d01a849f4e1263eCAS | 3440090PubMed |

[11]  Rossau R, VanLandschoot A, Gillis M, DeLey J. Taxonomy of Moraxellaceae fam. nov., a new bacterial family to accomodate the genera Moraxella, Acienetobacter, and Psychrobacter and related organisms. Int J Syst Bacteriol 1991; 41 310–9.
Taxonomy of Moraxellaceae fam. nov., a new bacterial family to accomodate the genera Moraxella, Acienetobacter, and Psychrobacter and related organisms.Crossref | GoogleScholarGoogle Scholar |

[12]  Garrity GM, Bell JA, Lilburn TG. Taxonomic outline of the Prokaryotes. Bergey’s Manual of Systematic Bacteriology. Edited by New York, Springer-Verlag, 2004.

[13]  Kuo SC, Fung CP, Lee YT, Chen CP, Chen TL. Bacteremia due to Acinetobacter genomic species 10. J Clin Microbiol 2010; 48 586–90.
Bacteremia due to Acinetobacter genomic species 10.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3cXkt1Sjur8%3D&md5=2b12e13c633d123785b6d0236beb02ceCAS | 19955266PubMed |

[14]  Yu-Hsien L, Te-Li C, Chien-Pei C, Chen-Chi T. Nosocomial acinetobacter genomic species 13 TU endocarditis following an endoscopic procedure. Intern Med 2008; 47 799–802.
Nosocomial acinetobacter genomic species 13 TU endocarditis following an endoscopic procedure.Crossref | GoogleScholarGoogle Scholar | 18421203PubMed |

[15]  Seifert H, Baginski R, Schulze A, Pulverer G. The distribution of Acinetobacter species in clinical culture materials. Zentralbl Bakteriol 1993; 279 544–52.
| 1:STN:280:DyaK2c7jvVWksg%3D%3D&md5=1824b032c9ee5e2849d6638a88df4e23CAS | 8305812PubMed |

[16]  Dominguez M, Gonzalez G, Bello H, Garcia A, Mella S, Pinto ME, et al Identification and biotyping of Acinetobacter spp. isolated in Chilean hospitals. J Hosp Infect 1995; 30 267–71.
Identification and biotyping of Acinetobacter spp. isolated in Chilean hospitals.Crossref | GoogleScholarGoogle Scholar | 1:STN:280:DyaK28%2FlvVOisQ%3D%3D&md5=d91b51d8712236457fa146cc11eb4e14CAS | 7499807PubMed |

[17]  Gerner-Smidt P, Tjernberg I, Ursing J. Reliability of phenotypic tests for identification of Acinetobacter species. J Clin Microbiol 1991; 29 277–82.
| 1:STN:280:DyaK3M7nvVSnuw%3D%3D&md5=9910c9b149ea51c15e224f1e91b6c415CAS | 2007635PubMed |

[18]  Tjernberg I, Ursing J. Clinical strains of Acinetobacter classified by DNA-DNA hybridization. APMIS 1989; 97 595–605.
Clinical strains of Acinetobacter classified by DNA-DNA hybridization.Crossref | GoogleScholarGoogle Scholar | 1:STN:280:DyaL1Mzit12huw%3D%3D&md5=3015e8c2697945d917f59a9eba65f757CAS | 2751895PubMed |

[19]  Seifert H, Strate A, Schulze A, Pulverer G. Bacteremia due to Acinetobacter species other than Acinetobacter baumannii. Infection 1994; 22 379–85.
Bacteremia due to Acinetobacter species other than Acinetobacter baumannii.Crossref | GoogleScholarGoogle Scholar | 1:STN:280:DyaK2M3htlWjug%3D%3D&md5=ce5f47e8326d31e4140cd977b16713d8CAS | 7698833PubMed |

[20]  Seifert H, Strate A, Schulze A, Pulverer G. Vascular catheter-related bloodstream infection due to Acinetobacter johnsonii (formerly Acinetobacter calcoaceticus var. lwoffi): report of 13 cases. Clin Infect Dis 1993; 17 632–6.
| 1:STN:280:DyaK2c%2Fpt1yluw%3D%3D&md5=efa8dd6a97121efebc2612b8a9d90684CAS | 8268343PubMed |

[21]  Bifulco JM, Shirey JJ, Bissonnette GK. Detection of Acinetobacter spp. in rural drinking water supplies. Appl Environ Microbiol 1989; 55 2214–9.
| 1:STN:280:DyaK3c%2FisFSrug%3D%3D&md5=fdad478357b4144764aec19817da2912CAS | 2529816PubMed |

[22]  Bai X, Wu F, Zhou B, Zhi X. Biofilm bacterial communities and abundance in a full-scale drinking water distribution system in Shanghai. J Water Health 2010; 8 593–600.
Biofilm bacterial communities and abundance in a full-scale drinking water distribution system in Shanghai.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3cXht1Kmtr%2FM&md5=f982023082aa28768c70249154e6458bCAS | 20375488PubMed |

[23]  Felföldi T, Heeger Z, Vargha M, Marialigeti K. Detection of potentially pathogenic bacteria in the drinking water distribution system of a hospital in Hungary. Clin Microbiol Infect 2010; 16 89–92.
Detection of potentially pathogenic bacteria in the drinking water distribution system of a hospital in Hungary.Crossref | GoogleScholarGoogle Scholar | 19519854PubMed |

[24]  Holben WE, Williams P, Gilbert MA, Saarinen M, Sarkilahti LK, Apajalahti JH. Phylogenetic analysis of intestinal microflora indicates a novel Mycoplasma phylotype in farmed and wild salmon. Microb Ecol 2002; 44 175–85.
Phylogenetic analysis of intestinal microflora indicates a novel Mycoplasma phylotype in farmed and wild salmon.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD38XnsVWls7w%3D&md5=275f01dee9db76db215fcafaa88f8243CAS | 12082453PubMed |

[25]  Xiang H, Wei GF, Jia S, Huang J, Miao XX, Zhou Z, et al Microbial communities in the larval midgut of laboratory and field populations of cotton bollworm (Helicoverpa armigera). Can J Microbiol 2006; 52 1085–92.
Microbial communities in the larval midgut of laboratory and field populations of cotton bollworm (Helicoverpa armigera).Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2sXht1Ggtbo%3D&md5=cbc3384bf1f4c30ed094c157cdbb9105CAS | 17215900PubMed |

[26]  Seifert H, Dijkshoorn L, Gerner-Smidt P, Pelzer N, Tjernberg I, Vaneechoutte M. Distribution of Acinetobacter species on human skin: comparison of phenotypic and genotypic identification methods. J Clin Microbiol 1997; 35 2819–25.
| 1:CAS:528:DyaK2sXnt1ejtb0%3D&md5=88c2b00329558c83e57f86fa1fcf5795CAS | 9350741PubMed |

[27]  Yavankar SP, Pardesi KR, Chopade BA. Species distribution and physiological characterization of Acinetobacter genospecies from healthy human skin of tribal population in India. Indian J Med Microbiol 2007; 25 336–45.
Species distribution and physiological characterization of Acinetobacter genospecies from healthy human skin of tribal population in India.Crossref | GoogleScholarGoogle Scholar | 1:STN:280:DC%2BD2sjkvFCqtw%3D%3D&md5=72464ad7bca88111cccbc6c89159c77aCAS | 18087081PubMed |

[28]  Kloos WE, Musselwhite MS. Distribution and persistence of Staphylococcus and Micrococcus species and other aerobic bacteria on human skin. Appl Microbiol 1975; 30 381–5.
| 1:STN:280:DyaE28%2FjvVGqsg%3D%3D&md5=f932efe4d5b71fb8991ca2447848bbdaCAS | 810086PubMed |

[29]  Jawad A, Seifert H, Snelling AM, Heritage J, Hawkey PM. Survival of Acinetobacter baumannii on dry surfaces: comparison of outbreak and sporadic isolates. J Clin Microbiol 1998; 36 1938–41.
| 1:STN:280:DyaK1czht12lsg%3D%3D&md5=52722a0f5d9787a9cbb30555476bff92CAS | 9650940PubMed |

[30]  Getchell-White SI, Donowitz LG, Groschel DH. The inanimate environment of an intensive care unit as a potential source of nosocomial bacteria: evidence for long survival of Acinetobacter calcoaceticus. Infect Control Hosp Epidemiol 1989; 10 402–7.
The inanimate environment of an intensive care unit as a potential source of nosocomial bacteria: evidence for long survival of Acinetobacter calcoaceticus.Crossref | GoogleScholarGoogle Scholar | 1:STN:280:DyaK3c%2FhtVSgtw%3D%3D&md5=ab090d94f61316db35fffead39a199e4CAS | 2794465PubMed |

[31]  Lu PL, Siu LK, Chen TC, Ma L, Chiang WG, Chen YH, et al Methicillin-resistant Staphylococcus aureus and Acinetobacter baumannii on computer interface surfaces of hospital wards and association with clinical isolates. BMC Infect Dis 2009; 9 164
| 19796381PubMed |

[32]  Teng SO, Lee WS, Ou TY, Hsieh YC, Lee WC, Lin YC. Bacterial contamination of patients’ medical charts in a surgical ward and the intensive care unit: impact on nosocomial infections. J Microbiol Immunol Infect 2009; 42 86–91.
| 19424563PubMed |

[33]  Chaladchalam S, Diraphat P, Utrarachkij F, Suthienkul O, Samakoses R, Siripanichgon K. Bed rails and endotracheal tube connectors as possible sources for spreading Acinetobacter baumannii in ventilator-associated pneumonia patients. Southeast Asian J Trop Med Public Health 2008; 39 676–85.
| 19058605PubMed |

[34]  Neely AN, Maley MP, Warden GD. Computer keyboards as reservoirs for Acinetobacter baumannii in a burn hospital. Clin Infect Dis 1999; 29 1358–59.
Computer keyboards as reservoirs for Acinetobacter baumannii in a burn hospital.Crossref | GoogleScholarGoogle Scholar | 1:STN:280:DyaK1MvlsVOjtA%3D%3D&md5=e4b1a1e8b8f81f8b6dbf9cb83db90322CAS | 10525257PubMed |

[35]  Williams D, Dingley J, Jones C, Berry N. Contamination of laryngoscope handles. J Hosp Infect 2010; 74 123–8.
Contamination of laryngoscope handles.Crossref | GoogleScholarGoogle Scholar | 1:STN:280:DC%2BC3c%2Fos1yqtw%3D%3D&md5=11179677649582240e1b3469e5febf6dCAS | 20096953PubMed |

[36]  Morgan DJ, Liang SY, Smith CL, Johnson JK, Harris AD, Furuno JP, Thom KA, Snyder GM, Day HR, Perencevich EN. Frequent Multidrug-Resistant Acinetobacter baumannii Contamination of Gloves, Gowns, and Hands of Healthcare Workers. Infect Control Hosp Epidemiol 2010; 31 716–21.
| 20486855PubMed |

[37]  Dijkshoorn L, Aucken H, Gerner-Smidt P, Janssen P, Kaufmann ME, Garaizar J, et al Comparison of outbreak and nonoutbreak Acinetobacter baumannii strains by genotypic and phenotypic methods. J Clin Microbiol 1996; 34 1519–25.
| 1:STN:280:DyaK28zislyqsw%3D%3D&md5=f12402360057d90ae5b3facd5e32b633CAS | 8735109PubMed |

[38]  Go ES, Urban C, Burns J, Kreiswirth B, Eisner W, Mariano N, et al Clinical and molecular epidemiology of Acinetobacter infections sensitive only to polymyxin B and sulbactam. Lancet 1994; 344 1329–32.
Clinical and molecular epidemiology of Acinetobacter infections sensitive only to polymyxin B and sulbactam.Crossref | GoogleScholarGoogle Scholar | 1:STN:280:DyaK2M%2FlslKjug%3D%3D&md5=80e24cdf174b1ded21866532e4779c26CAS | 7968028PubMed |

[39]  Gaynes R, Edwards JR. Overview of nosocomial infections caused by gram-negative bacilli. Clin Infect Dis 2005; 41 848–54.
Overview of nosocomial infections caused by gram-negative bacilli.Crossref | GoogleScholarGoogle Scholar | 16107985PubMed |

[40]  Ong CW, Lye DC, Khoo KL, Chua GS, Yeoh SF, Leo YS, et al Severe community-acquired Acinetobacter baumannii pneumonia: an emerging highly lethal infectious disease in the Asia-Pacific. Respirology 2009; 14 1200–5.
Severe community-acquired Acinetobacter baumannii pneumonia: an emerging highly lethal infectious disease in the Asia-Pacific.Crossref | GoogleScholarGoogle Scholar | 19909464PubMed |

[41]  Anstey NM, Currie BJ, Withnall KM. Community-acquired Acinetobacter pneumonia in the Northern Territory of Australia. Clin Infect Dis 1992; 14 83–91.
| 1:STN:280:DyaK383jvFKisg%3D%3D&md5=6f3b54743db7c7ad0e9dfa6cfd0e46b4CAS | 1571467PubMed |

[42]  Peleg AY, Franklin C, Bell JM, Spelman DW. Emergence of carbapenem resistance in Acinetobacter baumannii recovered from blood cultures in Australia. Infect Control Hosp Epidemiol 2006; 27 759–61.
Emergence of carbapenem resistance in Acinetobacter baumannii recovered from blood cultures in Australia.Crossref | GoogleScholarGoogle Scholar | 16807854PubMed |

[43]  Doidge M, Allworth AM, Woods M, Marshall P, Terry M, O’Brien K, et al Control of an outbreak of carbapenem-resistant Acinetobacter baumannii in Australia after introduction of environmental cleaning with a commercial oxidizing disinfectant. Infect Control Hosp Epidemiol 2010; 31 418–20.
Control of an outbreak of carbapenem-resistant Acinetobacter baumannii in Australia after introduction of environmental cleaning with a commercial oxidizing disinfectant.Crossref | GoogleScholarGoogle Scholar | 20175684PubMed |

[44]  Källman O, Lundberg C, Wretlind B, Ortqvist A. Gram-negative bacteria from patients seeking medical advice in Stockholm after the tsunami catastrophe. Scand J Infect Dis 2006; 38 448–50.
Gram-negative bacteria from patients seeking medical advice in Stockholm after the tsunami catastrophe.Crossref | GoogleScholarGoogle Scholar | 16798691PubMed |

[45]  Zakuan ZD, Azian H, Mahamarowi O, Md Radzi J. The prevalence and risk factors of nosocomial Acinetobacter blood stream infections in tertiary teaching hospital in north-eastern Malaysia. Trop Biomed 2009; 26 123–9.
| 19901898PubMed |

[46]  Jang TN, Lee SH, Huang CH, Lee CL, Chen WY. Risk factors and impact of nosocomial Acinetobacter baumannii bloodstream infections in the adult intensive care unit: a case-control study. J Hosp Infect 2009; 73 143–50.
Risk factors and impact of nosocomial Acinetobacter baumannii bloodstream infections in the adult intensive care unit: a case-control study.Crossref | GoogleScholarGoogle Scholar | 19716203PubMed |

[47]  Rodrigues PM, Carmo Neto E, Santos LR, Knibel MF. Ventilator-associated pneumonia: epidemiology and impact on the clinical evolution of ICU patients. J Bras Pneumol 2009; 35 1084–91.
| 20011843PubMed |

[48]  Lin SY, Wong WW, Fung CP, Liu CE, Liu CY. Acinetobacter calcoaceticus-baumannii complex bacteremia: analysis of 82 cases. J Microbiol Immunol Infect 1998; 31 119–24.
| 1:STN:280:DC%2BD3c%2Fmt1WhtA%3D%3D&md5=9f0f5e081332defba839151acdaab401CAS | 10596990PubMed |

[49]  Leung WS, Chu CM, Tsang KY, Lo FH, Lo KF, Ho PL. Fulminant community-acquired Acinetobacter baumannii pneumonia as a distinct clinical syndrome. Chest 2006; 129 102–9.
Fulminant community-acquired Acinetobacter baumannii pneumonia as a distinct clinical syndrome.Crossref | GoogleScholarGoogle Scholar | 16424419PubMed |

[50]  Cisneros JM, Reyes MJ, Pachon J, Becerril B, Caballero FJ, Garcia-Garmendia JL, et al Bacteremia due to Acinetobacter baumannii: epidemiology, clinical findings, and prognostic features. Clin Infect Dis 1996; 22 1026–32.
| 1:STN:280:DyaK28znsl2huw%3D%3D&md5=d428ef7a6186aaf9bd02f8767919671eCAS | 8783704PubMed |

[51]  Seifert H, Strate A, Pulverer G. Nosocomial bacteremia due to Acinetobacter baumannii. Clinical features, epidemiology, and predictors of mortality. Medicine (Baltimore) 1995; 74 340–9.
Nosocomial bacteremia due to Acinetobacter baumannii. Clinical features, epidemiology, and predictors of mortality.Crossref | GoogleScholarGoogle Scholar | 1:STN:280:DyaK287gtFyisA%3D%3D&md5=78dae4d0f1be240f6e4b09011089ad8bCAS | 7500897PubMed |

[52]  Fagon JY, Chastre J, Hance AJ, Montravers P, Novara A, Gibert C. Nosocomial pneumonia in ventilated patients: a cohort study evaluating attributable mortality and hospital stay. Am J Med 1993; 94 281–8.
Nosocomial pneumonia in ventilated patients: a cohort study evaluating attributable mortality and hospital stay.Crossref | GoogleScholarGoogle Scholar | 1:STN:280:DyaK3s7pvVyruw%3D%3D&md5=1fba9f2046f837335e98bde0b332d3acCAS | 8452152PubMed |

[53]  Garnacho J, Sole-Violan J, Sa-Borges M, Diaz E, Rello J. Clinical impact of pneumonia caused by Acinetobacter baumannii in intubated patients: a matched cohort study. Crit Care Med 2003; 31 2478–82.
Clinical impact of pneumonia caused by Acinetobacter baumannii in intubated patients: a matched cohort study.Crossref | GoogleScholarGoogle Scholar | 14530754PubMed |

[54]  Iregui M, Ward S, Sherman G, Fraser VJ, Kollef MH. Clinical importance of delays in the initiation of appropriate antibiotic treatment for ventilator-associated pneumonia. Chest 2002; 122 262–8.
Clinical importance of delays in the initiation of appropriate antibiotic treatment for ventilator-associated pneumonia.Crossref | GoogleScholarGoogle Scholar | 12114368PubMed |

[55]  Luna CM, Vujacich P, Niederman MS, Vay C, Gherardi C, Matera J, et al Impact of BAL data on the therapy and outcome of ventilator-associated pneumonia. Chest 1997; 111 676–85.
Impact of BAL data on the therapy and outcome of ventilator-associated pneumonia.Crossref | GoogleScholarGoogle Scholar | 1:STN:280:DyaK2s3js1WntA%3D%3D&md5=8088af32feef617828fdba4b4e7f7488CAS | 9118708PubMed |

[56]  Wisplinghoff H, Edmond MB, Pfaller MA, Jones RN, Wenzel RP, Seifert H. Nosocomial bloodstream infections caused by Acinetobacter species in United States hospitals: clinical features, molecular epidemiology, and antimicrobial susceptibility. Clin Infect Dis 2000; 31 690–7.
Nosocomial bloodstream infections caused by Acinetobacter species in United States hospitals: clinical features, molecular epidemiology, and antimicrobial susceptibility.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3cXotV2gsbY%3D&md5=849478e7cc4f1860a17d2e2fc0368599CAS | 11017817PubMed |

[57]  Noskin GA, Rubin RJ, Schentag JJ, Kluytmans J, Hedblom EC, Smulders M, et al The burden of Staphylococcus aureus infections on hospitals in the United States: an analysis of the 2000 and 2001 Nationwide Inpatient Sample Database. Arch Intern Med 2005; 165 1756–61.
The burden of Staphylococcus aureus infections on hospitals in the United States: an analysis of the 2000 and 2001 Nationwide Inpatient Sample Database.Crossref | GoogleScholarGoogle Scholar | 16087824PubMed |

[58]  Cisneros JM, Rodriguez-Bano J. Nosocomial bacteremia due to Acinetobacter baumannii: epidemiology, clinical features and treatment. Clin Microbiol Infect 2002; 8 687–93.
Nosocomial bacteremia due to Acinetobacter baumannii: epidemiology, clinical features and treatment.Crossref | GoogleScholarGoogle Scholar | 1:STN:280:DC%2BD38noslCitA%3D%3D&md5=453b2beab5f9ad9e33306b0a0eb4804bCAS | 12445005PubMed |

[59]  Bone RC. Gram-negative sepsis: a dilemma of modern medicine. Clin Microbiol Rev 1993; 6 57–68.
| 1:STN:280:DyaK3s3gvVOmsw%3D%3D&md5=d453e6fe50a4b1561c5a535186618342CAS | 8457980PubMed |

[60]  Tega L, Raieta K, Ottaviani D, Russo GL, Blanco G, Carraturo A. Catheter-related bacteremia and multidrug-resistant Acinetobacter lwoffii. Emerg Infect Dis 2007; 13 355–6.
Catheter-related bacteremia and multidrug-resistant Acinetobacter lwoffii.Crossref | GoogleScholarGoogle Scholar | 17479919PubMed |

[61]  Sebeny PJ, Riddle MS, Petersen K. Acinetobacter baumannii skin and soft-tissue infection associated with war trauma. Clin Infect Dis 2008; 47 444–9.
Acinetobacter baumannii skin and soft-tissue infection associated with war trauma.Crossref | GoogleScholarGoogle Scholar | 18611157PubMed |

[62]  Davis KA, Moran KA, McAllister CK, Gray PJ. Multidrug-resistant Acinetobacter extremity infections in soldiers. Emerg Infect Dis 2005; 11 1218–24.
| 16102310PubMed |

[63]  Guerrero DM, Perez F, Conger NG, Solomkin JS, Adams MD, Rather PN, et al Acinetobacter baumannii-associated skin and soft tissue infections: recognizing a broadening spectrum of disease. Surg Infect (Larchmt) 2010; 11 49–57.
Acinetobacter baumannii-associated skin and soft tissue infections: recognizing a broadening spectrum of disease.Crossref | GoogleScholarGoogle Scholar | 19788383PubMed |

[64]  Miranda BH, Ali SN, Jeffery SL, Thomas SS. Two stage study of wound microorganisms affecting burns and plastic surgery inpatients. J Burn Care Res 2008; 29 927–32.
Two stage study of wound microorganisms affecting burns and plastic surgery inpatients.Crossref | GoogleScholarGoogle Scholar | 19068509PubMed |

[65]  Keen EF, Robinson BJ, Hospenthal DR, Aldous WK, Wolf SE, Chung KK, et al Incidence and bacteriology of burn infections at a military burn center. Burns 2010; 36 461–8.
Incidence and bacteriology of burn infections at a military burn center.Crossref | GoogleScholarGoogle Scholar | 20045259PubMed |

[66]  Kokkonouzis I, Christou I, Athanasopoulos I, Saridis N, Skoufaras V. Multiple lung abscesses due to Acinetobacter infection: a case report. Cases J 2009; 2 9347
Multiple lung abscesses due to Acinetobacter infection: a case report.Crossref | GoogleScholarGoogle Scholar | 20062600PubMed |

[67]  Jacoby GA, Munoz-Price LS. The new beta-lactamases. N Engl J Med 2005; 352 380–389.
The new beta-lactamases.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2MXnvVKksA%3D%3D&md5=e4ea9d6471be73e617464db3ac223e3aCAS | 15673804PubMed |

[68]  Jemima SA, Verghese S. Multiplex PCR for bla(CTX-M) & bla(SHV) in the extended spectrum beta lactamase (ESBL) producing gram-negative isolates. Indian J Med Res 2008; 128 313–7.
| 1:CAS:528:DC%2BC3cXisVGhsbk%3D&md5=443a243ee2a7bbc979a94d2e10e4dbbcCAS | 19052344PubMed |

[69]  Naas T, Cuzon G, Truong H, Bernabeu S, Nordmann P. Evaluation of a DNA microarray (Check-Points ESBL/KPC Array) for the rapid detection of TEM, SHV and CTX-M extended-spectrum ss-lactamases (ESBLs), and KPC carbapenemases, Antimicrob Agents Chemother 2010.

[70]  Rasmussen BA, Bush K. Carbapenem-hydrolyzing beta-lactamases. Antimicrob Agents Chemother 1997; 41 223–32.
| 1:CAS:528:DyaK2sXpvVenuw%3D%3D&md5=3e907b2105af00e3b4239be1f222ef38CAS | 9021171PubMed |

[71]  Walsh TR. Clinically significant carbapenemases: an update. Curr Opin Infect Dis 2008; 21 367–71.
Clinically significant carbapenemases: an update.Crossref | GoogleScholarGoogle Scholar | 18594288PubMed |

[72]  Bou G, Martinez-Beltran J. Cloning, nucleotide sequencing, and analysis of the gene encoding an AmpC beta-lactamase in Acinetobacter baumannii. Antimicrob Agents Chemother 2000; 44 428–32.
Cloning, nucleotide sequencing, and analysis of the gene encoding an AmpC beta-lactamase in Acinetobacter baumannii.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3cXmvFGmsg%3D%3D&md5=94a9d0effdf34a3d6494da645c5884daCAS | 10639377PubMed |

[73]  Poirel L, Naas T, Nordmann P. Diversity, epidemiology, and genetics of class D beta-lactamases. Antimicrob Agents Chemother 2010; 54 24–38.
Diversity, epidemiology, and genetics of class D beta-lactamases.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3cXht1Sitbo%3D&md5=d8cb50f76894730c6fcd09b0dc7441c5CAS | 19721065PubMed |

[74]  Higgins PG, Poirel L, Lehmann M, Nordmann P, Seifert H. OXA-143, a novel carbapenem-hydrolyzing class D beta-lactamase in Acinetobacter baumannii. Antimicrob Agents Chemother 2009; 53 5035–8.
OXA-143, a novel carbapenem-hydrolyzing class D beta-lactamase in Acinetobacter baumannii.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1MXhsF2gs7jI&md5=87cf9aa6fca54eb436b81293f7111779CAS | 19770279PubMed |

[75]  Heritier C, Poirel L, Aubert D, Nordmann P. Genetic and functional analysis of the chromosome-encoded carbapenem-hydrolyzing oxacillinase OXA-40 of Acinetobacter baumannii. Antimicrob Agents Chemother 2003; 47 268–73.
Genetic and functional analysis of the chromosome-encoded carbapenem-hydrolyzing oxacillinase OXA-40 of Acinetobacter baumannii.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3sXis12nug%3D%3D&md5=ad5df5f4c1b03670e9fdd1ba933ddb15CAS | 12499201PubMed |

[76]  Sato K, Nakae T. Outer membrane permeability of Acinetobacter calcoaceticus and its implication in antibiotic resistance. J Antimicrob Chemother 1991; 28 35–45.
Outer membrane permeability of Acinetobacter calcoaceticus and its implication in antibiotic resistance.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK3MXlsFCrtbc%3D&md5=338f936aa19a2a5a8b3985f22ad94676CAS | 1722802PubMed |

[77]  Dupont M, Pages JM, Lafitte D, Siroy A, Bollet C. Identification of an OprD homologue in Acinetobacter baumannii. J Proteome Res 2005; 4 2386–90.
Identification of an OprD homologue in Acinetobacter baumannii.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2MXhtVarurbK&md5=a2fcfb45bf08ba48adcd84a0482782c2CAS | 16335991PubMed |

[78]  Vila J, Marti S, Sanchez-Cespedes J. Porins, efflux pumps and multidrug resistance in Acinetobacter baumannii. J Antimicrob Chemother 2007; 59 1210–5.
Porins, efflux pumps and multidrug resistance in Acinetobacter baumannii.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2sXnvVahtLs%3D&md5=6e5570d72368b0ae0275459e81ee3a65CAS | 17324960PubMed |

[79]  Roca I, Marti S, Espinal P, Martinez P, Gibert I, Vila J. CraA, a major facilitator superfamily efflux pump associated with chloramphenicol resistance in Acinetobacter baumannii. Antimicrob Agents Chemother 2009; 53 4013–4.
CraA, a major facilitator superfamily efflux pump associated with chloramphenicol resistance in Acinetobacter baumannii.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1MXhtFCjsrrF&md5=25df0c0325538ba1b487b5c8f09dcadcCAS | 19581458PubMed |

[80]  Siroy A, Molle V, Lemaitre-Guillier C, Vallenet D, Pestel-Caron M, Cozzone AJ, et al Channel formation by CarO, the carbapenem resistance-associated outer membrane protein of Acinetobacter baumannii. Antimicrob Agents Chemother 2005; 49 4876–83.
Channel formation by CarO, the carbapenem resistance-associated outer membrane protein of Acinetobacter baumannii.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2MXhtlSqsr7I&md5=d052b66d33d2efe074942ca7ad7ad920CAS | 16304148PubMed |

[81]  Mussi MA, Limansky AS, Viale AM. Acquisition of resistance to carbapenems in multidrug-resistant clinical strains of Acinetobacter baumannii: natural insertional inactivation of a gene encoding a member of a novel family of beta-barrel outer membrane proteins. Antimicrob Agents Chemother 2005; 49 1432–40.
Acquisition of resistance to carbapenems in multidrug-resistant clinical strains of Acinetobacter baumannii: natural insertional inactivation of a gene encoding a member of a novel family of beta-barrel outer membrane proteins.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2MXjt1GjsL8%3D&md5=244a20d36f80fea264956c6f41a72374CAS | 15793123PubMed |

[82]  Martí S, Sanchez-Cespedes J, Oliveira E, Bellido D, Giralt E, Vila J. Proteomic analysis of a fraction enriched in cell envelope proteins of Acinetobacter baumannii. Proteomics 2006; 6 S82–7.
Proteomic analysis of a fraction enriched in cell envelope proteins of Acinetobacter baumannii.Crossref | GoogleScholarGoogle Scholar | 16544276PubMed |

[83]  Clark RB. Imipenem resistance among Acinetobacter baumannii: association with reduced expression of a 33–36 kDa outer membrane protein. J Antimicrob Chemother 1996; 38 245–51.
Imipenem resistance among Acinetobacter baumannii: association with reduced expression of a 33–36 kDa outer membrane protein.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK28XlslSlsL0%3D&md5=e5bada214bd6057a6bbb0f334cc55a92CAS | 8877538PubMed |

[84]  del Mar Tomás M, Beceiro A, Perez A, Velasco D, Moure R, Villanueva R, et al Cloning and functional analysis of the gene encoding the 33- to 36-kilodalton outer membrane protein associated with carbapenem resistance in Acinetobacter baumannii. Antimicrob Agents Chemother 2005; 49 5172–5.
Cloning and functional analysis of the gene encoding the 33- to 36-kilodalton outer membrane protein associated with carbapenem resistance in Acinetobacter baumannii.Crossref | GoogleScholarGoogle Scholar | 16304197PubMed |

[85]  Magnet S, Courvalin P, Lambert T. Resistance-nodulation-cell division-type efflux pump involved in aminoglycoside resistance in Acinetobacter baumannii strain BM4454. Antimicrob Agents Chemother 2001; 45 3375–80.
Resistance-nodulation-cell division-type efflux pump involved in aminoglycoside resistance in Acinetobacter baumannii strain BM4454.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3MXovVOls7o%3D&md5=d5dc6f83afbcce501cbb97f336283d49CAS | 11709311PubMed |

[86]  Akers KS, Chaney C, Barsoumian A, Beckius M, Zera W, Yu X, et al Aminoglycoside resistance and susceptibility testing errors in Acinetobacter baumannii-calcoaceticus complex. J Clin Microbiol 2010; 48 1132–8.
Aminoglycoside resistance and susceptibility testing errors in Acinetobacter baumannii-calcoaceticus complex.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3cXmt1KgtLk%3D&md5=2028f19795542b2312af175e56f738daCAS | 20107089PubMed |

[87]  Seward RJ, Lambert T, Towner KJ. Molecular epidemiology of aminoglycoside resistance in Acinetobacter spp. J Med Microbiol 1998; 47 455–62.
Molecular epidemiology of aminoglycoside resistance in Acinetobacter spp.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK1cXjslSns7c%3D&md5=79c0ec87fb5c6b795a595565a8fbc529CAS | 9879947PubMed |

[88]  Doi Y, Arakawa Y. 16S ribosomal RNA methylation: emerging resistance mechanism against aminoglycosides. Clin Infect Dis 2007; 45 88–94.
16S ribosomal RNA methylation: emerging resistance mechanism against aminoglycosides.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2sXot1Cqurk%3D&md5=e6688fa732c3648e17c8688f145119b1CAS | 17554708PubMed |

[89]  Galimand M, Sabtcheva S, Courvalin P, Lambert T. Worldwide disseminated armA aminoglycoside resistance methylase gene is borne by composite transposon Tn1548. Antimicrob Agents Chemother 2005; 49 2949–53.
Worldwide disseminated armA aminoglycoside resistance methylase gene is borne by composite transposon Tn1548.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2MXlvFSlsLk%3D&md5=749781ba258bf71b6607d06ffe95dc77CAS | 15980373PubMed |

[90]  Lee H, Yong D, Yum JH, Roh KH, Lee K, Yamane K, et al Dissemination of 16S rRNA methylase-mediated highly amikacin-resistant isolates of Klebsiella pneumoniae and Acinetobacter baumannii in Korea. Diagn Microbiol Infect Dis 2006; 56 305–12.
Dissemination of 16S rRNA methylase-mediated highly amikacin-resistant isolates of Klebsiella pneumoniae and Acinetobacter baumannii in Korea.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD28XhtFOjtLfI&md5=9d7254c02cf063b97ec5688e7d899ed5CAS | 16822637PubMed |

[91]  Yu YS, Zhou H, Yang Q, Chen YG, Li LJ. Widespread occurrence of aminoglycoside resistance due to ArmA methylase in imipenem-resistant Acinetobacter baumannii isolates in China. J Antimicrob Chemother 2007; 60 454–5.
Widespread occurrence of aminoglycoside resistance due to ArmA methylase in imipenem-resistant Acinetobacter baumannii isolates in China.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2sXos12mtro%3D&md5=32f90f24baba19e65800da31def29fb8CAS | 17561497PubMed |

[92]  Vila J, Ruiz J, Goni P, Marcos A, Jimenez de Anta T. Mutation in the gyrA gene of quinolone-resistant clinical isolates of Acinetobacter baumannii. Antimicrob Agents Chemother 1995; 39 1201–3.
| 1:CAS:528:DyaK2MXlsVSlsbc%3D&md5=60a014bdffc5644d375e9f4740134a20CAS | 7625818PubMed |

[93]  Vila J, Ruiz J, Goni P, Jimenez de Anta T. Quinolone-resistance mutations in the topoisomerase IV parC gene of Acinetobacter baumannii. J Antimicrob Chemother 1997; 39 757–62.
Quinolone-resistance mutations in the topoisomerase IV parC gene of Acinetobacter baumannii.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK2sXksFWqsLo%3D&md5=0f77a4cedbea36b49530085a098e6d70CAS | 9222045PubMed |

[94]  Seward RJ, Towner KJ. Molecular epidemiology of quinolone resistance in Acinetobacter spp. Clin Microbiol Infect 1998; 4 248–54.
| 1:CAS:528:DyaK1cXjvVClsLo%3D&md5=1aed65001e0d6e9533ca814af9e4e190CAS | 11864339PubMed |

[95]  Sheng WH, Lin YC, Wang JT, Chen YC, Chang SC, Hsia KC, et al Identification of distinct ciprofloxacin susceptibility in Acinetobacter spp. by detection of the gyrA gene mutation using real-time PCR. Mol Cell Probes 2009; 23 154–6.
Identification of distinct ciprofloxacin susceptibility in Acinetobacter spp. by detection of the gyrA gene mutation using real-time PCR.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1MXms1OhtLc%3D&md5=54c9f1058c45ed6b67054bd865031af7CAS | 19281841PubMed |

[96]  Hujer KM, Hujer AM, Endimiani A, Thomson JM, Adams MD, Goglin K, et al Rapid determination of quinolone resistance in Acinetobacter spp. J Clin Microbiol 2009; 47 1436–42.
Rapid determination of quinolone resistance in Acinetobacter spp.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1MXmt1Cqs70%3D&md5=f8081cdad700825a9c4ea84ba0e80b5eCAS | 19297590PubMed |

[97]  Rajamohan G, Srinivasan VB, Gebreyes WA. Biocide-tolerant multidrug-resistant Acinetobacter baumannii clinical strains are associated with higher biofilm formation. J Hosp Infect 2009; 73 287–9.
Biocide-tolerant multidrug-resistant Acinetobacter baumannii clinical strains are associated with higher biofilm formation.Crossref | GoogleScholarGoogle Scholar | 1:STN:280:DC%2BD1MnpslKltQ%3D%3D&md5=6f1b560de137b00af31b43358023e467CAS | 19762119PubMed |

[98]  Rajamohan G, Srinivasan VB, Gebreyes WA. Novel role of Acinetobacter baumannii RND efflux transporters in mediating decreased susceptibility to biocides. J Antimicrob Chemother 2010; 65 228–32.
Novel role of Acinetobacter baumannii RND efflux transporters in mediating decreased susceptibility to biocides.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3cXhtVSqsL4%3D&md5=3164e0f581d02157a543bdc887f16f2bCAS | 20008046PubMed |

[99]  Rajamohan G, Srinivasan VB, Gebreyes WA. Molecular and functional characterization of a novel efflux pump, AmvA, mediating antimicrobial and disinfectant resistance in Acinetobacter baumannii. J Antimicrob Chemother 2010; 65 1919–25.
Molecular and functional characterization of a novel efflux pump, AmvA, mediating antimicrobial and disinfectant resistance in Acinetobacter baumannii.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3cXhtVansbnK&md5=21dec7f8003050d7a8d508f404f2b2a9CAS | 20573661PubMed |

[100]  Srinivasan VB, Rajamohan G, Gebreyes WA. Role of AbeS, a novel efflux pump of the SMR family of transporters, in resistance to antimicrobial agents in Acinetobacter baumannii. Antimicrob Agents Chemother 2009; 53 5312–6.
Role of AbeS, a novel efflux pump of the SMR family of transporters, in resistance to antimicrobial agents in Acinetobacter baumannii.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1MXhsF2gsL%2FM&md5=31cda595979594bd358494e205191a4fCAS | 19770280PubMed |

[101]  Donnarumma F, Sergi S, Indorato C, Mastromei G, Monnanni R, Nicoletti P, et al Molecular characterization of acinetobacter isolates collected in intensive care units of six hospitals in Florence, Italy, during a 3-year surveillance program: a population structure analysis. J Clin Microbiol 2010; 48 1297–304.
Molecular characterization of acinetobacter isolates collected in intensive care units of six hospitals in Florence, Italy, during a 3-year surveillance program: a population structure analysis.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3cXmt1Kguro%3D&md5=49c120d24d154ddb3da1baeef9ff0178CAS | 20181903PubMed |

[102]  Lewis T, Loman NJ, Bingle L, Jumaa P, Weinstock GM, Mortiboy D, et al High-throughput whole-genome sequencing to dissect the epidemiology of Acinetobacter baumannii isolates from a hospital outbreak. J Hosp Infect 2010; 75 37–41.
High-throughput whole-genome sequencing to dissect the epidemiology of Acinetobacter baumannii isolates from a hospital outbreak.Crossref | GoogleScholarGoogle Scholar | 1:STN:280:DC%2BC3c3lsVGgtg%3D%3D&md5=0712906b94fd7b8a5e8c2a531a195eb2CAS | 20299126PubMed |

[103]  Sengstock DM, Thyagarajan R, Apalara J, Mira A, Chopra T, Kaye KS. Multidrug-resistant Acinetobacter baumannii: an emerging pathogen among older adults in community hospitals and nursing homes. Clin Infect Dis 2010; 50 1611–6.
Multidrug-resistant Acinetobacter baumannii: an emerging pathogen among older adults in community hospitals and nursing homes.Crossref | GoogleScholarGoogle Scholar | 1:STN:280:DC%2BC3czksF2itA%3D%3D&md5=7ad9bed44722f83940c41af501b1c2c4CAS | 20462357PubMed |

[104]  Tong MJ. Septic complications of war wounds. JAMA 1972; 219 1044–7.
Septic complications of war wounds.Crossref | GoogleScholarGoogle Scholar | 1:STN:280:DyaE387gvVyhug%3D%3D&md5=b163230b307cca10f8fdb8b972312fd2CAS | 4621762PubMed |

[105]  Bernards AT, Frenay HM, Lim BT, Hendriks WD, Dijkshoorn L, van Boven CP. Methicillin-resistant Staphylococcus aureus and Acinetobacter baumannii: an unexpected difference in epidemiologic behavior. Am J Infect Control 1998; 26 544–51.
Methicillin-resistant Staphylococcus aureus and Acinetobacter baumannii: an unexpected difference in epidemiologic behavior.Crossref | GoogleScholarGoogle Scholar | 1:STN:280:DyaK1M%2FlsFWnuw%3D%3D&md5=a60dca2a7a9fa37e36c74498feeb1dcdCAS | 9836836PubMed |

[106]  Allen KD, Green HT. Hospital outbreak of multi-resistant Acinetobacter anitratus: an airborne mode of spread? J Hosp Infect 1987; 9 110–9.
Hospital outbreak of multi-resistant Acinetobacter anitratus: an airborne mode of spread?Crossref | GoogleScholarGoogle Scholar | 1:STN:280:DyaL2s7ps1amug%3D%3D&md5=680a5f3e66763dbdb6fd665c6577636dCAS | 2883217PubMed |

[107]  Romanelli RM, Jesus LA, Clemente WT, Lima SS, Rezende EM, Coutinho RL, et al Outbreak of resistant Acinetobacter baumannii- measures and proposal for prevention and control. Braz J Infect Dis 2009; 13 341–7.
Outbreak of resistant Acinetobacter baumannii- measures and proposal for prevention and control.Crossref | GoogleScholarGoogle Scholar | 20428632PubMed |

[108]  Podnos YD, Cinat ME, Wilson SE, Cooke J, Gornick W, Thrupp LD. Eradication of multi-drug resistant Acinetobacter from an intensive care unit. Surg Infect (Larchmt) 2001; 2 297–301.
Eradication of multi-drug resistant Acinetobacter from an intensive care unit.Crossref | GoogleScholarGoogle Scholar | 1:STN:280:DC%2BD3s%2Fotlelsg%3D%3D&md5=0ae6d7c4a7714cbb103fa40309dd32f0CAS | 12593705PubMed |

[109]  Denton M, Wilcox MH, Parnell P, Green D, Keer V, Hawkey PM, et al Role of environmental cleaning in controlling an outbreak of Acinetobacter baumannii on a neurosurgical intensive care unit. Intensive Crit Care Nurs 2005; 21 94–8.
Role of environmental cleaning in controlling an outbreak of Acinetobacter baumannii on a neurosurgical intensive care unit.Crossref | GoogleScholarGoogle Scholar | 1:STN:280:DC%2BD2M7ks1Wnsw%3D%3D&md5=98feedfcccf24a01fc6663c20713391eCAS | 15778073PubMed |

[110]  Apisarnthanarak A, Pinitchai U, Thongphubeth K, Yuekyen C, Warren DK, Fraser VJ. A multifaceted intervention to reduce pandrug-resistant Acinetobacter baumannii colonization and infection in 3 intensive care units in a Thai tertiary care center: a 3-year study. Clin Infect Dis 2008; 47 760–7.
A multifaceted intervention to reduce pandrug-resistant Acinetobacter baumannii colonization and infection in 3 intensive care units in a Thai tertiary care center: a 3-year study.Crossref | GoogleScholarGoogle Scholar | 18684100PubMed |

[111]  Chu YW, Leung CM, Houang ET, Ng KC, Leung CB, Leung HY, et al Skin carriage of acinetobacters in Hong Kong. J Clin Microbiol 1999; 37 2962–7.
| 1:STN:280:DyaK1MzotVeisQ%3D%3D&md5=1335f93dd66644794a4edd83a28d9b42CAS | 10449482PubMed |

[112]  Marchaim D, Navon-Venezia S, Schwartz D, Tarabeia J, Fefer I, Schwaber MJ, et al Surveillance cultures and duration of carriage of multidrug-resistant Acinetobacter baumannii. J Clin Microbiol 2007; 45 1551–5.
Surveillance cultures and duration of carriage of multidrug-resistant Acinetobacter baumannii.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2sXmsFOmtb0%3D&md5=92232c34a1159812e9071ae88309244fCAS | 17314222PubMed |

[113]  Doi Y, Onuoha EO, Adams-Haduch JM, Pakstis DL, McGaha TL, Werner CA, Parker BN, Brooks MM, Shutt KA, Pasculle AW, Muto CA, Harrison LH. Screening for Acinetobacter baumannii Colonization Using Sponge, J Clin Microbiol 2010; online ahead of print.

[114]  Gordon NC, Wareham DW. Evaluation of CHROMagar Acinetobacter for detection of enteric carriage of multidrug-resistant Acinetobacter baumannii in samples from critically ill patients. J Clin Microbiol 2009; 47 2249–51.
Evaluation of CHROMagar Acinetobacter for detection of enteric carriage of multidrug-resistant Acinetobacter baumannii in samples from critically ill patients.Crossref | GoogleScholarGoogle Scholar | 1:STN:280:DC%2BD1MvmtFOltw%3D%3D&md5=a2276d374dfee50c538ab185301a9075CAS | 19439546PubMed |

[115]  Akers KS, Barsoumian A, Beckius ML, Murray CK, Mende K. CHROMagar Acinetobacter is not selective for carbapenem-resistant Acinetobacter baumannii-calcoaceticus complex. Diagn Microbiol Infect Dis 2010; 67 209–11.
CHROMagar Acinetobacter is not selective for carbapenem-resistant Acinetobacter baumannii-calcoaceticus complex.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3cXmtFahur8%3D&md5=670e03e63f4616001462cf727db87e5bCAS | 20466197PubMed |

[116]  Raad I, Hanna H, Maki D. Intravascular catheter-related infections: advances in diagnosis, prevention, and management. Lancet Infect Dis 2007; 7 645–57.
Intravascular catheter-related infections: advances in diagnosis, prevention, and management.Crossref | GoogleScholarGoogle Scholar | 17897607PubMed |

[117]  Raad I, Reitzel R, Jiang Y, Chemaly RF, Dvorak T, Hachem R. Anti-adherence activity and antimicrobial durability of anti-infective-coated catheters against multidrug-resistant bacteria. J Antimicrob Chemother 2008; 62 746–50.
Anti-adherence activity and antimicrobial durability of anti-infective-coated catheters against multidrug-resistant bacteria.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1cXhtFCisbzP&md5=3ba41a9c3faa6ee9eaa645ec9afc9480CAS | 18653489PubMed |

[118]  Ip M, Lui SL, Poon VK, Lung I, Burd A. Antimicrobial activities of silver dressings: an in vitro comparison. J Med Microbiol 2006; 55 59–63.
Antimicrobial activities of silver dressings: an in vitro comparison.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD28Xot1elsA%3D%3D&md5=0d1b19ee8a7945b6782edf7d0f2b52b6CAS | 16388031PubMed |

[119]  Afessa B, Shorr AF, Anzueto AR, Craven DE, Schinner R, Kollef MH. Association between a silver-coated endotracheal tube and reduced mortality in patients with ventilator-associated pneumonia. Chest 2010; 137 1015–21.
Association between a silver-coated endotracheal tube and reduced mortality in patients with ventilator-associated pneumonia.Crossref | GoogleScholarGoogle Scholar | 20038737PubMed |

[120]  Huang HI, Shih HY, Lee CM, Yang TC, Lay JJ, Lin YE. In vitro efficacy of copper and silver ions in eradicating Pseudomonas aeruginosa, Stenotrophomonas maltophilia and Acinetobacter baumannii: implications for on-site disinfection for hospital infection control. Water Res 2008; 42 73–80.
In vitro efficacy of copper and silver ions in eradicating Pseudomonas aeruginosa, Stenotrophomonas maltophilia and Acinetobacter baumannii: implications for on-site disinfection for hospital infection control.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2sXhsVGlurrL&md5=faf882de5e676f3952949b2d0b81be1cCAS | 17655912PubMed |

[121]  Paddock HN, Fabia R, Giles S, Hayes J, Lowell W, Adams D, et al A silver-impregnated antimicrobial dressing reduces hospital costs for pediatric burn patients. J Pediatr Surg 2007; 42 211–3.
A silver-impregnated antimicrobial dressing reduces hospital costs for pediatric burn patients.Crossref | GoogleScholarGoogle Scholar | 17208568PubMed |

[122]  Bernards AT, Harinck HI, Dijkshoorn L, van der Reijden TJ, van den Broek PJ. Persistent Acinetobacter baumannii? Look inside your medical equipment. Infect Control Hosp Epidemiol 2004; 25 1002–4.
Persistent Acinetobacter baumannii? Look inside your medical equipment.Crossref | GoogleScholarGoogle Scholar | 1:STN:280:DC%2BD2crpt1KksQ%3D%3D&md5=456b5d130a05ad36c8da573c11db1197CAS | 15566039PubMed |

[123]  Dizbay M, Altuncekic A, Sezer BE, Ozdemir K, Arman D. Colistin and tigecycline susceptibility among multidrug-resistant Acinetobacter baumannii isolated from ventilator-associated pneumonia. Int J Antimicrob Agents 2008; 32 29–32.
Colistin and tigecycline susceptibility among multidrug-resistant Acinetobacter baumannii isolated from ventilator-associated pneumonia.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1cXntlWnur8%3D&md5=02d16760e3e5025ff1913460556b8cb2CAS | 18539006PubMed |

[124]  Koch-Weser J, Sidel VW, Federman EB, Kanarek P, Finer DC, Eaton AE. Adverse effects of sodium colistimethate. Manifestations and specific reaction rates during 317 courses of therapy. Ann Intern Med 1970; 72 857–68.
| 1:STN:280:DyaE3c3lslKnsQ%3D%3D&md5=028197d21b6ab4e3c7f6f123479794f8CAS | 5448745PubMed |

[125]  Rose WE, Rybak MJ. Tigecycline: first of a new class of antimicrobial agents. Pharmacotherapy 2006; 26 1099–110.
Tigecycline: first of a new class of antimicrobial agents.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD28XoslWkur8%3D&md5=362bcc0adeccc5eb77918fe3c3c3ec03CAS | 16863487PubMed |

[126]  Papaparaskevas J, Tzouvelekis LS, Tsakris A, Pittaras TE, Legakis NJ. In vitro activity of tigecycline against 2423 clinical isolates and comparison of the available interpretation breakpoints. Diagn Microbiol Infect Dis 2010; 66 187–94.
In vitro activity of tigecycline against 2423 clinical isolates and comparison of the available interpretation breakpoints.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3cXnt1Gksw%3D%3D&md5=3bd59e617fd32f99fd76068e9a38c75cCAS | 19836184PubMed |

[127]  Metan G, Alp E, Yildiz O, Percin D, Aygen B, Sumerkan B. Clinical experience with tigecycline in the treatment of carbapenem-resistant Acinetobacter infections. J Chemother 2010; 22 110–4.
| 1:CAS:528:DC%2BC3cXotFOjs7o%3D&md5=306acbd3dcb5bfecb8d67ebee0721221CAS | 20435570PubMed |

[128]  Hawley JS, Murray CK, Jorgensen JH. Colistin heteroresistance in acinetobacter and its association with previous colistin therapy. Antimicrob Agents Chemother 2008; 52 351–2.
Colistin heteroresistance in acinetobacter and its association with previous colistin therapy.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1cXkslemtA%3D%3D&md5=692fdcb62a46e68fa4092cb281d40172CAS | 17954699PubMed |

[129]  Adams MD, Nickel GC, Bajaksouzian S, Lavender H, Murthy AR, Jacobs MR, et al Resistance to colistin in Acinetobacter baumannii associated with mutations in the PmrAB two-component system. Antimicrob Agents Chemother 2009; 53 3628–34.
Resistance to colistin in Acinetobacter baumannii associated with mutations in the PmrAB two-component system.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1MXhtFequ7fK&md5=5558bc2363454bbbce1545d3216f9eabCAS | 19528270PubMed |

[130]  Reid GE, Grim SA, Aldeza CA, Janda WM, Clark NM. Rapid development of Acinetobacter baumannii resistance to tigecycline. Pharmacotherapy 2007; 27 1198–201.
Rapid development of Acinetobacter baumannii resistance to tigecycline.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2sXptlKqtb4%3D&md5=80263fa4bb512ee45f53ed2147b175f8CAS | 17655518PubMed |

[131]  Peleg AY, Potoski BA, Rea R, Adams J, Sethi J, Capitano B, et al Acinetobacter baumannii bloodstream infection while receiving tigecycline: a cautionary report. J Antimicrob Chemother 2007; 59 128–31.
Acinetobacter baumannii bloodstream infection while receiving tigecycline: a cautionary report.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD28XhtlChtLzE&md5=16c47c885ec578a22843de6c39d736e4CAS | 17082201PubMed |

[132]  Daly MW, Riddle DJ, Ledeboer NA, Dunne WM, Ritchie DJ. Tigecycline for treatment of pneumonia and empyema caused by carbapenemase-producing Klebsiella pneumoniae. Pharmacotherapy 2007; 27 1052–7.
Tigecycline for treatment of pneumonia and empyema caused by carbapenemase-producing Klebsiella pneumoniae.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2sXot1Gju70%3D&md5=2ab2bdf6f1fe1b55bdaf97923807d85eCAS | 17594211PubMed |

[133]  Peleg AY, Adams J, Paterson DL. Tigecycline Efflux as a Mechanism for Nonsusceptibility in Acinetobacter baumannii. Antimicrob Agents Chemother 2007; 51 2065–9.
Tigecycline Efflux as a Mechanism for Nonsusceptibility in Acinetobacter baumannii.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2sXmtlKrs7c%3D&md5=3b3ec567bb3f7cd3786ab10bb06ef7d6CAS | 17420217PubMed |

[134]  Poulakou G, Giamarellou H. Doripenem: an expected arrival in the treatment of infections caused by multidrug-resistant Gram-negative pathogens. Expert Opin Investig Drugs 2008; 17 749–71.
Doripenem: an expected arrival in the treatment of infections caused by multidrug-resistant Gram-negative pathogens.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1cXlt1ShsLo%3D&md5=631079287de8558d62ba3e475c333a33CAS | 18447600PubMed |

[135]  Brisse S, Milatovic D, Fluit AC, Kusters K, Toelstra A, Verhoef J, et al Molecular surveillance of European quinolone-resistant clinical isolates of Pseudomonas aeruginosa and Acinetobacter spp. using automated ribotyping. J Clin Microbiol 2000; 38 3636–45.
| 1:CAS:528:DC%2BD3cXnsF2nu78%3D&md5=e02785cb68e13f1eb7f946a2b2078767CAS | 11015376PubMed |

[136]  Urban C, Mariano N, Rahal JJ. In vitro double and triple bactericidal activities of doripenem, polymyxin B, and rifampin against Multidrug-resistant Acinetobacter baumannii, Pseudomonas aeruginosa, Klebsiella pneumoniae, and Escherichia coli. Antimicrob Agents Chemother 2010; 54 2732–4.
In vitro double and triple bactericidal activities of doripenem, polymyxin B, and rifampin against Multidrug-resistant Acinetobacter baumannii, Pseudomonas aeruginosa, Klebsiella pneumoniae, and Escherichia coli.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3cXos1Ogsbk%3D&md5=69ad46fe78c83fd6cbfe46a63e4f21ceCAS | 20368401PubMed |

[137]  Lim TP, Ledesma KR, Chang KT, Hou JG, Kwa AL, Nikolaou M, et al Quantitative assessment of combination antimicrobial therapy against multidrug-resistant Acinetobacter baumannii. Antimicrob Agents Chemother 2008; 52 2898–904.
Quantitative assessment of combination antimicrobial therapy against multidrug-resistant Acinetobacter baumannii.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1cXps1Ogtbw%3D&md5=a625b2068759b8693b312e81f59d0aadCAS | 18505848PubMed |

[138]  Rodriguez-Martinez JM, Nordmann P, Ronco E, Poirel L. Extended-Spectrum Cephalosporinase in Acinetobacter baumannii. Antimicrob Agents Chemother 2010; 54 3484–8.
| 1:CAS:528:DC%2BC3cXhtVOmsLzO&md5=55a3295387aa91f45d93cb9aa8bc05abCAS | 20547808PubMed |

[139]  Lauretti L, Riccio ML, Mazzariol A, Cornaglia G, Amicosante G, Fontana R, et al Cloning and characterization of blaVIM, a new integron-borne metallo-beta-lactamase gene from a Pseudomonas aeruginosa clinical isolate. Antimicrob Agents Chemother 1999; 43 1584–90.
| 1:CAS:528:DyaK1MXktlCks74%3D&md5=8d45a765f983c28c8ff226e93294a5e1CAS | 10390207PubMed |

[140]  Rossolini GM, Riccio ML, Cornaglia G, Pagani L, Lagatolla C, Selan L, et al Carbapenem-resistant Pseudomonas aeruginosa with acquired bla(vim) metallo-beta-lactamase determinants, Italy. Emerg Infect Dis 2000; 6 312–3.
Carbapenem-resistant Pseudomonas aeruginosa with acquired bla(vim) metallo-beta-lactamase determinants, Italy.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3cXktFCksbw%3D&md5=8a533597273647397fe6af4fc9bc99ffCAS | 10939846PubMed |

[141]  Lee MF, Peng CF, Hsu HJ, Chen YH. Molecular characterisation of the metallo-beta-lactamase genes in imipenem-resistant Gram-negative bacteria from a university hospital in southern Taiwan. Int J Antimicrob Agents 2008; 32 475–80.
Molecular characterisation of the metallo-beta-lactamase genes in imipenem-resistant Gram-negative bacteria from a university hospital in southern Taiwan.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1cXhtlGls7%2FP&md5=da5eb53c72a30c9a647f2ff71e53cc40CAS | 18804966PubMed |

[142]  Marchand I, Damier-Piolle L, Courvalin P, Lambert T. Expression of the RND-type efflux pump AdeABC in Acinetobacter baumannii is regulated by the AdeRS two-component system. Antimicrob Agents Chemother 2004; 48 3298–304.
Expression of the RND-type efflux pump AdeABC in Acinetobacter baumannii is regulated by the AdeRS two-component system.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2cXnsVeiu7o%3D&md5=2833edfe04b2940875554a949d2d41f2CAS | 15328088PubMed |

[143]  Gaddy JA, Tomaras AP, Actis LA. The Acinetobacter baumannii 19606 OmpA protein plays a role in biofilm formation on abiotic surfaces and in the interaction of this pathogen with eukaryotic cells. Infect Immun 2009; 77 3150–60.
The Acinetobacter baumannii 19606 OmpA protein plays a role in biofilm formation on abiotic surfaces and in the interaction of this pathogen with eukaryotic cells.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1MXpsFCmtb4%3D&md5=f4187dab4082fb5abb237ff0a846de63CAS | 19470746PubMed |