Register      Login
Healthcare Infection Healthcare Infection Society
Official Journal of the Australasian College for Infection Prevention and Control
EDITORIAL

Facing the rising tide of multidrug resistant Gram-negative pathogens

Luke F. Chen A H , Matthew E. Falagas B C D and Anton Y. Peleg E F G
+ Author Affiliations
- Author Affiliations

A Duke University Medical Center, Erwin Road, Durham, NC 27710, USA.

B Alfa Institute of Biomedical Sciences (AIBS), 9 Neapoleos Street, Marousi, Athens, Greece.

C Tufts University School of Medicine, 136 Harrison Avenue, Boston, MA 02111, USA.

D Henry Dunant Hospital, 107 Mesogion Av, Athens, Greece.

E Alfred Hospital, Commercial Road, Prahran, VIC 3181, Australia.

F Monash University, Wellington Road, Clayton, VIC 3800, Australia.

G Beth Israel Deaconess Medical Center, 330 Brookline Ave, Boston, MA 02215, USA.

H Corresponding author. Email: Luke.Chen@Duke.edu

Healthcare Infection 16(1) 1-5 https://doi.org/10.1071/HI11013
Published: 28 March 2011


References

[1]  Kallen AJ, Hidron AI, Patel J, Srinivasan A. Multidrug resistance among gram-negative pathogens that caused healthcare-associated infections reported to the National Healthcare Safety Network, 2006–2008. Infect Control Hosp Epidemiol 2010; 31 528–31.
Multidrug resistance among gram-negative pathogens that caused healthcare-associated infections reported to the National Healthcare Safety Network, 2006–2008.Crossref | GoogleScholarGoogle Scholar | 20334552PubMed |

[2]  Mauldin PD, Salgado CD, Hansen IS, Durup DT, Bosso JA. Attributable hospital cost and length of stay associated with health care-associated infections caused by antibiotic-resistant gram-negative bacteria. Antimicrob Agents Chemother 2010; 54 109–15.
Attributable hospital cost and length of stay associated with health care-associated infections caused by antibiotic-resistant gram-negative bacteria.Crossref | GoogleScholarGoogle Scholar | 19841152PubMed |

[3]  Lautenbach E, Polk RE. Resistant gram-negative bacilli: a neglected healthcare crisis? Am J Health Syst Pharm 2007; 64 S3–21. quiz S2–4.
Resistant gram-negative bacilli: a neglected healthcare crisis?Crossref | GoogleScholarGoogle Scholar | 18029939PubMed |

[4]  Rogers BA, Sidjabat HE, Paterson DL. Escherichia coli O25b-ST131: a pandemic, multiresistant, community-associated strain. J Antimicrob Chemother 2011; 66 1–14.
Escherichia coli O25b-ST131: a pandemic, multiresistant, community-associated strain.Crossref | GoogleScholarGoogle Scholar | 21081548PubMed |

[5]  Freeman JT, Sexton DJ, Anderson DJ. Emergence of extended-spectrum beta-lactamase-producing Escherichia coli in community hospitals throughout North Carolina: a harbinger of a wider problem in the United States? Clin Infect Dis 2009; 49 e30–2.
Emergence of extended-spectrum beta-lactamase-producing Escherichia coli in community hospitals throughout North Carolina: a harbinger of a wider problem in the United States?Crossref | GoogleScholarGoogle Scholar | 19522654PubMed |

[6]  Johnson JR, Johnston B, Clabots C, Kuskowski MA, Castanheira M. Escherichia coli sequence type ST131 as the major cause of serious multidrug-resistant E. coli infections in the United States. Clin Infect Dis 2010; 51 286–94.
Escherichia coli sequence type ST131 as the major cause of serious multidrug-resistant E. coli infections in the United States.Crossref | GoogleScholarGoogle Scholar | 20572763PubMed |

[7]  Nordmann P, Cuzon G, Naas T. The real threat of Klebsiella pneumoniae carbapenemase-producing bacteria. Lancet Infect Dis 2009; 9 228–36.
The real threat of Klebsiella pneumoniae carbapenemase-producing bacteria.Crossref | GoogleScholarGoogle Scholar | 19324295PubMed |

[8]  Anderson KF, Lonsway DR, Rasheed JK, Biddle J, Jensen B, McDougal LK, et al Evaluation of methods to identify the Klebsiella pneumoniae carbapenemase in Enterobacteriaceae. J Clin Microbiol 2007; 45 2723–5.
Evaluation of methods to identify the Klebsiella pneumoniae carbapenemase in Enterobacteriaceae.Crossref | GoogleScholarGoogle Scholar | 17581941PubMed |

[9]  Sidjabat HE, Silveira FP, Potoski BA, Abu-Elmagd KM, Adams-Haduch JM, Paterson DL, et al Interspecies spread of Klebsiella pneumoniae carbapenemase gene in a single patient. Clin Infect Dis 2009; 49 1736–8.
Interspecies spread of Klebsiella pneumoniae carbapenemase gene in a single patient.Crossref | GoogleScholarGoogle Scholar | 19886795PubMed |

[10]  Goren MG, Carmeli Y, Schwaber MJ, Chmelnitsky I, Schechner V, Navon-Venezia S. Transfer of carbapenem-resistant plasmid from Klebsiella pneumoniae ST258 to Escherichia coli in patient. Emerg Infect Dis 2010; 16 1014–7.
| 20507761PubMed |

[11]  Endimiani A, Depasquale JM, Forero S, Perez F, Hujer AM, Roberts-Pollack D, et al Emergence of blaKPC-containing Klebsiella pneumoniae in a long-term acute care hospital: a new challenge to our healthcare system. J Antimicrob Chemother 2009; 64 1102–10.
Emergence of blaKPC-containing Klebsiella pneumoniae in a long-term acute care hospital: a new challenge to our healthcare system.Crossref | GoogleScholarGoogle Scholar | 19740911PubMed |

[12]  Munoz-Price LS, Hayden MK, Lolans K, Won S, Calvert K, Lin M, et al Successful control of an outbreak of Klebsiella pneumoniae carbapenemase-producing K. pneumoniae at a long-term acute care hospital. Infect Control Hosp Epidemiol 2010; 31 341–7.
Successful control of an outbreak of Klebsiella pneumoniae carbapenemase-producing K. pneumoniae at a long-term acute care hospital.Crossref | GoogleScholarGoogle Scholar | 20175685PubMed |

[13]  Centers for Disease Control and Prevention. Management of Multidrug-Resistant Organisms in Healthcare Settings, 2006. Atlanta: CDC; 2006.

[14]  Centers for Disease Control and Prevention. Guidance for control of infections with carbapenem-resistant or carbapenemase-producing Enterobacteriaceae in acute care facilities. MMWR Morb Mortal Wkly Rep 2009; 58 256–60.
| 19300408PubMed |

[15]  Bonomo RA. New Delhi metallo-beta-lactamase and multidrug resistance: a global SOS? Clin Infect Dis 2011; 52 485–7.
New Delhi metallo-beta-lactamase and multidrug resistance: a global SOS?Crossref | GoogleScholarGoogle Scholar | 21258101PubMed |

[16]  Kumarasamy KK, Toleman MA, Walsh TR, Bagaria J, Butt F, Balakrishnan R, et al Emergence of a new antibiotic resistance mechanism in India, Pakistan, and the UK: a molecular, biological, and epidemiological study. Lancet Infect Dis 2010; 10 597–602.
Emergence of a new antibiotic resistance mechanism in India, Pakistan, and the UK: a molecular, biological, and epidemiological study.Crossref | GoogleScholarGoogle Scholar | 20705517PubMed |

[17]  Sidjabat H, Nimmo GR, Walsh TR, Binotto E, Htin A, Hayashi Y, et al Carbapenem resistance in Klebsiella pneumoniae due to the New Delhi Metallo-beta-lactamase. Clin Infect Dis 2011; 52 481–4.
Carbapenem resistance in Klebsiella pneumoniae due to the New Delhi Metallo-beta-lactamase.Crossref | GoogleScholarGoogle Scholar | 21258100PubMed |

[18]  Karageorgopoulos DE, Falagas ME. Current control and treatment of multidrug-resistant Acinetobacter baumannii infections. Lancet Infect Dis 2008; 8 751–62.
Current control and treatment of multidrug-resistant Acinetobacter baumannii infections.Crossref | GoogleScholarGoogle Scholar | 19022191PubMed |

[19]  Peleg AY, Seifert H, Paterson DL. Acinetobacter baumannii: emergence of a successful pathogen. Clin Microbiol Rev 2008; 21 538–82.
Acinetobacter baumannii: emergence of a successful pathogen.Crossref | GoogleScholarGoogle Scholar | 18625687PubMed |

[20]  Schechner V, Straus-Robinson K, Schwartz D, Pfeffer I, Tarabeia J, Moskovich R, et al Evaluation of PCR-based testing for surveillance of KPC-producing carbapenem-resistant members of the Enterobacteriaceae family. J Clin Microbiol 2009; 47 3261–5.
Evaluation of PCR-based testing for surveillance of KPC-producing carbapenem-resistant members of the Enterobacteriaceae family.Crossref | GoogleScholarGoogle Scholar | 19675211PubMed |

[21]  Wang J, Marshall C. Active surveillance detects a large proportion of MRSA and Acinetobacter species in the intensive care unit. Healthc Infect 2010; 15 115–8.
Active surveillance detects a large proportion of MRSA and Acinetobacter species in the intensive care unit.Crossref | GoogleScholarGoogle Scholar |

[22]  Kramer A, Schwebke I, Kampf G. How long do nosocomial pathogens persist on inanimate surfaces? A systematic review. BMC Infect Dis 2006; 6 130
How long do nosocomial pathogens persist on inanimate surfaces? A systematic review.Crossref | GoogleScholarGoogle Scholar | 16914034PubMed |

[23]  Jawad A, Heritage J, Snelling AM, Gascoyne-Binzi DM, Hawkey PM. Influence of relative humidity and suspending menstrua on survival of Acinetobacter spp. on dry surfaces. J Clin Microbiol 1996; 34 2881–7.
| 8940416PubMed |

[24]  Catalano M, Quelle LS, Jeric PE, Di Martino A, Maimone SM. Survival of Acinetobacter baumannii on bed rails during an outbreak and during sporadic cases. J Hosp Infect 1999; 42 27–35.
Survival of Acinetobacter baumannii on bed rails during an outbreak and during sporadic cases.Crossref | GoogleScholarGoogle Scholar | 10363208PubMed |

[25]  Huslage K, Rutala WA, Sickbert-Bennett E, Weber DJ. A quantitative approach to defining “high-touch” surfaces in hospitals. Infect Control Hosp Epidemiol 2010; 31 850–3.
A quantitative approach to defining “high-touch” surfaces in hospitals.Crossref | GoogleScholarGoogle Scholar | 20569115PubMed |

[26]  Nerandzic MM, Cadnum JL, Pultz MJ, Donskey CJ. Evaluation of an automated ultraviolet radiation device for decontamination of Clostridium difficile and other healthcare-associated pathogens in hospital rooms. BMC Infect Dis 2010; 10 197
Evaluation of an automated ultraviolet radiation device for decontamination of Clostridium difficile and other healthcare-associated pathogens in hospital rooms.Crossref | GoogleScholarGoogle Scholar | 20615229PubMed |

[27]  Rutala WA, Gergen MF, Weber DJ. Room decontamination with UV radiation. Infect Control Hosp Epidemiol 2010; 31 1025–9.
Room decontamination with UV radiation.Crossref | GoogleScholarGoogle Scholar | 20804377PubMed |

[28]  Otter JA, Yezli S, Schouten MA, van Zanten AR, Houmes-Zielman G, Nohlmans-Paulssen MK. Hydrogen peroxide vapor decontamination of an intensive care unit to remove environmental reservoirs of multidrug-resistant gram-negative rods during an outbreak. Am J Infect Control 2010; 38 754–6.
Hydrogen peroxide vapor decontamination of an intensive care unit to remove environmental reservoirs of multidrug-resistant gram-negative rods during an outbreak.Crossref | GoogleScholarGoogle Scholar | 20605263PubMed |

[29]  Otter JA, Puchowicz M, Ryan D, Salkeld JA, Cooper TA, Havill NL, et al Feasibility of routinely using hydrogen peroxide vapor to decontaminate rooms in a busy United States hospital. Infect Control Hosp Epidemiol 2009; 30 574–7.
Feasibility of routinely using hydrogen peroxide vapor to decontaminate rooms in a busy United States hospital.Crossref | GoogleScholarGoogle Scholar | 19415969PubMed |

[30]  Boyce JM, Havill NL, Dumigan DG, Golebiewski M, Balogun O, Rizvani R. Monitoring the effectiveness of hospital cleaning practices by use of an adenosine triphosphate bioluminescence assay. Infect Control Hosp Epidemiol 2009; 30 678–84.
Monitoring the effectiveness of hospital cleaning practices by use of an adenosine triphosphate bioluminescence assay.Crossref | GoogleScholarGoogle Scholar | 19489715PubMed |

[31]  Blue J, O’Neill C, Speziale P, Revill J, Ramage L, Ballantyne L. Use of a fluorescent chemical as a quality indicator for a hospital cleaning program. Can J Infect Control 2008; 23 216–9.
| 19350998PubMed |

[32]  Burden M, Cervantes L, Weed D, Keniston A, Price CS, Albert RK. Newly cleaned physician uniforms and infrequently washed white coats have similar rates of bacterial contamination after an 8-hour workday: a randomized controlled trial. J Hosp Med 2011;
Newly cleaned physician uniforms and infrequently washed white coats have similar rates of bacterial contamination after an 8-hour workday: a randomized controlled trial.Crossref | GoogleScholarGoogle Scholar | 21312328PubMed |